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Abstract
Intratumor heterogeneity underlies cancer evolution and treatment resistance1–5, but targetable
mechanisms driving intratumor heterogeneity are poorly understood. Meningiomas are the most common
primary intracranial tumors and are resistant to all current medical therapies6,7. High-grade meningiomas
cause signi�cant neurological morbidity and mortality and are distinguished from low-grade
meningiomas by increased intratumor heterogeneity arising from clonal evolution and divergence8. Here
we integrate spatial transcriptomic and spatial protein pro�ling approaches across high-grade
meningiomas to identify genomic, biochemical, and cellular mechanisms linking intratumor heterogeneity
to the molecular, temporal, and spatial evolution of cancer. We show divergent intratumor gene and
protein expression programs distinguish high-grade meningiomas that are otherwise grouped together by
current clinical classi�cation systems. Analyses of matched pairs of primary and recurrent meningiomas
reveal spatial expansion of sub-clonal copy number variants underlies treatment resistance. Multiplexed
sequential immuno�uorescence (seqIF) and spatial deconvolution of meningioma single-cell RNA
sequencing show decreased immune in�ltration, decreased MAPK signaling, increased PI3K-AKT
signaling, and increased cell proliferation drive meningioma recurrence. To translate these �ndings to
clinical practice, we use epigenetic editing and lineage tracing approaches in meningioma organoid
models to identify new molecular therapy combinations that target intratumor heterogeneity and block
tumor growth. Our results establish a foundation for personalized medical therapy to treat patients with
high-grade meningiomas and provide a framework for understanding therapeutic vulnerabilities driving
intratumor heterogeneity and tumor evolution.

Main text
Meningiomas arising from the meningothelial lining of the central nervous system comprise more than
40% of primary intracranial tumors7,9, and approximately 1% of humans will develop a meningioma in
their lifetime10. Bioinformatic investigations have shed light on mechanisms underlying meningioma
tumorigenesis11–18, but current meningioma classi�cation systems are based on histological and/or
molecular approaches that can be confounded by intratumor heterogeneity8,19. High-grade meningiomas
are particularly heterogeneous8,20 and are prone to recurrence and decreased survival despite treatment
with surgery and radiotherapy21. Medical therapies remain ineffective or experimental for meningiomas6,
and intratumor heterogeneity and tumor evolution in response to treatment have undermined all clinical
trials for patients with meningiomas22,23. Glioblastoma evolution also selects for treatment resistant sub-
clones1,5, and sub-clonal somatic short variants (SSVs) or copy number variants (CNVs) are associated
with non-small cell lung cancer recurrence, the leading cause of cancer-related death worldwide4.
Evolving sub-clones underlie increased mortality across many human cancers2, and while genetic drivers
of the initial stages of tumorigenesis are well described3, the identity of mechanisms driving intratumor
heterogeneity and tumor evolution are incompletely understood.
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Here we test the hypothesis that understanding spatial genomic, biochemical, and cellular mechanisms
linking intratumor heterogeneity to tumor evolution may reveal druggable dependencies underlying
human cancer. To do so, we use spatial transcriptomic and protein pro�ling approaches to study clinical
samples from high-grade human meningiomas (Fig. 1). When integrated with clinically established
histological or bulk molecular approaches for meningioma classi�cation13,20,24, multiplexed sequential
immuno�uorescence (seqIF), and spatial deconvolution of meningioma single-cell RNA sequencing, our
results elucidate how intratumor heterogeneity in�uences the molecular (Fig. 2), temporal (Fig. 3, 4), and
spatial evolution (Fig. 5, 6) of the most common primary intracranial tumor7,9. To validate these �ndings
and generate a platform for testing personalized medical therapies to treat high-grade meningiomas, we
use CRISPR interference (CRISPRi)25 and �uorescent labeling of human meningioma cells in preclinical
organoid models to identify new combinations of FDA-approved small molecules that inhibit intratumor
heterogeneity and block meningioma growth (Fig. 7).

