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Abstract

The graph traversal edit distance (GTED), introduced by Ebrahimpour Boroo-

jeny et al. (2018), is an elegant distance measure defined as the minimum edit

distance between strings reconstructed from Eulerian trails in two edge-labeled

graphs. GTED can be used to infer evolutionary relationships between species

by comparing de Bruijn graphs directly without the computationally costly and

error-prone process of genome assembly. Ebrahimpour Boroojeny et al. (2018)

propose two ILP formulations for GTED and claim that GTED is polynomially

solvable because the linear programming relaxation of one of the ILPs always

yields optimal integer solutions. The claim that GTED is polynomially solvable

is contradictory to the complexity results of existing string-to-graph matching

problems.

We resolve this conflict in complexity results by proving that GTED is NP-

complete and showing that the ILPs proposed by Ebrahimpour Boroojeny et

al. do not solve GTED but instead solve for a lower bound of GTED and are
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not solvable in polynomial time. In addition, we provide the first two, correct

ILP formulations of GTED and evaluate their empirical efficiency. These results

provide solid algorithmic foundations for comparing genome graphs and point

to the direction of heuristics.

The source code to reproduce experimental results is available at

https://github.com/Kingsford-Group/gtednewilp/.

1. Introduction

Graph traversal edit distance (GTED) [1] is an elegant measure of the similarity between

the strings represented by edge-labeled Eulerian graphs. For example, given two de Bruijn

assembly graphs [2], computing GTED between them measures the similarity between two

genomes without the computationally intensive and possibly error-prone process of assem-

bling the genomes. Using an approximation of GTED between assembly graphs of Hepatitis

B viruses, Ebrahimpour Boroojeny et al. [1] group the viruses into clusters consistent with

their taxonomy. This can be extended to inferring phylogeny relationships in metagenomic

communities or comparing heterogeneous disease samples such as cancer. There are several

other methods to compute a similarity measure between strings encoded by two assembly

graphs [3–6]. GTED has the advantage that it does not require prior knowledge on the

type of the genome graph or the complete sequence of the input genomes. The input to the

GTED problem is two unidirectional, edge-labeled Eulerian graphs, which are defined as:

Definition 1 (Unidirectional, edge-labeled Eulerian Graph). A unidirectional, edge-labeled

Eulerian graph is a connected directed graph G = (V,E, ℓ,Σ), with node set V , edge multi-

set E, constant-size alphabet Σ, and single-character edge labels ℓ : E → Σ, such that G

contains an Eulerian trail that traverses every edge e ∈ E exactly once. The unidirectional

condition means that all edges between the same pair of nodes are in the same direction.

Such graphs arise in genome assembly problems (e.g. the de Bruijn subgraphs). Com-

puting GTED is the problem of computing the minimum edit distance between the two
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most similar strings represented by Eulerian trails each input graph.

Problem 1 (Graph Traversal Edit Distance (GTED) [1]). Given two unidirectional, edge-

labeled Eulerian graphs G1 and G2, compute

GTED(G1, G2) ≜ min
t1∈trails(G1)
t2∈trails(G2)

edit(str(t1), str(t2)). (1)

Here, trails(G) is the collection of all Eulerian trails in graph G, str(t) is a string constructed

by concatenating labels on the Eulerian trail t = (e0, e1, . . . , en), and edit(s1, s2) is the edit

distance between strings s1 and s2.

Ebrahimpour Boroojeny et al. [1] claim that GTED is polynomially solvable by propos-

ing an integer linear programming (ILP) formulation of GTED and arguing that the con-

straints of the ILP make it polynomially solvable. This result, however, conflicts with

several complexity results on string-to-graph matching problems. Kupferman and Vardi [7]

show that it is NP-complete to determine if a string exactly matches an Eulerian tour in

an edge-labeled Eulerian graph. Additionally, Jain et al. [8] show that it is NP-complete

to compute an edit distance between a string and strings represented by a labeled graph if

edit operations are allowed on the graph. On the other hand, polynomial-time algorithms

exist to solve string-to-string alignment [9] and string-to-graph alignment [8] when edit

operations on graphs are not allowed.

We resolve the conflict among the results on complexity of graph comparisons by revis-

iting the complexity of and the proposed solutions to GTED. We prove that computing

GTED is NP-complete by reducing from the Hamiltonian Path problem, reaching an

agreement with other related results on complexity. Further, we point out with a counter-

example that the optimal solution of the ILP formulation proposed by Ebrahimpour Boroo-

jeny et al. [1] does not solve GTED.

We give two ILP formulations for GTED. The first ILP has an exponential number of

constraints and can be solved by subtour elimination iteratively [10, 11]. The second ILP

has a polynomial number of constraints and shares a similar high-level idea of the global
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ordering approach [11] in solving the Traveling Salesman problem [12].

In Qiu and Kingsford [13], Flow-GTED (FGTED), a variant of GTED is proposed to

compare two sets of strings instead of two strings encoded by graphs. FGTED is equal

to the edit distance between the most similar sets of strings spelled by the decomposition

of flows between a pair of predetermined source and sink nodes. The similarity between

the sets of strings reconstructed from the flow decomposition is measured by the Earth

Mover’s Edit Distance [13, 14]. FGTED is used to compare pan-genomes, where both

the frequency and content of strings are essential to represent the population of organisms.

Qiu and Kingsford [13] reduce FGTED to GTED, and via the claimed polynomial-time

algorithm of GTED, argue that FGTED is also polynomially solvable. We show that this

claim is false by proving that FGTED is also NP-complete.

While the optimal solution to ILP proposed in Ebrahimpour Boroojeny et al. [1] does

not solve GTED, it does compute a lower bound to GTED. We characterize the cases

when GTED is equal to this lower bound. In addition, we point out that solving this

ILP formulation finds a minimum-cost matching between closed-trail decompositions in

the input graphs, which may be used to compute the similarity between repeats in the

genomes. Ebrahimpour Boroojeny et al. [1] claim their proposed ILP formulation is solvable

in polynomial time by arguing that the constraint matrix of the linear relaxation of the ILP

is always totally unimodular. We show that this claim is false by proving that the constraint

matrix is not always totally unimodular and showing that there exists optimal fractional

solutions to its linear relaxation.

We evaluate the efficiency of solving ILP formulations for GTED and its lower bound

on simulated genomic strings and show that it is impractical to compute GTED on larger

genomes.

In summary, we revisit two important problems in genome graph comparisons: Graph

Traversal Edit Distance (GTED) and its variant FGTED. We show that both GTED and

FGTED are NP-complete, and provide the first correct ILP formulations for GTED. We

also show that the ILP formulation proposed by [1] is a lower bound to GTED. We evaluate
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the efficiency of the ILPs for GTED and its lower bound on genomic sequences. These

results provide solid algorithmic foundations for continued algorithmic innovation on the

task of comparing genome graphs and point to the direction of approximation heuristics.

2. GTED and FGTED are NP-complete

2.1 Conflicting results on computational complexity of GTED and string-

to-graph matching

The natural decision versions of all of the computational problems described above and be-

low are clearly in NP. Under the assumption that P ̸= NP, the results on the computational

complexity of GTED and string-to-graph matching claimed in Ebrahimpour Boroojeny

et al. [1] and Kupferman and Vardi [7], respectively, cannot be both true.

Kupferman and Vardi [7] show that the problem of determining if an input string can be

spelled by concatenating edge labels in an Eulerian trail in an input graph is NP-complete.

We call this problem Eulerian Trail Equaling Word. We show in Theorem 1 that

we can reduce ETEW to GTED, and therefore if GTED is polynomially solvable, then

ETEW is polynomially solvable. The complete proof is in Appendix A.1.

Problem 2 (Eulerian Trail Equaling Word [7]). Given a string s ∈ Σ∗, an edge-labaled

Eulerian graph G, find an Eulerian trail t of G such that str(t) = s.

Theorem 1. If GTED ∈ P then ETEW ∈ P.

Proof sketch. We first convert an input instance ⟨s,G⟩ to ETEW into an input instance

⟨G1, G2⟩ to GTED by (a) creating graph G1 that only contains edges that reconstruct

string s and (b) modifying G into G2 by extending the anti-parallel edges so that G2 is

unidirectional. We show that if GTED(G1, G2) = 0, there must be an Eulerian trail in G

that spells s, and if GTED(G1, G2) > 0, G must not contain an Eulerian trail that spells

s.
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Hence, an (assumed) polynomial-time algorithm forGTED solves ETEW in polynomial

time. This contradicts Theorem 6 of Kupferman and Vardi [7] of the NP-completeness of

ETEW (under P ̸= NP).

2.2 Reduction from Hamiltonian Path to GTED and FGTED

We resolve the contradiction by showing that GTED is NP-complete. The details of the

proof are in Appendix A.2.

Theorem 2. GTED is NP-complete.

Proof sketch. We reduce from the Hamiltonian Path problem, which asks whether a

directed, simple graph G contains a path that visits every vertex exactly once. Here simple

means no self-loops or parallel edges. The reduction is almost identical to that presented

in Kupferman and Vardi [7], and from here until noted later in the proof the argument

is identical except for the technicalities introduced to force unidirectionality (and another

minor change described later).

Let ⟨G = (V,E)⟩ be an instance of Hamiltonian Path, with n = |V | vertices. We first

create the Eulerian closure of G, which is defined as G′ = (V ′, E′) where

V ′ = {vin, vout : v ∈ V } ∪ {w}. (2)

Here, each vertex in V is split into vin and vout, and w is a newly added vertex. E′ is the

union of the following sets of edges and their labels:

• E1 = {(vin, vout) : v ∈ V }, labeled a,

• E2 = {(uout, vin) : (u, v) ∈ E}, labeled b,

• E3 = {(vout, vin) : v ∈ V }, labeled c,

• E4 = {(vin, uout) : (u, v) ∈ E}, labeled c,

• E5 = {(uin, w) : u ∈ V }, labeled c,
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• E6 = {(w, uin) : u ∈ V }, labeled b.

G′ is an Eulerian graph by construction but contains anti-parallel edges. We further create

G′′ from G′ by adding dummy nodes so that each pair of antiparallel edges is split into two

parallel, length-2 paths with labels x#, where x is the original label.

We also create a graph C that has the same number of edges as G′′ and spells out a

string

q = a#(b#a#)n−1(c#)2n−1(c#b#)|E|+1. (3)

We then argue that G has a Hamiltonian path if and only if G′′ spells out the string q,

which uses the same line of arguments and graph traversals as in Kupferman and Vardi [7].

We then show that GTED(G′′, C) = 0 if and only if G′′ spells q.

Following a similar argument, we show that FGTED is also NP-complete, and its proof

is in Appendix A.3.

Theorem 3. FGTED is NP-complete.

3. Revisiting the correctness of the proposed ILP solutions

to GTED

In this section, we revisit two proposed ILP solutions to GTED by Ebrahimpour Boroojeny

et al. [1] and show that the optimal solution to these ILP is not always equal to GTED.

3.1 Alignment graph

The previously proposed ILP formulations for GTED are based on the alignment graph

constructed from input graphs. The high-level concept of an alignment graph is similar to

the dynamic programming matrix for the string-to-string alignment problem [9].

Definition 2 (Alignment graph). Let G1, G2 be two unidirectional, edge-labeled Eulerian

graphs. The alignment graph A(G1, G2) = (V,E, δ) is a directed graph that has vertex set

V = V1 × V2 and edge multi-set E that equals the union of the following:
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Figure 1: (a) An example of two edge labeled Eulerian graphs G1 (top) and G2 (bottom).
(b) The alignment graph A(G1, G2). The cycle with red edges is the path corresponding
to GTED(G1, G2). Red solid edges are matches with cost 0 and red dashed-line edge is
mismatch with cost 1.

Vertical edges [(u1, u2), (v1, u2)] for (u1, v1) ∈ E1 and u2 ∈ V2,

Horizontal edges [(u1, u2), (u1, v2)] for u1 ∈ V1 and (u2, v2) ∈ E2,

Diagonal edges [(u1, u2), (v1, v2)] for (u1, v1) ∈ E1 and (u2, v2) ∈ E2.

Each edge is associated with a cost by the cost function δ : E → R.

Each diagonal edge e = [(u1, v1), (u2, v2)] in an alignment graph can be projected to

(u1, v1) and (u2, v2) inG1 andG2, respectively. Similarly, each vertical edge can be projected

to one edge in G1, and each horizontal edge can be projected to one edge in G2.

We define the edge projection function πi that projects an edge from the alignment

graph to an edge in the input graph Gi. We also define the path projection function Πi that

projects a trail in the alignment graph to a trail in the input graph Gi. For example, let a

trail in the alignment graph be p = (e1, e2, . . . , em), and Πi(p) = (πi(e1), πi(e2), . . . , πi(em))

is a trail in Gi.

An example of an alignment graph is shown in Figure 1(b). The horizontal edges cor-

respond to gaps in strings represented by G1, vertical edges correspond to gaps in strings
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represented by G2, and diagonal edges correspond to the matching between edge labels

from the two graphs. In the rest of this paper, we assume that the costs for horizontal

and vertical edges are 1, and the costs for the diagonal edges are 1 if the diagonal edge

represents a mismatch and 0 if it is a match. The cost function δ can be defined to capture

the cost of matching between edge labels or inserting gaps. This definition of alignment

graph is also a generalization of the alignment graph used in string-to-graph alignment [8].

3.2 The first previously proposed ILP for GTED

Lemma 1 in Ebrahimpour Boroojeny et al. [1] provides a model for computing GTED by

finding the minimum-cost trail in the alignment graph. We reiterate it here for completeness.

Lemma 1 ([1]). For any two edge-labeled Eulerian graphs G1 and G2,

GTED(G1, G2) = minimizec δ(c)

subject to c is a trail in A(G1, G2),

Πi(c) is an Eulerian trail in Gi for i = 1, 2,

(4)

where δ(c) is the total edge cost of c, and Πi(c) is the projection from c to Gi.

An example of such a minimum-cost trail is shown in Figure 1(b). Ebrahimpour Boroo-

jeny et al. [1] provide the following ILP formulation and claim that it is a direct translation
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of Lemma 1:

minimize
x∈N|E|

∑
e∈E

xeδ(e) (5)

subject to Ax = 0 (6)∑
e∈E

xeIi(e, f) = 1 for i = 1, 2 and for all f ∈ Ei (7)

Aue =


−1 if e = (u, v) ∈ E for some vertex v ∈ V

1 if e = (v, u) ∈ E for some u ∈ V

0 otherwise

(8)

Here, E is the edge set of A(G1, G2). A is the negative incidence matrix of size |V | × |E|,

and Ii(e, f) is an indicator function that is 1 if edge e in E projects to edge f in the input

graph Gi (and 0 otherwise). We define the domain of each xe to include all non-negative

integers. However, due to constraints (7), the values of xe are limited to either 0 or 1.

We describe this ILP formulation with the assumption that both input graphs have closed

Eulerian trails, which means that each node has equal numbers of incoming and outgoing

edges. We discuss the cases when input graphs contain open Eulerian trails in Section 4.

While the ILP in (5)-(8) allows the solutions to select disjoint cycles in the alignment

graph, the projection of edges in these disjoint cycles does not correspond to a single string

represented by either of the input graphs. We show that the ILP in (5)-(8) does not solve

GTED by giving an example where the objective value of the optimal solution to the ILP

in (5)-(8) is not equal to GTED.

Construct two input graphs as shown in Figure 2(a). Specifically, G1 spells circular

permutations of TTTGAA and G2 spells circular permutations of TTTAGA. It is clear that

GTED(G1, G2) = 2 under Levenshtein edit distance. On the other hand, as shown in

Figure 2(a), an optimal solution in A(G1, G2) contains two disjoint cycles with nonzero xe

values that have a total edge cost equal to 0. This solution is a feasible solution to the

ILP in (5)-(8). It is also an optimal solution because the objective value is zero, which is
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Figure 2: (a) The subgraph in the alignment graph induced by an optimal solution to
the ILP in (5)-(8) and the ILP in (11)-(12) with input graphs on the left and top. The
red and blue edges in the alignment graph are edges matching labels in red and blue font,
respectively, and are part of the optimal solution to the ILP in (5)-(8). The cost of the
red and blue edges are zero. (b) The subgraph induced by xinit with s1 = u1 and s2 = v1
according to the ILP in (11)-(12). The rest of the edges in the alignment graph are omitted
for simplicity.

the lower bound on the ILP in (5)-(8). This optimal objective value, however, is smaller

than GTED(G1, G2). Therefore, the ILP in (5)-(8) does not solve GTED since it allows

the solution to be a set of disjoint components.

3.3 The second previously proposed ILP formulation of GTED

We describe the second proposed ILP formulation of GTED by Ebrahimpour Boroojeny

et al. [1]. Following Ebrahimpour Boroojeny et al. [1], we use simplices, a notion from

geometry, to generalize the notion of an edge to higher dimensions. A k-simplex is a k-

dimensional polytope which is the convex hull of its k+1 vertices. For example, a 1-simplex

is an undirected edge, and a 2-simplex is a triangle. We use the orientation of a simplex,

which is given by the ordering of the vertex set of a simplex up to an even permutation, to

generalize the notion of the edge direction [15, p. 26]. We use square brackets [·] to denote

an oriented simplex. For example, [v0, v1] denotes a 1-simplex with orientation v0 → v1,

which is a directed edge from v0 to v1, and [v0, v1, v2] denotes a 2-simplex with orientation

corresponding to the vertex ordering v0 → v1 → v2 → v0. Each k-simplex has two possible
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Figure 3: (a) A graph that contains an unoriented 2-simplex with three unoriented 1-
simplices. (b), (c) The same graph with two different ways of orienting the simplices and
the corresponding boundary matrices.

unique orientations, and we use the signed coefficient to connect their forms together, e.g.

[v0, v1] = −[v1, v0].

For each pair of graphs G1 and G2 and their alignment graph A(G1, G2), we define an

oriented 2-simplex set T (G1, G2) which is the union of:

• [(u1, u2), (v1, u2), (v1, v2)] for all (u1, v1) ∈ E1 and (u2, v2) ∈ E2, or

• [(u1, u2), (u1, v2), (v1, v2)] for all (u1, v1) ∈ E1 and (u2, v2) ∈ E2,

We use the boundary operator [15, p. 28], denoted by ∂, to map an oriented k-simplex

to a sum of oriented (k − 1)-simplices with signed coefficients.

∂[v0, v1, . . . , vk] =

p∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vk], (9)

where v̂i denotes the vertex vi is to be deleted. Intuitively, the boundary operator maps the

oriented k-simplex to a sum of oriented (k− 1)-simplices such that their vertices are in the

k-simplex and their orientations are consistent with the orientation of the k-simplex. For

example, when k = 2, we have:

∂[v0, v1, v2] = [v1, v2]− [v0, v2] + [v0, v1] = [v1, v2] + [v2, v0] + [v0, v1]. (10)

We reiterate the second ILP formulation proposed in Ebrahimpour Boroojeny et al. [1].
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Given an alignment graph A(G1, G2) = (V,E, δ) and the oriented 2-simplex set T (G1, G2),

minimize
x∈N|E|,y∈Z|T (G1,G2)|

∑
e∈E

xeδ(e)

subject to x = xinit + [∂]y

(11)

Entries in x and y correspond to 1-simplices and 2-simplices in E and T (G1, G2), respec-

tively. [∂] is a |E| × |T (G1, G2)| boundary matrix where each entry [∂]i,j is the signed

coefficient of the oriented 1-simplex (the directed edge) in E corresponding to xi in the

boundary of the oriented 2-simplex in T (G1, G2) corresponding to yj . The index i, j for

each 1-simplex or 2-simplex is assigned based on an arbitrary ordering of the 1-simplices in

E or the 2-simplices in T (G1, G2). An example of the boundary matrix is shown in Figure 3.

δ(e) is the cost of each edge. xinit ∈ R|E| is a vector where each entry corresponds to a

1-simplex in E with |E1| + |E2| nonzero entries that represent one Eulerian trail in each

input graph. xinit is a feasible solution to the ILP. Let s1 be the source of the Eulerian trail

in G1, and s2 be the sink of the Eulerian trail in G2. Each entry in xinit is defined by

xinite =


1 if e = [(u1, s2), (v1, s2)] or e = [(s1, u2), (s1, v2)],

0 otherwise.

(12)

If the Eulerian trail is closed in Gi, si can be any vertex in Vi. An example of xinit is shown

in Figure 2(b).

We provide a complete proof in Section B of the Appendix that the ILP in (5)-(8) is

equivalent to the ILP in (11)-(12). Therefore, the example we provided in Section 3.2 is

also an optimal solution to the ILP in (11)-(12) but not a solution to GTED. Thus, the ILP

in (11)-(12) does not always solve GTED.
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Figure 4: Modified alignment graphs based on input types. (a) G1 has open Eulerian trails
while G2 has closed Eulerian trails. (b) Both G1 and G2 have closed Eulerian trails. (c)
Both G1 and G2 have open Eulerian trails. Solid red and blue nodes are the source and
sink nodes of the graphs with open Eulerian trails. “s” and “t” are the added source and
sink nodes. Colored edges are added alignment edges directing from and to source and sink
nodes, respectively.

4. New ILP solutions to GTED

To ensure that our new ILP formulations are applicable to input graphs regardless of

whether they contain an open or closed Eulerian trail, we add a source node s and a sink

node t to the alignment graph. Figure 4 illustrates three possible cases of input graphs.

1. If only one of the input graphs has closed Eulerian trails, wlog, let G1 be the input

graph with open Eulerian trails. Let a1 and b1 be the start and end of the Eulerian

trail that have odd degrees. Add edges [s, (a1, v2)] and [(b1, v2), t] to E for all nodes

v2 ∈ V2 (Figure 4(a)).

2. If both input graphs have closed Eulerian trails, let a1 and a2 be two arbitrary nodes in

G1 and G2, respectively. Add edges [s, (a1, v2)], [s, (v1, a2)], [(a1, v2), t] and [(v1, a2), t]

for all nodes v1 ∈ V1 and v2 ∈ V2 to E (Figure 4(b)).

3. If both input graphs have open Eulerian trails, add edges [s, (a1, a2)] and [t, (b1, b2)],

where ai and bi are start and end nodes of the Eulerian trails in Gi, respectively

(Figure 4(c)).