Experimental design and work�ow
To de�ne mechanisms underlying meningioma intratumor heterogeneity and evolution, 16 intracranial
samples from 10 meningiomas (designated M1-10) that were resected from 9 patients at the University
of California San Francisco (UCSF) were assembled for clinical, histological, and molecular analyses
(Fig. 1a and Supplementary Table 1). Preoperative magnetic resonance imaging (MRI) studies and
medical records were reviewed to de�ne meningioma locations, presentations (primary versus recurrent),
treatments, and outcomes. Histological and molecular analyses of all samples were performed using the
most recent criteria from the World Health Organization (WHO) Classi�cation of Tumors of the Central
Nervous System20, including targeted next generation DNA sequencing26 to de�ne SSVs and CNVs that
are associated with high-grade meningioma classi�cation and adverse clinical outcomes15,16, 27–29

(Supplementary Tables 1 and 2). All samples were analyzed using immunohistochemistry (IHC) for cell
proliferation (Ki-67), cell cycle regulation (p16), or chromatin markers (H3K27me3), each of which can
also be associated with clinical outcomes for patients with meningiomas30–32. To integrate standard
approaches for meningioma classi�cation with emerging techniques that de�ne biological drivers and
therapeutic vulnerabilities in meningiomas, DNA methylation grouping13 and targeted gene expression
pro�ling24 were performed on all samples (Supplementary Tables 1 and 3). These comprehensive clinical,
histological, and molecular analyses identi�ed meningiomas to study the molecular (M1-3), temporal
(M4-7), and spatial evolution (M8-10) of human cancer (Fig. 1b).

Spatial transcriptomic pro�ling of 50µm regions from continuous arrays tiled across 6mm cores was
performed on all meningiomas using an approach that integrates approximately 10 cells per capture
area33 (Extended Data Fig. 1a). Core selection for each sample was guided by morphological or IHC
heterogeneity of whole mount formalin-�xed para�n-embedded (FFPE) tumor sections. Spatial
transcriptomes were aligned with hematoxylin and eosin (H&E) histological images using unique
oligonucleotide barcodes corresponding to array positions (Extended Data Fig. 1b). The Harmony
bioinformatic pipeline was used for sample integration and batch-correction34 (Extended Data Fig. 1c),
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and uniform manifold approximation and projection (UMAP) analysis of 38,718 spatial transcriptomes
demonstrated 30 spatial gene expression programs across 16 high-grade meningioma samples (range:
4–15 programs/sample) (Fig. 1c, d, Extended Data Fig. 2a-c and Supplementary Table 4). Six spatial
gene expression programs that included transcriptomes from all samples were distinguished by
enrichment of genes involved in neural development (SIM2, VIT in C1 and C7), angiogenesis (THBS2,
HHIP in C3), meningeal homeostasis and neurotransmitter processing (PTGDS, LCNL1 in C5), bone
differentiation (MAP1LC3C, ALPL in C9), and differentiation of the neural crest (S100A, S100B in C14), a
multipotent embryonic cell population that gives rise to the meninges35,36 (Extended Data Fig. 2a-c and
Supplementary Table 4).

Spatial protein pro�ling of 200µm regions from 6mm cores was performed on all meningiomas using an
approach that integrates approximately 190 cells per capture area37 (range 115–283 cells/region).
Region selection for each sample was guided by morphological or IHC heterogeneity of whole mount
FFPE tumor sections. Laser microdissection and next generation sequencing was used to quantify
binding of 72 antibodies that were conjugated to unique oligonucleotide barcodes from 82 regions
(range: 3–12 regions/sample) (Fig. 1e and Supplementary Table 5). Principal component analysis of
spatial protein pro�ling data demonstrated divergent biochemical mechanisms within and across high-
grade meningiomas (Extended Data Fig. 2d).