According to Lemma 1, we can solve GTED(G1, G2) by finding a trail in A(G1, G2) that

satisfies the projection requirements. This is equivalent to finding a s-t trail in A(G1, G2)
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that satisfies constraints:

∑
(u,v)∈E

xuvIi((u, v), f) = 1 for all (u, v) ∈ E, f ∈ Gi, u ̸= s, v ̸= t, (13)

where Ii(e, f) = 1 if the alignment edge e projects to f in Gi. An optimal solution to GTED

in the alignment graph must start and end with the source and sink node because they are

connected to all possible starts and ends of Eulerian trails in the input graphs.

Since a trail in A(G1, G2) is a flow network, we use the following flow constraints to

enforce the equality between the number of in- and out-edges for each node in the alignment

graph except the source and sink nodes.

∑
(s,u)∈E

xsu = 1 (14)

∑
(v,t)∈E

xvt = 1 (15)

∑
(u,v)∈E

xuv =
∑

(v,w)∈E

xvw for all v ∈ V (16)

Constraints (13) and (16) are equivalent to constraints (7) and (6), respectively. Therefore,

we rewrite the ILP in (5)-(8) in terms of the modified alignment graph.

minimize
x∈N|E|

∑
e∈E

xeδ(e)

subject to constraints (13)–(16).

(lower bound ILP)

As we show in Section 3.2, constraints (13)-(16) do not guarantee that the ILP solution

is one trail in A(G1, G2), thus allowing several disjoint covering trails to be selected in the

solution and fails to model GTED correctly. We show in Section 5 that the solutions to

this ILP is a lower bound to GTED.

According to Lemma 1 in Dias et al. [11], a subgraph of a directed graph G with source

node s and sink node t is a s-t trail if and only if it is a flow network and every strongly
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connected component (SCC) of the subgraph has at least one edge outgoing from it. Thus,

in order to formulate an ILP for the GTED problem, it is necessary to devise constraints

that prevent disjoint SCCs from being selected in the alignment graph. In the following,

we describe two approaches for achieving this.

4.1 Enforcing one trail in the alignment graph via constraint generation

Section 3.2 of Dias et al. [11] proposes a method to design linear constraints for eliminating

disjoint SCCs, which can be directly adapted to our problem. Let C be the collection of

all strongly connected subgraphs of the alignment graph A(G1, G2). We use the following

constraint to enforce that the selected edges form one s-t trail in the alignment graph:

If
∑

(u,v)∈E(C)

xuv = |E(C)|, then
∑

(u,v)∈ε+(C)

xuv ≥ 1 for all C ∈ C, (17)

where E(C) is the set of edges in the strongly connected subgraph C and ε+(C) is the set of

edges (u, v) such that u belongs to C and v does not belong to C.
∑

(u,v)∈E(C) xuv = |E(C)|

indicates that C is in the subgraph of A(G1, G2) constructed by all edges (u, v) with positive

xuv, and
∑

(u,v)∈ε+(C) xuv ≥ 1 guarantees that there exists an out-going edge of C that is

in the subgraph.

We use the same technique as Dias et al. [11] to linearize the “if-then” condition in (17)

by introducing a new variable β for each strongly connected component:

∑
(u,v)∈E(C)

xuv ≥ |E(C)|βC for all C ∈ C (18)

∑
(u,v)∈E(C)

xuv − |E(C)|+ 1− |E(C)|βC ≤ 0 for all C ∈ C (19)

∑
(u,v)∈ε+(C)

xuv ≥ βC for all C ∈ C (20)

βC ∈ {0, 1} for all C ∈ C (21)
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To summarize, given any pair of unidirectional, edge-labeled Eulerian graphs G1 and G2

and their alignment graph A(G1, G2) = (V,E, δ), GTED(G1, G2) is equal to the optimal

solution of the following ILP formulation:

minimize
x∈{0,1}|E|

∑
e∈E

xeδ(e)

subject to constraints (13)–(16) and

constraints (18)–(21).

(exponential ILP)

This ILP has an exponential number of constraints as there is a set of constraints for every

strongly connected subgraph in the alignment graph. To solve this ILP more efficiently,

we can use the procedure similar to the iterative constraint generation procedure in Dias

et al. [11]. Initially, solve the ILP with only constraints (13)-(16). Create a subgraph, G′,

induced by edges with positive xuv. For each disjoint SCC in G′ that does not contain the

sink node, add constraints (18)-(21) for edges in the SCC and solve the new ILP. Iterate

until no disjoint SCCs are found in the solution.

Algorithm 1 Iterative constraint generation algorithm to solve (exponential ILP)

1: Input Two unidirectional, edge-labeled Eulerian graphs and their alignment graph
2: C ← ∅
3: while true do
4: Solve the ILP (exponential ILP) with C
5: if the ILP variables xuv induce a strongly connected component C not satisfying (17)

then
6: C = C ∪ {C}
7: else
8: return the optimal ILP value and the corresponding optimal solution x
9: end if

10: end while

4.2 A compact ILP for GTED with polynomial number of constraints

In the worst cases, the number of iterations to solve (exponential ILP) via constraint gener-

ation is exponential. As an alternative, we introduce a compact ILP with only a polynomial

number of constraints. The intuition behind this ILP is that we can impose a partially in-
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creasing ordering on all the edges so that the selected edges forms a s-t trail in the alignment

graph. This idea is similar to the Miller-Tucker-Zemlin ILP formulation of the Travelling

Salesman problem (TSP) [12].

We add variables duv that are constrained to provide a partial ordering of the edges

in the s-t trail and set the variables duv to zero for edges that are not selected in the s-t

trail. Intuitively, there must exist an ordering of edges in a s-t trail such that for each pair

of consecutive edges (u, v) and (v, w), the difference in their order variable duv and dvw is

1. Therefore, for each node v that is not the source or the sink, if we sum up the order

variables for the incoming edges and outgoing edges respectively, the difference between the

two sums is equal to the number of selected incoming/outgoing edges. Lastly, the order

variable for the edge starting at source is 1, and the order variable for the edge ending at

sink is the number of selected edges. This gives the ordering constraints as follows:

If xuv = 0, then duv = 0 for all (u, v) ∈ E (22)∑
(v,w)∈E

dvw −
∑

(u,v)∈E

duv =
∑

(v,w)∈E

xvw for all v ∈ V \ {s, t} (23)

∑
(s,u)∈E

dsu = 1 (24)

∑
(v,t)∈E

dvt =
∑

(u,v)∈E

xuv (25)

We enforce that all variables xe ∈ {0, 1} and de ∈ N for all e ∈ E.

The “if-then” statement in Equation (22) can be linearized by introducing an additional

binary variable yuv for each edge [11, 16]:

−xuv − |E|yuv ≤ −1 (26)

duv − |E|(1− yuv) ≤ 0 (27)

yuv ∈ {0, 1}. (28)

Here, yuv is an indicator of whether xuv ≥ 0. The coefficient |E| is the number of edges in
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the alignment graph and also an upper bound on the ordering variables. When yuv = 1,

duv ≤ 0, and yuv does not impose constraints on xuv. When yuv = 0, xuv ≥ 1, and yuv does

not impose constraints on duv.

4.3 Correctness of (compact ILP) for GTED

To show that the optimal objective value of (compact ILP) is equal to GTED, we show

that the optimal solutions to (compact ILP) always form one connected component.

Lemma 2. Let xe and de be ILP variables. Let G′ be a subgraph of A(G1, G2) that is

induced by edges with xe = 1. If xe and de satisfy constraints (13)-(25) for all e ∈ E, G′ is

connected with one trail from s to t that traverses each edge in G′ exactly once.

Proof. We prove the lemma in 2 parts: (1) all nodes except s and t in G′ have an equal

number of in- and out-edges, (2) G′ contains only one connected component.

The first statement holds because the edges of G′ form a flow from s to t, and is enforced

by constraints (16).

We then show that G′ does not contain isolated subgraphs that are not reachable from

s or t. Due to constraint (16), the only possible scenario is that the isolated subgraph is

strongly connected. Suppose for contradiction that there is a strongly connected component,

C, in G′ that is not reachable from s or t.

The sum of the left hand side of constraint (23) over all vertices in C is

∑
v∈C

( ∑
(u,v)∈C

duv −
∑

(v,w)∈C

dvw

)
=

∑
v∈C

∑
(u,v)∈C

duv −
∑
v∈C

∑
(v,w)∈C

dvw (29)

=
∑

(u,v)∈E(C)

duv −
∑

(v,w)∈E(C)

dvw = 0. (30)

However, the right-hand side of the same constraints is always positive. Hence we have a

contradiction. Therefore, G′ has only one connected component.

Due to Lemma 1 and Lemma 2, given input graphs G1 and G2 and the alignment graph
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A(G1, G2), GTED(G1, G2) is equal to the optimal objective of

minimize
x∈{0,1}|E|

∑
e∈E

xeδ(e)

subject to constraints (13)–(16),

constraints (23)–(25)

and constraints (26)–(28).

(compact ILP)

5. Closed-trail Cover Traversal Edit Distance

While the (lower bound ILP) and the ILP in (11)-(12) do not solve GTED, the optimal

solution to these ILPs is a lower bound of GTED. These ILP formulations also solve

an interesting variant of GTED, which is a local similarity measure between two genome

graphs. We call this variant Closed-trail Cover Traversal Edit Distance (CCTED). In the

following, we provide the formal definition of the CCTED problem and then show that

the (lower bound ILP) is the correct ILP formulation for solving CCTED.

We first introduce the min-cost item matching problem between two multi-sets. Let two

multi-sets of items be S1 and S2, and, wlog, let |S1| ≤ |S2|. Let c : (S1 ∪ {ϵ})× S2 → N be

the cost of matching either an empty item ϵ or an item in S1 with an item in S2. Given S1,

S2 and the cost function c, min-cost matching problem finds a matching,Mc(S1, S2), such

that each item in S1 ∪ {ϵ}|S2|−|S1| is matched with exactly one distinct item in S2 and the

total cost of the matching,
∑

(s1,s2)∈Mc(S1,S2)
c(s1, s2), is minimized.

The min-cost item matching problem is similar to the Earth Mover’s Distance defined

in [17], except that only integral units of items can be matched and the cost of matching

an empty item with another item is not constant. Similar to the Earth Mover’s Distance,

the min-cost item matching problem can be computed using the ILP formulation of the

min-cost max-flow problem [13, 14]. When the cost is the edit distance, the cost to match

ϵ with a string is equal to the length of the string.

Define traversal edit distance, editt(t1, t2) as the edit distance between the strings con-
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structed from a pair of trails t1 and t2. In other words, editt(t1, t2) = edit(str(t1), str(t2)).

CCTED is defined as:

Problem 3 (Closed-Trail Cover Traversal Edit Distance (CCTED)). Given two unidirec-

tional, edge-labeled Eulerian graphs G1 and G2 with closed Eulerian trails, compute

CCTED(G1, G2) ≜ min
C1∈CC(G1),
C2∈CC(G2)

∑
(t1,t2)∈Meditt

(C1,C2)

edit(str(t1), str(t2)), (31)

Here, CC(G) denotes the collection of all possible sets of edge-disjoint, closed trails in G,

such that every edge in G belongs to exactly one of these trails. Each element of CC(G)

can be interpreted as a cover of G using such trails. Meditt(C1, C2) is a min-cost matching

between two covers using the traversal edit distance as the cost.

CCTED is likely a more suitable metric comparison between genomes that undergo

large-scale rearrangements. This analogy is to the relationship between the synteny block

comparison [3] and the string edit distance computation, where the former is more often

used in interspecies comparisons and in detecting segmental duplications [18, 19] and the

latter is more often seen in intraspecies comparisons.

Following similar ideas as Lemma 1, we can compute CCTED by finding a set of closed

trails in the alignment graph such that the total cost of alignment edges is minimized, and

the projection of all edges in the collection of selected trails is equal to the multi-set of input

graph edges.

Lemma 3. For any two edge-labeled Eulerian graphs G1 and G2,

CCTED(G1, G2) = minimize
C

∑
c∈C

δ(c) (32)

subject to C is a set of closed trails in A(G1, G2),⋃
e∈C

Πi(e) = Ei for i = 1, 2, (33)

where C is a collection of trails and δ(c) is the total cost of edges in trail c.
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Proof. Given any pair of covers C1 ∈ CC(G1) and C2 ∈ CC(G2) and their min-cost matching

based on the edit distanceMeditt(C1, C2), we can project each pair of matched closed trailed

to a closed trail in the alignment graph. For a matching between a trail and the empty item

ϵ, we can project it to a closed trail in the alignment graph with all vertical edges if the trail

is from G1 or horizontal edges if the trail is from G2. The total cost of the projected edges

must be greater than or equal to the objective (32). On the other hand, every collection of

trails C that satisfy constraint (33) can be projected to a cover in each of the input graphs,

and
∑

c∈C δ(c) ≥ CCTED(G1, G2). Hence equality holds.

5.1 The ILP formulation for CCTED

We show that the ILP in (5)-(8) proposed by Ebrahimpour Boroojeny et al. [1] solves

CCTED.

Theorem 4. Given two input graphs G1 and G2, the optimal objective value of the ILP

in (5)-(8) based on A(G1, G2) is equal to CCTED(G1, G2).

Proof. As shown in the proof of Lemma 3, any pair of edge-disjoint, closed-trail covers in

the input graph can be projected to a set of closed trails in A(G1, G2), which satisfied

constraints (6)-(8). The objective of this feasible solution, which is the total cost of the

projected closed trails, equals CCTED. Therefore, CCTED(G1, G2) is greater than or

equal to the objective of the ILP in (5)-(8).

Conversely, we can transform any feasible solutions of the ILP in (5)-(8) to a pair of

covers of G1 and G2. We can do this by transforming one closed trail at a time from the

subgraph of the alignment graph, A′ induced by edges with ILP variable xuv = 1. Let c be

a closed trail in A′. Let c1 = Π1(c) and c2 = Π2(c) be two closed trails in G1 and G2 that

are projected from c. We can construct an alignment between str(c1) and str(c2) from c

by adding match or insertion/deletion columns for each match or insertion/deletion edges

in c accordingly. The cost of the alignment is equal to the total cost of edges in c by the

construction of the alignment graph. We can then remove edges in c from the alignment
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graph and edges in c1 and c2 from the input graphs, respectively. The remaining edges in

A′ and G1 and G2 still satisfy the constraints (6)-(8). Repeat this process and we get a

total cost of
∑

e∈E xeδ(e) that aligns pairs of closed trails that form covers of G1 and G2.

This total cost is greater than or equal to CCTED(G1, G2).

5.2 CCTED is a lower bound of GTED

Since the constraints for (lower bound ILP) are a subset of (exponential ILP), a feasible

solution to (exponential ILP) is always a feasible solution to (lower bound ILP). Since two

ILPs have the same objective function, CCTED(G1, G2) ≤ GTED(G1, G2) for any pair

of graphs. Moreover, when the solution to (lower bound ILP) forms only one connected

component, the optimal value of (lower bound ILP) is equal to GTED.

Theorem 5. Let A′(G1, G2) be the subgraph of A(G1, G2) induced by edges (u, v) ∈ E with

xoptuv = 1 in the optimal solution to (lower bound ILP). There exists A′(G1, G2) that has

exactly one connected component if and only if copt = GTED(G1, G2).

Proof. We first show that if copt = GTED(G1, G2), then there exists A′(G1, G2) that

has one connected component. A feasible solution to (exponential ILP) is always a fea-

sible solution to (lower bound ILP), and since copt = GTED(G1, G2), an optimal solution

to (exponential ILP) is also an optimal solution to (lower bound ILP), which can induce a

subgraph in the alignment graph that only contains one connected component.

Conversely, if xopt induces a subgraph in the alignment graph with only one con-

nected component, it satisfies constraints (18)-(21) and therefore is feasible to the ILP for

GTED (exponential ILP). Since copt ≤ GTED(G1, G2), this solution must also be optimal

for GTED(G1, G2).

In practice, we may estimate GTED approximately by the solution to (lower bound ILP).

As we show in Section 6, the time needed to solve (lower bound ILP) is much less than the

time needed to solve GTED. However, in adversarial cases, copt could be zero but GTED

could be arbitrarily large. We can determine if the copt is a lower bound on GTED or exactly
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equal to GTED by checking if the subgraph induced by the solution to (lower bound ILP)

has multiple connected components.

5.3 NP-completeness of CCTED

We prove that the CCTED problem (Problem 3) is NP-complete by reducing from the

Eulerian Trail Equaling Word problem [7].

Theorem 6. Computing CCTED is NP-complete.

Proof. Let Eulerian graph G = (V,E, ℓ,Σ) and s be an instance of the Eulerian Tour

Equaling Word problem. Construct two graphs, G1 and G2. If G contains open Eulerian

trails, add an edge directing from the sink of the graph to the source of the graph. Let the

label of the added edge be # that does not appear in Σ. Let the modified graph be G1. If

G contains closed Eulerian trails, let G1 be the same as G. Let G2 be a graph that contains

one cycle with |E1| edges, where E1 is the edge set of G1. Assign labels to the edges in G2

such that the cycle in G2 spells s if G contains closed Eulerian trails, s# otherwise.

If CCTED(G1, G2) = 0, G2 must contain at least one closed Eulerian trail that spells

some circular permutation of s#. If CCTED is not zero, it means that s must not match

Eulerian trails in G.

6. Empirical evaluation of the ILP formulations for GTED

and its lower bound

6.1 Implementation of the ILP formulations

We implement the algorithms and ILP formulations for (exponential ILP), (compact ILP)

and (lower bound ILP). In practice, the multi-set of edges of each input graph may contain

many duplicates of edges that have the same start and end vertices due to repeats in the

strings. We reduce the number of variables and constraints in the implemented ILPs by

merging the edges that share the same start and end nodes and record the multiplicity of
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each edge. Each x variable is no longer binary but a non-negative integer that satisfies the

modified projection constraints (13):

∑
(u,v)∈E

xuvIi((u, v), f) = Mi(f) for all (u, v) ∈ E, f ∈ Gi, u ̸= s, v ̸= t, (34)

where Mi(f) is the multiplicity of edge f in Gi. Let C be the strongly connected component

in the subgraph induced by positive xuv, now
∑

(u,v)∈E(C) xuv is no longer upper bounded

by |E(C)|. Therefore, constraints (19) is changed to

∑
(u,v)∈E(C)

xuv − |E(C)|+ 1−W (C)βC ≤ 0 for all C ∈ C, (35)

W (C) =
∑

(u,v)∈E(C)

max

 ∑
f∈G1

M1(f)I1((u, v), f),
∑
f∈G2

M2(f)I2((u, v), f)

 ,

whereW (C) is the maximum total multiplicities of edges in the strongly connected subgraph

in each input graph that is projected from C.

Likewise, constraints (27) that set the upper bounds on the ordering variables also need

to be modified as the upper bound of the ordering variable duv for each edge no longer

represents the order of one edge but the sum of orders of copies of (u, v) that are selected,

which is at most |E|2. Therefore, constraint (27) is changed to

duv − |E|2(1− yuv) ≤ 0. (36)

The rest of the constraints remain unchanged.

We ran all our experiments on a server with 48 cores (96 threads) of Intel(R) Xeon(R)

CPU E5-2690 v3 @ 2.60GHz and 378 GB of memory. The system was running Ubuntu 18.04

with Linux kernel 4.15.0. We solve all the ILP formulations and their linear relaxations using

the Gurobi solver [20] using 32 threads.
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6.2 GTED on simulated TCR sequences

We construct 20 de Bruijn graphs with k = 4 using 150-character sequences extracted from

the V genes from the IMGT database [21]. We solve the linear relaxation of (compact ILP),

(exponential ILP) and (lower bound ILP) and their linear relaxation on all 190 pairs of

graphs. We do not show results for solving (compact ILP) for GTED on this set of graphs

as the running time exceeds 30 minutes on most pairs of graphs.

To compare the time to solve the ILP formulations when GTED is equal to the optimal

objective of (lower bound ILP), we only include 168 out of 190 pairs where GTED is equal

to the lower bound (GTED is slightly higher than the lower bound in the remaining 22

pairs). On average, it takes 26 seconds wall-clock time to solve (lower bound ILP), and

71 seconds to solve (exponential ILP) using the iterative algorithm. On average, it takes 9

seconds to solve the LP relaxation of (compact ILP) and 1 second to solve the LP relaxation

of (lower bound ILP). The time to construct the alignment graph for all pairs is less than

0.2 seconds. The distribution of wall-clock running time is shown in Figure 5(a). The time

to solve (exponential ILP) and (lower bound ILP) is generally positively correlated with the

GTED values (Figure 5(b)). On average, it takes 7 iterations for the iterative algorithm to

find the optimal solution that induces one strongly connected subgraph (Figure 5(c)).

In summary, it is fastest to compute the lower bound of GTED. Computing GTED

exactly by solving the proposed ILPs on genome graphs of size 150 is already time con-

suming. When the sizes of the genome graphs are fixed, the time to solve for GTED and

its lower bound increases as GTED between the two genome graphs increases. In the case

where GTED is equal to its lower bound, the subgraph induced by some optimal solutions

of (lower bound ILP) contains more than one strongly connected component. Therefore, in

order to reconstruct the strings from each input graph that have the smallest edit distance,

we generally need to obtain the optimal solution to the ILP for GTED. In all cases, the

time to solve the (exponential ILP) is less than the time to solve the (compact ILP).
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Figure 5: (a) The distribution of wall-clock running time for constructing align-
ment graphs, solving the ILP formulations for GTED and its lower bound, and
their linear relaxations on the log scale. (b) The relationship between the time to
solve (lower bound ILP), (exponential ILP) iteratively and GTED. (c) The distribution
of the number of iterations to solve exponential ILP. The box plots in each plot show the
median (middle line), the first and third quantiles (upper and lower boundaries of the box),
the range of data within 1.5 inter-quantile range between Q1 and Q3 (whiskers), and the
outlier data points.

6.3 GTED on difficult cases

Repeats, such as segmental duplications and translocations [22, 23] in the genomes increase

the complexity of genome comparisons. We simulate such structures with a class of graphs

that contain n simple cycles of which n− 1 peripheral cycles are attached to the n-th cen-

tral cycle at either a node or a set of edges (Figure 6(a)). The input graphs in Figure 2

belong to this class of graphs that contain 2 cycles. This class of graphs simulates the com-

plex structural variants in disease genomes or the differences between genomes of different

species.