Using these clinical, histological, molecular, and spatial data, the study cohort was divided into 3 groups
to study genomic, biochemical, and cellular mechanisms underlying intratumor heterogeneity in the
context of molecular (Fig. 2), temporal (Fig. 3, 4), and spatial evolution of meningiomas (Fig. 5, 6).
Findings were validated using multiplexed seqIF microscopy, spatial deconvolution of meningioma
single-cell RNA sequencing, bulk RNA sequencing from 502 meningiomas13,18, and CRISPR interference,
pharmacology, and live cell imaging in meningioma organoid preclinical models (Fig. 7).

High-grade meningiomas are distinguished by divergent
intratumor gene and protein expression programs
The WHO de�nes meningioma grades according to histological features, such as mitotic count and brain
invasion, and rare molecular features such as CDKN2A/B homozygous deletions or hotspot TERT
promoter mutations that are su�cient for diagnosis of WHO grade 3 meningioma20. Most WHO grade 1
meningiomas can be effectively treated with surgery or radiotherapy, but many WHO grade 2 or grade 3
(high-grade) meningiomas, which account for 20–30% of cases7,9, are resistant to treatment and cause
signi�cant neurological morbidity and mortality6. Morphological features can in�uence meningioma
WHO grading, and rhabdoid morphology associated with inactivating BAP1 mutation is also associated
with WHO grade 3 meningioma38. Thus, current clinical classi�cation systems group meningiomas with
different driver mutations into the same high-grade group, which may not provide an optimal framework
for clinical trials. To determine if high-grade meningiomas were associated with convergent or divergent
intratumor gene or protein expression programs, spatial genomic and biochemical mechanisms were
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studied across meningiomas with BAP1 inactivation (M1), CDKN2A/B homozygous deletion (M2), or
TERT promoter mutation (M3) (Extended Data Fig. 3a, b and Supplementary Table 1).

Spatial gene expression programs in M1 correlated with morphological features and immunostaining for
Ki-67 (Fig. 2a-c). Spatial transcriptomes with increased immunostaining for Ki-67 (C2, C4) were enriched
in MKI67 and FOXM1, a driver of meningioma cell proliferation that is enriched in high-grade
meningiomas or meningiomas from the Hypermitotic DNA methylation group13,39 (Fig. 2d). Differential
expression analysis of spatial transcriptomes identi�ed 2 clusters (C3, C6) that were distinguished by
expression of collagens (COL1A1, COL1A2, COL3A1) and other extracellular matrix genes (LUM, ELN,
VCAN) and correlated with regions of increased connective tissue on H&E sections (Fig. 2a, c, e and
Extended Data Fig. 3b). The remaining spatial gene expression programs in M1 were comprised of
variably cellular tumor with differential expression of Wnt pathway (CTHRC1, TMEM59L), in�ammatory
(CXCL14), cell proliferation (CCN2, CCN3, CITED1, BCAT1, NCOA7), cell differentiation (NKX6-2), or cell
adhesion genes (PCDH7, TGM2) (Fig. 2e). Clusters with increased immunostaining for Ki-67 were
distinguished by non-overlapping cell proliferation genes (BUB1, CDC20 in C2, CCN3 in C4) (Fig. 2d, e),
suggesting regionally distinct mechanisms activating the cell cycle can exist in individual tumors.