We generate pairs of 3-cycle graphs with varying sizes and randomly assign letters

from {A,T,C,G} to edges. We compute the lower bound of GTED and GTED using

(lower bound ILP) and (compact ILP), respectively. We denote the lower bound of GTED

computed by solving (lower bound ILP) as GTEDl. We group the generated 3-cycle graph

pairs based on the value of (GTED−GTEDl) and select 20 pairs of graphs randomly for

each (GTED−GTEDl) value ranging from 1 to 5. The maximum number of edges in all

selected graphs is 32.

We show the difficulty of computing GTED using the iterative algorithm on the 100
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Figure 6: (a) An example of a 3-cycle graph. Cycle 1 and 2 are attached to cycle 3. (b)
The distribution of wall-clock time to solve the compact ILP and the iterative exponential
ILP on 100 pairs of 3-cycle graphs.

selected pairs of 3-cycle graphs. We terminate the ILP solver after 20 minutes. As shown

in Figure 6, as the difference between GTED and GTEDl increases, the wall-clock time to

solve (exponential ILP) for GTED increases faster than the time to solve (compact ILP)

for GTED. For pairs on graphs with (GTED−GTEDl) = 5, on average it takes more than

15 minutes to solve (exponential ILP) with more than 500 iterations. On the other hand, it

takes an average of 5 seconds to solve (compact ILP) for GTED and no more than 1 second

to solve for the lower bound. The average time to solve each ILP is shown in Table S1.

In summary, on the class of 3-cycle graphs introduced above, the difficulty to solve

GTED via the iterative algorithm increases rapidly as the gap between GTED and GTEDl

increases. Although (exponential ILP) is solved more quickly than (compact ILP) for

GTED when the sequences are long and the GTED is equal to GTEDl (Section 6.2),

(compact ILP) may be more efficient when the graphs contain overlapping cycles such that

the gap between GTED and GTEDl is larger.
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7. Conclusion

We point out the contradictions in the result on the complexity of labeled graph comparison

problems and resolve the contradictions by showing that GTED, as opposed to the results

in Ebrahimpour Boroojeny et al. [1], is NP-complete. On one hand, this makes GTED a

less attractive measure for comparing graphs since it is unlikely that there is an efficient

algorithm to compute the measure. On the other hand, this result better explains the

difficulty of finding a truly efficient algorithm for computing GTED exactly. In addition,

we show that the previously proposed ILP of GTED [1] does not solve GTED and give two

new ILP formulations of GTED.

While the previously proposed ILP of GTED does not solve GTED, it solves for a lower

bound of GTED, and we show that this lower bound can be interpreted as a more “local”

measure, CCTED, of the distance between labeled graphs. Further, we characterize the LP

relaxation of the ILP in (11)-(12) and show that, contrary to the results in Ebrahimpour

Boroojeny et al. [1], the LP in (11)-(12) does not always yield optimal integer solutions.

As shown previously [1, 13], it takes more than 4 hours to solve (lower bound ILP)

for graphs that represent viral genomes that contain ≈ 3000 bases with a multi-threaded

LP solver. Likewise, we show that computing GTED using either (exponential ILP) or

(compact ILP) is already slow on small genomes, especially on pairs of simulated genomes

that are different due to segmental duplications and translations. The empirical results show

that it is currently impossible to solve GTED or its lower bound directly using this approach

for bacterial- or eukaryotic-sized genomes on modern hardware. The results here should

increase the theoretical interest in GTED along the directions of heuristics or approximation

algorithms as justified by the NP-hardness of finding GTED.
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Appendix A Proofs for the NP-completeness of GTED

A.1 Reduction from ETEW to GTED

We provide below the complete proof for Theorem 1.

Theorem 1. If GTED ∈ P then ETEW ∈ P.

Proof. Let ⟨s,G⟩ be an instance of ETEW. Construct a directed, acyclic graph (DAG), C,

that has only one path. Let the path in C be P = (e1, . . . , e|s|) and the edge label of ei be

s[i]. Clearly, C is a unidirectional, edge-labeled Eulerian graph, P is the only Eulerian trail

in C, and str(P ) = s.

For the graph G = (VG, EG, ℓG,Σ) from the ETEW instance, which may not be unidi-

rectional, create another graph G′ that contains all of the nodes and edges in G except the

anti-parallel edges. Let ΣG′ = Σ∪{ϵ}, where ϵ is a character that is not in Σ. For each pair

of anti-parallel edges (u, v) and (v, u) in G, add four edges (u,w1), (w1, v), (v, w2), (w2, u) by

introducing new vertices w1, w2 to G′. Let ℓG′(u,w1) = ℓG(u, v) and ℓG′(w2, u) = ℓG(v, u).

Let ℓG′(w1, v) = ℓG′(v, w2) = ϵ for every newly introduced vertex. G′ has at most twice the

number of edges as G and is Eulerian and unidirectional.

Define the cost of changing a character from a to b cost(a, b) for a, b ∈ Σ ∪ {−} to be

0 if a = b and 1 otherwise. “−” is the gap character indicating an insertion or a deletion.

Define cost(a, ϵ) with a ∈ Σ to be 1. Define cost(−, ϵ) to be 0.

Use the (assumed) polynomial-time algorithm forGTED to ask whetherGTED(C,G′) ≤

0 under edit distance Σ. If yes, then let (s1, s2) be the 0-cost alignment of the strings spelled

out by the trails in C and G′, respectively. The non-gap characters of s1 must spell out s

since there is only one Eulerian trail in C. Because the alignment cost is 0, any − (gap)

characters in s1 must be aligned with ϵ characters in s2 and any non-gap characters in s1

must be aligned to the same character in s2. The trail in G′ that spells s2 can be transformed

to a trail that spells s3 by collapsing the edges with ϵ character labels, and s3 = s1.

If GTED(C,G′) > 0, G must not contain an Eulerian trail that spells s. Otherwise,

such a trail could be extended to a trail introducing some ϵ characters that could be aligned
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to s with zero cost by aligning gaps with ϵ characters.

Hence, an (assumed) polynomial-time algorithm forGTED solves ETEW in polynomial

time.

A.2 Reduction from Hamiltonian Path to GTED

We provide below the complete proof for Theorem 2.

Theorem 2. GTED is NP-complete.

Proof. We reduce from the Hamiltonian Path problem, which asks whether a directed,

simple graph G contains a path that visits every vertex exactly once. Here simple means no

self-loops or parallel edges. Let ⟨G = (V,E)⟩ be an instance of Hamiltonian Path, with

n = |V | vertices. The reduction is almost identical to that presented in Kupferman and

Vardi [7], and from here until noted later in the proof the argument is identical except for

the technicalities introduced to force unidirectionality (and another minor change described

later). The first step is to construct the Eulerian closure of G, which is defined as G′ =

(V ′, E′) where

V ′ = {vin, vout : v ∈ V } ∪ {w}, (37)

and E′ is the union of the following sets of edges and their labels:

• E1 = {(vin, vout) : v ∈ V }, labeled a,

• E2 = {(uout, vin) : (u, v) ∈ E}, labeled b,

• E3 = {(vout, vin) : v ∈ V }, labeled c,

• E4 = {(vin, uout) : (u, v) ∈ E}, labeled c,

• E5 = {(uin, w) : u ∈ V }, labeled c,

• E6 = {(w, uin) : u ∈ V }, labeled b.

35



Since G′ is connected and every outgoing edge in G′ has a corresponding antiparallel in-

coming edge, G′ is Eulerian. It is not unidirectional, so we further create G′′ from G′ by

adding dummy nodes to each pair of antiparallel edges and labelling the length-2 paths so

created with x#, where x is the original label of the split edge (a, b, or c) and # is some

new symbol (shared between all the new edges). We call these length-2 paths introduced

to achieve unidirectionality “split edges”.

We now argue that G has a Hamiltonian path iff G′′ has an Eulerian trail that spells

out

q = a#(b#a#)n−1(c#)2n−1(c#b#)|E|+1. (38)

If such an Eulerian trail exists, then the trail starts with spelling the string a#(b#a#)n−1,

which corresponds to a Hamiltonian trail in G since it visits exactly n “vertex split edges”

(type E1, labeled a#) and each vertex split edge can be used only once (since it is an Eulerian

trail). Further, successively visited vertices must be connected by an edge in G since those

are the only b# split edges in G′′ (except those leaving w, but w must not be involved in

spelling out a#(b#a#)n−1, since entering w requires using a split edge labeled c#).

For the other direction, if a G has a Hamiltonian path v1, . . . , vn, then walking that

sequence of vertices in G′′ will spell out a#(b#a#)n−1. This path will cover all E1 edges and

the E2 edges that are on the Hamiltonian path. Retracing the path so far in reverse will

use 2n− 1 split edges labeled c#, consuming the (c#)2n−1 term in q and covering all nodes’

reverse vertex edges E3 (since the path is Hamiltonian). The reverse path also covers the

E4 edges corresponding to reverse Hamiltonian path edges. Our Eulerian trail is now “at”

node vin1 .

What remains is to complete the Eulerian walk covering (a) edges and their antiparallel

counterparts corresponding to edges in G that were not used in the Hamiltonian path, and

(b) the edges adjacent to node w. To do this, define pred(v) be the vertices u in G for which

edge (u, v) exists and u is not the predecessor of v along the Hamiltonian path. For each

u ∈ pred(v1), traverse the split edge labeled c# to uout then traverse the forward split edge
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labeled b# back to vin1 . This results in a string (c#b#)|pred(v1)|. Once the predecessors of v1

are exhausted, traverse the split edge labeled c# from vin1 into node w and then traverse

the split edge labeled b# to vin2 . This again generates a c#b# string. Repeat the process,

covering the edges of v2’s predecessors and returning to w to move to the next node along

the Hamiltonian path for each node v3, . . . , vn. After covering the predecessors of vinn , go to

vin1 through the remaining edges in E5 and E6, (v
in
n , w) and (w, vin1 ), which completes the

Eulerian tour. This covers all the edges of G′′. The word spelled out in this last section

of the Eulerian trail is a sequence of repetitions of c#b#, with one repetition for each edge

that is not in the Hamiltonian path (|E| − n + 1) and all of the edges in E5 and E6 for

entering and leaving each node (2n), with a total of |E| + 1 repetitions, which is the final

(c#b#)|E|+1 term in q.

This ends the slight modification of the proof in Kupferman and Vardi [7], where the

differences are (a) the introduction of the # characters and (b) using the exponent |E|+ 1

of the final part of q instead of |E| + n + 1 as in Kupferman and Vardi [7] since we create

w-edges only to vin vertices. (This second change has no material effect on the proof, but

reduces the length of the string that must be matched.)

Now, given an instance ⟨G = (V,E)⟩ of Hamiltonian Path, with n = |V | vertices, we

construct G′′ as above (obtaining a unidirectional Eulerian graph) and create graph C that

only represents string q. Note that |Σ| = 4 and G′′ and C can be constructed in polynomial

time. GTED(G′′, C) = 0 if and only if an Eulerian path in G′′ spells out q, since there can

be no indels or mismatches. By the above argument, an An eulerian tour that spells out q

exists if and only if G has a Hamiltonian path.

A.3 FGTED is NP-complete

Problem 4 (Flow Graph Traversal Edit Distance (FGTED) [13]). Given unidirectional,

edge-labeled Eulerian graphs G1 and G2, each of which has distinguished s1, s2 source and
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t1, t2 sink vertices, compute

FGTED(G1, G2) ≜ min
D1∈flow(G1,s1,t1)
D1∈flow(G2,s2,t2)

emedit(strset(D1), strset(D2)), (39)

where flow(Gi, si, ti) is the collection of all possible sets of s1-t1 trail decomposition of sat-

urating flow from si to ti, strset(D) is the multi-set of strings constructed from trails in

D.

Theorem 3. FGTED is NP-complete.

Proof. Let G = (v,E) be an instance of the Hamiltonian Cycle problem. Let n = |V | be

the number of vertices in G. Construct the Eulerian closure of G and split the anti-parallel

edges. Let the new graph be G′ = (V ′, E′). Attach a source s and a sink node t to an

arbitrary node vin1 by adding edge (s, vin1 ) and (vin1 , t) with labels s and t, respectively.

Construct a string q, such that

q = sa#(b#a#)n−1(c#)2n−1(c#b#)|E|+1t. (40)

Create a graph Q that only contains one path with labels on the edges of the path that

spell the string q. The union of the set of trails in any flow decomposition of G′ is equal to

a set of Eulerian trails, E , that starts at s and ends at t. All Eulerian trails in E are also

closed Eulerian trails of G′ \ {s, t} that starts and ends at vin1 .

Using the same line of argument in the proof of Theorem 2, an Eulerian trail in G′ that

spells q is equivalent to a Hamilton Cycle in G. In addition, FGTED(Q,G′) = 0 if and

only if all Eulerian trails in E spell out q. Therefore, if FGTED(Q,G′) = 0, then there is

a Hamiltonian Cycle in G. Otherwise, then there must not exist a Hamiltonian Cycle in

G.
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Appendix B Equivalence between two ILPs proposed by Ebrahim-

pour Boroojeny et al.

The analysis provided by Ebrahimpour Boroojeny et al. [1] states that the LP relaxation

of the ILP in (5)-(8) does not always yield integer solutions, but the LP relaxation of the

ILP in (11)-(12) always yields integer solutions. This suggests that the two LP relaxations

have difference feasibility regions for x. We show that these two LP relaxations are actually

equivalent in Theorem 7. Further, we show that the ILP in (5)-(8) and the ILP in (11)-(12)

are also equivalent. Since the ILP in (5)-(8) does not solve for GTED(G1, G2) as shown

in 3.2, we conclude that the ILP in (11)-(12) also does not solve GTED(G1, G2).

Theorem 7. Given two unidirectional, edge-labeled Eulerian graphs G1, G2, the feasibility

region of x in the LP relaxation of the ILP in (11)-(12) is the same as the feasibility region

of x in the LP relaxation of the ILP in (5)-(8).

Let A(G1, G2) = (V,E, δ) be the alignment graph of G1 = (V1, E1, ℓ1,Σ1) and G2 =

(V2, E2, ℓ2,Σ2), and let T (G1, G2) be its two-simplex set. First, we have the following result:

Lemma 4. Let [yi] ∈ R|T (G1,G2)| be a vector such that the j-th entry of [yi], [yi]j is equal

to 0 for all j ̸= i. The vector x′ = x+ [∂][yi] satisfies the constraints (6)-(7) if the vector x

satisfies the constraints (6)-(7).

Proof. Let σi ∈ T (G1, G2) be the 2-simplex corresponding to the entry i of [yi]. Based on the

construction of T (G1, G2), σi has two forms: [(u1, u2), (v1, u2), (v1, v2)] or [(u1, u2), (u1, v2), (v1, v2)].

Without loss of generality, we assume σi = [(u1, u2), (v1, u2), (v1, v2)]. We can prove this

lemma by using the same way when σi = [(u1, u2), (u1, v2), (v1, v2)]. Since

∂σi = [(u1, u2), (v1, u2)] + [(v1, u2), (v1, v2)]− [(u1, u2), (v1, v2)],

We have

[∂][yi] = [yi]i[xe1 ] + [yi]i[xe2 ]− [yi]i[xe3 ],
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where e1 = [(u1, u2), (v1, u2)], e2 = [(v1, u2), (v1, v2)], e3 = [(u1, u2), (v1, v2)], and [xe] ∈ R|E|

is a vector such that all the entries are 0 except that the one corresponding to edge e is

1. we also let [xv] ∈ R|V | be a vector such that all the entries are 0 except that the one

corresponding to vertex v is 1. Therefore, we have

Ax′ = Ax+ [yi]i[xv2 ]− [yi]i[xv1 ] + [yi]i[xv3 ]− [yi]i[xv2 ]− [yi]i[xv3 ] + [yi]i[xv1 ] = Ax,

where v1 = (u1, u2), v2 = (v1, u2), and v3 = (v1, v2). Hence, x
′ satisfies the constraint (6) if

x satisfies the constraint (6).

In addition, since
∑

e∈E x′eIi(e, f) =
∑

e∈E xeIi(e, f) + [yi]iIi(e1, f) + [yi]iIi(e2, f) −

[yi]iIi(e3, f), and:

• I1(e1, (u1, v1)) = 1 and Ii(e1, f) = 0 for other f ∈ Gi,

• I2(e2, (u2, v2)) = 1 and Ii(e2, f) = 0 for other f ∈ Gi,

• I1(e3, (u1, v1)) = 1, I2(e3, (u2, v2)) = 1, and Ii(e3, f) = 0 for other f ∈ Gi,

we have:

• [yi]iI1(e1, (u1, v1)) + [yi]iI1(e2, (u1, v1))− [yi]iI1(e3, (u1, v1)) = [yi]i + 0− [yi]i = 0,

• [yi]iI2(e1, (u2, v2)) + [yi]iI2(e2, (u2, v2))− [yi]iI2(e3, (u2, v2)) = 0 + [yi]i − [yi]i = 0,

• [yi]iIi(e1, f) + [yi]iIi(e2, f) − [yi]iIi(e3, f) = 0 + 0 − 0 = 0 for any other i = 1, 2 and

f ∈ Ei.

Therefore,
∑

e∈E x′eIi(e, f) =
∑

e∈E xeIi(e, f), meaning that x′ satisfies the constraint (7)

if x satisfies the constraint (7).

With Lemma 4, we prove that any feasible solution of x in (11) is a feasible solution

of (5)-(8). First, it is easy to check that xinit satisfies the constraints (6)-(7). For each

feasible solution of x in (11), since x = xinit + [∂]y = xinit +
∑

i[∂][yi], by iteratively using
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Lemma 4, we get that x satisfies the constraints (6)-(7). Since xe ≥ 0 for all e ∈ E is a

constraint existing in both linear relaxations, x is a feasible solution of (5)-(8).

We now show that any feasible solution of (5)-(8) is a feasible solution of (11). Let x be

a feasible solution of (5)-(8). We show that x is also a feasible solution of (11) by proving

that x can be converted to xinit in (11) via the boundary operator ∂. First, if there is a

diagonal edge e = [(u1, u2), (v1, v2)] in E such that xe > 0, then it can be replaced by the

horizontal edge eh = [(u1, u2), (u1, v2)] followed by the vertical edge ev = [(u1, v2), (v1, v2)]

by using one boundary operation on the 2-simplex [(u1, u2), (u1, v2), (v1, v2)]. Hence, x can

be converted to a new vector x′, such that x′e = 0, x′eh = xeh + xe, x
′
ev = xev + xe, and all

the other entries in x′ are the same as those in x. It is easy to check that x′ is also a feasible

solution of (5)-(8). Therefore, without loss of generality, we assume x to be a vector such

that all the entries corresponding to diagonal edges in A(G1, G2) are zero.

We then prove that any x can be converted to xinit in (11) via the boundary operator.

Let the source and the sink node of x in A(G1, G2) be (s11, s
2
1) and (s12, s

2
2), where si1 is the

source node of Gi and si2 is the sink node of Gi. When the Eulerian trail is closed (meaning

that it is an Eulerian tour) in Gi, we let si1 = si2 be an arbitrary vertex in Vi. xinit can be

seen as a trail (tour) in A(G1, G2) that starts from (s11, s
2
1), walks along an Eulerian trail of

G2 via all the horizontal edges Ph,

Ph = {[(s11, s21), (s11, v21)], [(s11, v21), (s11, v22)], . . . , [(s11, v2i−1), (s
1
1, v

2
i )], [(s

1
1, v

2
i ), (s

1
1, s

2
2)]},

and then walks along an Eulerian trail of G1 via all the vertical edges Pv,

Pv = {[(s11, s22), (v11, s22)], [(v11, s22), (v12, s22)], . . . , [(v1j−1, s
2
2), (v

1
j , s

2
2)], [(v

1
j , s

2
2), (s

1
2, s

2
2)]},

until the sink node (s12, s
2
2). Here {s21, v21, v22, . . . , v2i−1, v

2
i , s

2
2} is an Eulerian trail of G2 and

{s11, v11, v12, . . . , v1i−1, v
1
i , s

1
2} is an Eulerian trail of G1. We use P0 = {Ph, Pv} to denote the

trail from (s11, s
2
1) to (s12, s

2
2) that is the concatenation of Ph and Pv. It is easy to see that

each edge in P0 is unique.
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Figure 7: (a) An example of converting three vertical edges followed by one horizontal edge
(blue line) to one horizontal edge followed by three vertical edges (red line). It can be done
by doing boundary operations on 2-simplices labeled from 0 to 5. (b) An example of a cycle
path (red line) and its auxiliary trail (blue line).

As shown in Qiu and Kingsford [13], x is a flow of A(G1, G2) with the additional con-

straint (7). Therefore, according to the flow decomposition theorem [24, p. 80], x can be

decomposed into a finite set of weighted paths in A(G1, G2) from (s11, s
2
1) to (s12, s

2
2), which

is denoted as {(p1, wp
1), . . . , (pn, w

p
n)}, and a finite set of weight cycles in A(G1, G2), which

is denoted as {(c1, wc
1), . . . , (cm, wc

m)}. Each path or cycle only contains horizontal and

vertical edges.

For path i, we use a vector xp,i to represent (pi, w
p
i ),

xp,ie =


wp
i if e ∈ pi

0 otherwise,

(41)

By using the boundary operator, each path pi can actually be converted to a new trail

p′i such that each edge in p′i is also an edge in P0. To prove this, we consider the following

two cases:

• If pi walks along all the horizontal edges followed by all the vertical edges, then every

edge in pi is an edge in P0. To see that, let e be an horizontal edge in pi, since pi starts

from (s11, s
2
1), e has the form [(s11, v), (s

1
1, v

′)] where [v, v′] ∈ E2. Since Ph corresponds

to the Eulerian trail of G2, for each [v, v′] ∈ E2, we have [(s11, v), (s
1
1, v

′)] ∈ Ph.

42



Therefore e ∈ P0. We can use the same way to prove e ∈ P0 when e is a vertical edge.

Note that in this case, the number of horizontal edges or vertical edges can be zero.

• If not, then we let pi = {ei1, ei2, . . . , eim}, and let eit be the vertical edge with the

smallest index t. There exists an integer k (k ≥ 1) such that {eit, eit+1, . . . , e
i
t+k−1} are

all vertical edges and eit+k is an horizontal edge. We denote each vertical edge eit+w ∈

{eit, eit+1, . . . , e
i
t+k−1} as [(vw, vt), (vw+1, vt)] and denote eit+k as [(vk, vt), (vk, vt+1)]. It

is easy to see that when w = 0, vw = s11. By using the boundary operator, this subpath

{eit, eit+1, . . . , e
i
t+k−1, e

i
t+k} can be replaced by another subpath with one horizontal

edge [(s11, vt), (s
1
1, vt+1)] followed by k vertical edges:

{[(s11, vt+1), (v1, vt+1)], [(v1, vt+1), (v2, vt+1)], . . . , [(vk−1, vt+1), (vk, vt+1)].

Now we have a new path, denoted as p1i , in which the smallest index of the vertical

edges becomes t+1. Figure 7(a) shows an example, in which the blue line represents

the subpath of pi and the red line represents the new subpath in p1i .

To create a new vector that represents p1i , we first create a zero vector yp,i,1 ∈

R|T (G1,G2)|, and from w = 0 to w = k − 1, we iteratively update yp,i,1 via the fol-

lowing equations:

yp,i,1σ =


yp,i,1σ − wp

i if σ = [(vw, vt), (vw+1, vt), (vw+1, vt+1)]

yp,i,1σ + wp
i if σ = [(vw, vt), (vw, vt+1), (vw+1, vt+1)]

0 otherwise.

(42)

The vector xp,i,1 = xp,i + [∂]yp,i,1 is the one that represents p1i .

Since the length of pi is finite, by doing such a transformation a finite number of

times, we can convert pi to a new path p′i such that p′i walks along all the horizontal

edges first followed by all the vertical edges, therefore each edge in p′i is also an edge

in P0. We use the vector x̂p,i to represent p′i, x̂
p,i = xp,i+[∂]

∑q
j=1 y

p,i,j where q is the
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number of transformations. Apperantly, x̂p,ie = 0 when e /∈ P0. Let y
p,i =

∑q
j=1 y

p,i,j ,

we have x̂p,i = xp,i + [∂]yp,i.

For cycle i, we also use a vector xc,i to represent (ci, w
c
i ),

xc,ie =


wc
i if e ∈ ci

0 otherwise,

(43)

Let (v, v′) be an arbitrary chosen node in ci, we construct a trail piaux that passes (v, v′) as

follows:

• From (s11, s
2
1), walk along Ph until the node (s11, v

′). It corresponds to a part of an

Eulerian trail of G2.

• From (s11, v
′), walk along an Eulerian trail of G1 to (s12, v

′). It must passes the node

(v, v′).

• From (s12, v
′), walk along the remaining part of the Eulerian trail of G2 to the node

(s12, s
2
2).

Figure 7(b) shows an example, in which the blue line represents piaux and the red line

represents ci.

We use xaux,i to denote the vector representing piaux. The combination of ci and piaux,

represented by the vector xc,i + xaux,i creates a new trail (may have repeated edges) from

(s11, s
2
1) to (s12, s

2
2): (1) walk along piaux from (s11, s

2
1) to (v, v′), (2) walk along ci from (v, v′)

to itself, and (3) walk along the remaining part of piaux from (v, v′) to (s12, s
2
2). By using

the same way as we described above, each ci + piaux or piaux can be converted to a new trail

in which each edge is also an edge in P0. We use x̂c,i or x̂aux,i to represent the new trail

accordingly, therefore, we have x̂c,i = xc,i + xaux,i + [∂]yc,i and x̂aux,i = xaux,i + [∂]yaux,i.

Likewise, x̂c,ie = x̂aux,ie = 0 when e /∈ P0.
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We define a new vector x̂ such that:

x̂ =
n∑

i=1

x̂p,i +
m∑
j=1

x̂c,j − x̂aux,j

=

n∑
i=1

xp,i + [∂]yp,i +

m∑
j=1

xc,j + xaux,j + [∂]yc,j −

 m∑
j=1

xaux,j + [∂]yaux,j


=

n∑
i=1

xp,i +

m∑
j=1

xc,j + [∂]

 n∑
i=1

yp,i +

m∑
j=1

yc,j −
m∑
j=1

yaux,j


= x+ [∂]

 n∑
i=1

yp,i +
m∑
j=1

yc,j −
m∑
j=1

yaux,j

 .

Therefore, x̂ is a vector converted from x via boundary operations. x̂ is equal to xinit

because:

1. x̂e = 0 when e /∈ P0 since x̂p,ie = x̂c,ie = x̂aux,ie = 0 when e /∈ P0 for each i.

2. As we have proved above, the boundary operator preserves the constraints (6)-(7).

Therefore, x̂ satisfies the constraints (6)-(7) since x is a feasible solution of (5)-(8).

Combined with the first point, we have that x̂e = 1 if e ∈ P0 and x̂e = 0 otherwise,

meaning that x̂ = xinit.

Hence, for each feasible solution x of (5)-(8), we have:

x = xinit − [∂]

 n∑
i=1

yp,i +

m∑
j=1

yc,j −
m∑
j=1

yaux,j


= xinit + [∂]

− n∑
i=1

yp,i −
m∑
j=1

yc,j +

m∑
j=1

yaux,j

 ,

meaning that x is also a feasible solution of (11).

We proved that the feasibility region of x in (11) is the same as the feasibility region of

x in (5)-(8), and since the objective functions of these two linear relaxations are the same,

the optimal solutions of them are equal.
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By employing the same approach and taking into account that if all edge weights in

a flow network are non-negative integers, the flow decomposition theorem guarantees that

the network can be decomposed into a finite set of weighted paths and cycles, each with

positive integer weight, we can prove that the ILP in (5)-(8) and the ILP in (11)-(12) are

also equivalent.

Based on the proof, we can conclude that the way to index the vertices or edges in

the alignment graph, or the 2-simplices in T (G1, G2), will not affect the equivalence re-

sult. Additionally, different choices of orientations for the 2-simplices in T (G1, G2) will

also not impact the equivalence result. This is because for any two sets T (G1, G2) and

T ′(G1, G2) containing the same 2-simplices with the same indices but different orientations,

if (x, y) is a feasible solution of the ILP in (11)-(12) (or its relaxation) that corresponds to

T (G1, G2), then (x, y′) is a feasible solution of the ILP in (11)-(12) (or its relaxation) that

corresponds to T ′(G1, G2), where yi = y′i when σi ∈ T (G1, G2) has the same orientation

as σ′
i ∈ T ′(G1, G2), and yi = −y′i when σi ∈ T (G1, G2) has the opposite orientation to

σ′
i ∈ T ′(G1, G2). Therefore, it is acceptable to specify a particular orientation for each

2-simplex when defining T (G1, G2).

Appendix C The linear relaxation of the ILP in (11)-(12) does

not always yield integer solutions

C.1 [∂] is not necessarily totally unimodular

A linear programming formulation always yields integer solutions if its constraint matrix is

totally unimodular, which means that all of its square submatrices have determinants of 0,

-1 or 1 [25]. To show that the constraint matrix of the LP relaxation of the ILP in (11)-(12)

is not totally unimodular, we first write the LP in standard form.

In a standard form of a LP, all variables are greater than, or equal to 0. Since y vectors

in the LP relaxation of the ILP in (11)-(12) can contain negative entries, we decompose it

into y+ − y−. Given alignment graph A(G1, G2) = (V,E, δ) and T (G1, G2), we can now
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Figure 8: (a) Subgraphs Gsub
1 and Gsub

2 of input graphs G1 and G2. Dots represent a path
from node 1 to k − 1 with middle nodes omitted. (b) The alignment graph A(Gsub

1 , Gsub
2 )

with different edges labeled with colors. (c) A subgraph of the alignment graph in (b) with
edges and triangles numbered. Dots represent horizontal and diagonal edges omitted. The
same vertices that are repeated in (c) are marked with yellow and red filling colors.

write the standard form of the LP in (11)-(12) as

minimize
x∈R|E|,y+,y−∈R|T (G1,G2)|

∑
e∈E

xeδ(e)

subject to [I,−[∂], [∂]] [x, y+, y−]⊤ = xinit

x, y+, y− ≥ 0.

(44)

Hence the constraint matrix of the LP relaxation is A = [I,−[∂], [∂]]. According to the

characteristics of a totally unimodular matrix [26, p. 280] A is not totally unimodular if [∂]

is not totally unimodular. We show that [∂] is not TU when the input graphs satisfy the

constraints given in the following theorem.

Theorem 8. Given two unidirectional, edge-labeled Eulerian graphs G1 and G2 where

|E1| ≥ 2 and |E2| ≥ 2, the boundary matrix [∂] constructed from A(G1, G2) = (V,E, δ)

and T (G1, G2) is not totally unimodular if there is a vertex v ∈ V1 or V2 such that there

are at least 3 unique edges in E1 or E2 that are incident to v. Here, unique edges are edges

that connect to v at one end but have different endpoints at the other end.

Proof. To prove that the boundary matrix is not TU, we only need to show that it is not

TU under one specific chosen orientation for 1- and 2-simplices, as well as one specific
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chosen set of indices for 1- and 2-simplices. This is because changing the orientations or

indices of 1-simplices in E or 2-simplices in T (G1, G2) corresponds to permuting rows and

columns of [∂] or multiplying rows and columns of [∂] by −1, which preserves the total

unimodularity [26, p. 280].

Without loss of generality, let v0 ∈ V1 be a node that is incident to at least 3 unique

edges. Since G1 is an Eulerian graph, v must be part of a cycle C in G1. Also, there must

exist another node vk and an edge between v0 and vk in either direction, such that the

edge between v0 and vk is not contained in cycle C (Figure 8(a)). Suppose the number of

nodes in the cycle is k (k ≥ 3 due to the unidirectionality constraint), and let the cycle

C = v0, v1, . . . , vk−1. Since a specific choice of 1-simplex orientations does not affect the

total unimodularity of the boundary matrix, we assume the edge between v0 and vk is

[vk, v0] without loss of generality. We use Gsub
1 = (V sub

1 , Esub
1 ) to denote the subgraph with

V sub
1 = {v0, . . . , vk−1, vk} and Esub

1 = {[vi, vi+1] : i ∈ {0, 1, . . . k − 2}} ∪ {[vk, v0]}. Since

|E2| ≥ 2 and G2 is a connected graph, there exist two consecutive, directed edges in G2.

We use Gsub
2 = (V sub

2 , Esub
2 ) to denote the subgraph of G2 with V sub

2 = {va, vb, vc} and

Esub
2 = {[va, vb], [vb, vc]}. The alignment graph A(Gsub

1 , Gsub
2 ) is formed with Gsub

1 and Gsub
2

and is a subgraph of A(G1, G2), therefore, each subgraph of A(Gsub
1 , Gsub

2 ) is also a subgraph

of A(G1, G2). Similarly, the 2-simplex set T (Gsub
1 , Gsub

2 ) is a subset of T (G1, G2).

We extract a sequence of 2-simplices (Figure 8(c)), Tc, from T (Gsub
1 , Gsub

2 ) via following

steps:

1. Extract all oriented 2-simplices [(vi, va), (vi, vb), (vi+1, vb)] and

[(vi, va), (vi+1, va), (vi+1, vb)] for 0 ≤ i ≤ k − 2 from T (Gsub
1 , Gsub

2 ).

Flip the orientations of [(vi, va), (vi+1, va), (vi+1, vb)] for all 0 ≤ i ≤ k − 2, obtaining

[(vi, va), (vi+1, vb), (vi+1, va)]. Use σ2i to denote [(vi, va), (vi, vb), (vi+1, vb)], and σ2i+1

to denote [(vi, va), (vi+1, vb), (vi+1, va)].

2. Add to the sequence another five oriented 2-simplices from T (Gsub
1 , Gsub

2 ) in the order

as specified: σ2k−2 = [(vk−1, va), (vk−1, vb), (v0, vb)], σ2k−1 = [(vk−1, vb), (v0, vb), (v0, vc)],
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σ2k = [(vk, vb), (v0, vb), (v0, vc)], σ2k+1 = [(vk, va), (vk, vb), (v0, vb)] and finally σ2k+2 =

[(vk, va), (v0, va), (v0, vb)].

In total, we extract a sequence of (2k + 3) oriented 2-simplices, Tc = {σ0, σ1, . . . , σ2k+2},

such that σi and σi+1 mod (2k+3) share one edge. The extracted 2-simplices and their ori-

entations as well as all shared edges are shown in Figure 8(c). We flip the orientations of

[(vi, va), (vi+1, va), (vi+1, vb)] solely to ensure that the submatrix constructed below has a

simple form, which makes it easier to compute the determinant.

Based on Tc, we obtain M1, a (2k + 3) × (2k + 3) submatrix of [∂] where each roll

corresponds to a shared edge and each column corresponds to a 2-simplex in Tc. The entry

values of M1 are the signed coefficients of each selected 1-simplex from the boundaries of

selected 2-simplices.

M1 =



1 0 . . . 0 0 0 0 0 0 1

−1 1 . . . 0 0 0 0 0 0 0

0 −1 . . . 0 0 0 0 0 0 0

...
...

. . .
...

...
...

...
...

...
...

0 0 . . . 1 0 0 0 0 0 0

0 0 . . . −1 1 0 0 0 0 0

0 0 . . . 0 −1 1 0 0 0 0

0 0 . . . 0 0 1 1 0 0 0

0 0 . . . 0 0 0 1 1 0 0

0 0 . . . 0 0 0 0 1 1 0

0 0 . . . 0 0 0 0 0 −1 −1


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The determinant of M1 is:

detM1

= det



−1 1 . . . 0 0 0 0 0 0

0 −1 . . . 0 0 0 0 0 0

...
...

. . .
...

...
...

...
...

...

0 0 . . . 1 0 0 0 0 0

0 0 . . . −1 1 0 0 0 0

0 0 . . . 0 −1 1 0 0 0

0 0 . . . 0 0 1 1 0 0

0 0 . . . 0 0 0 1 1 0

0 0 . . . 0 0 0 0 1 1

0 0 . . . 0 0 0 0 0 −1



− det



1 0 . . . 0 0 0 0 0 0

−1 1 . . . 0 0 0 0 0 0

0 −1 . . . 0 0 0 0 0 0

...
...

. . .
...

...
...

...
...

...

0 0 . . . 1 0 0 0 0 0

0 0 . . . −1 1 0 0 0 0

0 0 . . . 0 −1 1 0 0 0

0 0 . . . 0 0 1 1 0 0

0 0 . . . 0 0 0 1 1 0

0 0 . . . 0 0 0 0 1 1


= (−1)2k−2 × (−1)− 12k+2 = −2.

Since the determinant ofM1 is -2, andM1 is a submatrix of [∂], [∂] is not totally unimodular.

The minimal pair of input graphs that satisfy the conditions in Theorem 8 is a graph

with one 3-node cycle and one additional edge incident to the cycle and an acyclic, connected

graph with three nodes. In practice, most non-trivial edge-labeled Eulerian graphs satisfy

these conditions.

According to the definitions in Dey et al. [25], the subgraph used to construct M1 in

the above proof (Figure 8(c)) is a Möbius subcomplex, and M1 is a (2k + 3)-Möbius cycle

matrix (MCM). Theorem 8 also establishes that there may exist a Möbius subcomplex in

an alignment graph, which corrects the false claim made in Lemma 2 in [1].

Theorem 2 in Ebrahimpour Boroojeny et al. [1] attempts to employ a more algebraic

approach to attempt to demonstrate that [∂] is TU by establishing that the alignment graph

is a Möbius-free product space. However, the property of being Möbius-free globally does
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Figure 9: An example of a fractional optimal solution to the LP in (11)-(12) and the LP
in (5)-(8). (a) A pair of input graphs to the LP in (11)-(12) and the LP in (5)-(8). Letters
in red are edge labels. (b) A subgraph of A(G1, G2) that is induced by alignment edges
with non-zero weights (blue font) in an optimal solution to the LPs. The letters in red show
the matching between the edge labels or between edge labels and gaps.

not imply the absence of Möbius subcomplexes locally. As we show in Theorem 8, although

the alignment graphA(Gsub
1 , Gsub

2 ) is homotopically equivalent to the one-dimensional circle,

which is Möbius-free, it still contains a Möbius subcomplex.

C.2 The LP yields optimal fractional solutions

The fact that [∂] is not totally unimodular does not guarantee that the LP in (11)-(12)

has a fractional optimal objective value. In this section, we prove that the LP in (11)-(12)

does not always yield integer optimal solutions by constructing a specific example with a

fractional optimal objective value.

Theorem 9. The LP in (5)-(8) and the LP in (11)-(12) do not always yield optimal integer

solutions.

We prove the above theorem by giving an example where the LP in (5)-(8) yields a

fractional optimal solution. Since by Theorem 7, two LPs are equivalent, it follows that the

LP in (11)-(12) also yields the same fractional optimal solution.

Construct G1 and G2 such that their edges and edge labels are equal to the ones specified
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in Figure 9(a). Let the edge multi-set of A(G1, G2) be E. We assign an edge cost to 0 if

the edge matches two equal characters and 1 otherwise. Construct vector x∗ ∈ R|E| and set

entries corresponding to edges in Figure 9(b) to 0.5 except edge [(v3, vc), (v0, vf )] to which

the corresponding entry is set to 1. Set the rest of the entries of x∗ to 0.

Lemma 5. x∗ is an optimal solution to the LP in (5)-(8) constructed with A(G1, G2) and

T (G1, G2).

Proof. We prove the optimality of x∗ via complementary slackness. We first write the LP

in (5)-(8) in standard form.

minimize
x∈R|E|

∑
e∈E

δexe

subject to Ax = b

xe ≥ 0 for all e ∈ E.

(45)

Here, δ is a vector of size |E| where each entry is cost of edge e. The constraint matrix

A of the primal LP (45) has |E| columns and |V | + |E1| + |E2| = m rows, where V is the

vertex set of A(G1, G2), and E1 and E2 are edge multi-sets of the input graphs. The first

|V | rows correspond to the constraints specified in (6). The rest of the rows correspond

to the constraints in (7) that enforce the projected multi-set of edges to be equal to the

multi-set of edges in each input graph. Since the input graphs both contain Eulerian tours,

the vector b has size m, where the first |V | entries are zeroes and the rest of the entries are

1s.

We write the dual form of LP (45) as follows.

maximize
y∈Rm

m∑
j=1

bjyj

subject to A⊤y ≤ δ.

(46)

Let the objective value of LP (45) given a x as input is objpx, and the objective value of

LP (46) given a y as input is objdy. To show that x∗ is an optimal solution to the LP
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in (5)-(8), we need to show that there exists a feasible solution to the dual LP, y∗, that

satisfies the complementary slackness conditions and that objdy∗ = objpx∗ .

Since each alignment edge has two endpoints and is projected to at most one edge in

each graph, there are at most 4 non-zero entries in each column of A. The variables in

y of the dual form can be interpreted in three parts. Each of the first |V | entries of y

can be assigned to each vertex in the alignment graph, and the next |E1| entries can be

assigned to edges in G1 and the last |E2| entries can be assigned to edges in G2. There are

|E| constraints in the dual LP, and the e-th constraint can be assigned to one edge in the

alignment graph has cost δe. Therefore, each constraint that is assigned to a horizontal or

a vertical edge can be written as

yvoute
− yvine + yei ≤ δe, (47)

where i = 1 if e is a horizontal edge, and i = 2 if e is a vertical edge. yvine and yvoute
are the

y entries that are assigned to the vertices that are the start and end of edge e, and yei are

the y entries that assigned to the πi(e).

Similarly, each constraint that is assigned to a diagonal edge is

yvine − yvoute
+ ye1 + ye2 ≤ δe. (48)

We can verify that x∗ is a feasible solution of the primal form (45) by checking if

constraints (6)-(7) are satisfied. The primal objective value can be computed in a straight-

forward way, and we can obtain objpx∗ = 3.5.

According to complementary slackness conditions, since x∗e > 0 for edges shown in

Figure 9(b), the corresponding constraints in the dual LP (46) must be tight, meaning that

the equality must hold in these constraints. The rest of the dual constraints could have

slacks.

Let the subgraph of A(G1, G2) shown in Figure 9(b) be A′. Denote the cycle that

traverses from [(0, f), (4, a)] to [(3, c), (0, f)] be C ′ and the 4-node cycle that traverses
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((0, f), (1, a), (2, e), (3, c)) be C ′′. Denote the concatenation of two cycles with C. The

projected cycle from C to G1 is

C1 = (v0, v4, v5, v0, v4, v5, v0, v1, v2, v3, v0, v1, v2, v3, v0). (49)

The projected cycle from C to G2 is

C2 = (vf , va, ve, vc, vd, va, vb, vc, vd, va, vb, vc, vf , va, ve, vc, vf ). (50)

Sum up all the constraints that are assigned edge e where x∗e > 0. Since these edges form

a cycle, we get:

∑
e∈C

(
yvoute

− yvine
)
+ 2

( ∑
e1∈C1

ye1 +
∑

e2∈C2

ye2
)

(51)

= 0 + 2
( ∑
e1∈C1

ye1 +
∑

e2∈C2

ye2
)

(52)

=
∑
e∈C

δe = 7, (53)

⇒
∑

e1∈C1

ye1 +
∑

e2∈C2

ye2 = 3.5. (54)

The summed edge cost is 7 as there are 7 edges that are either mismatch edges or vertical

edges.

All y entries that correspond to vertices are free variables and are in every constraint.

After fixing the y variables that satisfy constraint (54), the rest of the y variables can be

set to satisfy the dual cosntraint. We now obtain y∗ which is a feasible solution to the dual

LP.

The only entries in y∗ that could have non-zero dual costs are those that correspond to

edges in E1 and E2. Since these corresponding dual costs are all 1,

objdy∗ =
∑

e1∈C1

ye1 +
∑

e2∈C2

ye2 = 3.5 = objpx∗ .
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Since the costs of alignment graph edges are all integers, the fact that the LP in (11)-(12)

and the LP in (5)-(8) yield fractional optimal objective values mean that they must yield

fractional solutions and assign fractional values to entries in x. Theorem 9 follows. Since

the LP in (11)-(12) yields fractional solutions and GTED is always an integer, solving the

LP in (11)-(12) does not solve GTED.

Appendix D The average wall-clock time to solve ILPs on

3-cycle graphs

Table S1: The average wall-clock time to solve (lower bound ILP), (exponential ILP), (compact ILP)
and the number of iterations for pairs of 3-cycle graphs for each GTED−GTEDl.

GTED - GTEDl
(lower bound ILP)

runtime (s)
GTED iterative

runtime (s)
Iterations

GTED compact
runtime (s)

1.0 0.06 0.17 3.55 0.39
2.0 0.05 0.87 13.00 0.43
3.0 0.08 25.41 67.60 1.24
4.0 0.07 205.59 179.10 1.70
5.0 0.08 943.68 502.85 5.37
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