Spatial gene expression programs in M2 and M3 also demonstrated heterogeneous ontologies that
correlated with morphological features (Fig. 2f-I and Extended Data Fig. 3b). Differential expression
analysis of spatial transcriptomes in M2 revealed a connective tissue and hemorrhagic cluster (COL3A1,
COL4A4, HBA1, HBA2 in C2), a brain parenchyma cluster (NNAT, SYN2 in C6), and 4 other clusters
comprised of variably cellular tumor that were distinguished by enrichment of in�ammatory and immune
genes (IRF1, CD55, IL18, LYZ, LY6D) (Fig. 2f, h, I and Extended Data Fig. 3b). C4 was comprised of brain-
invasive meningioma with enrichment of oncogenes (MN1) and tissue invasion genes (TAC3). C5 from
M2 and C3 from M3 showed decreased expression of in�ammatory and immune genes but enrichment
of MT2A, which is implicated in cell stress, homeostasis, and differentiation40,41. Other cell stress genes
and DNA damage response genes were enriched in C3 from M3 (HSP1A, NR4A1, ANKRD1), and the 5
other spatial gene expression programs in M3 were distinguished by differential expression of ion
transport, cell stress, and immune genes that were not differentially expressed in M1 or M2 (SLC9A3, LTK,
DEPP1, HSP1A, NOTCH3, FOS, SERPINE1, MT1X) (Fig. 2i).

Spatial protein pro�ling validated divergent signaling mechanisms across spatial transcriptomes from
high-grade meningiomas, and revealed heterogeneous cell proliferation, stress, microenvironment,
immune, and growth factor signaling pathways across M1-3 (Fig. 2i-j). Sample integration and batch-
correction with Harmony was unable to identify conserved spatial gene expression programs across M1-3
(Extended Data Fig. 3c-e). In support of these data, differential expression analyses using bulk RNA
sequencing data from independent meningiomas with BAP1 inactivation (n = 5), CDKN2A/B homozygous
deletion (n = 30), or TERT promoter mutation (n = 7) that were resected at UCSF or The University of Hong
Kong (HKU)13,18 showed differences in diverse cell proliferation (MKI67, FOXM1, CCN2, CCN3, CITED1,
BCAT1, NCOA7, BUB1, CDC20), differentiation (CTHRC1, MT2A, NKX6-2), tissue invasion and adhesion
(LUM, TAC3, PCDH7, TGM2), immune (CXCL14, IL18, LYZ, LY6D), and tumor suppressor genes (WT1,



Page 7/33

MN1) (Supplementary Table 6). Thus, high-grade meningiomas with different driver mutations that are
grouped together by current clinical classi�cation systems are distinguished by divergent intratumor gene
and protein expression programs. These data suggest that unsuccessful remote22 or recent23 clinical
trials of molecular therapy for patients with meningiomas may have bene�tted from molecular rather
than histological criteria for inclusion and treatment.

Spatial sub-clonal copy number variants, signaling
mechanisms, and cell types underlie high-grade
meningioma recurrence
Surgery is the mainstay of meningioma treatment, but postoperative radiotherapy is recommended to
reduce the risk of high-grade meningioma recurrence9,42. Nevertheless, local recurrence of high-grade
meningioma is common21, and recurrence is the leading cause of death in patients with meningiomas
that are resistant to standard interventions43. Mechanisms underlying meningioma resistance to
treatment are poorly understood. To address this limitation in our understanding of meningioma biology,
spatial genomic, biochemical, and cellular mechanisms were studied in the context of histological and
molecular classi�cation systems across matched pairs of primary (M4-7) and recurrent (M4’-7’) high-
grade meningiomas that were treated with radiotherapy between primary and recurrent resections
(Fig. 3a, Extended Data Fig. 4a and Supplementary Table 1).

Histological analysis showed higher WHO grades and increased immunostaining for Ki-67 in paired
recurrent versus primary meningiomas (Fig. 1b and Extended Data Fig. 4a). Bulk molecular approaches
demonstrated higher gene expression risk scores, increased CNV burden, and aggressive driver mutations
such as TERT promoter mutation or CDKN2A/B homozygous deletion in paired recurrent versus primary
meningiomas (Fig. 1b and Supplementary Table 2, 3). Spatial gene expression programs were divergent
in paired primary and recurrent meningiomas despite sample integration and batch-correction with
Harmony (Fig. 3b and Extended Data Fig. 4b-d). Incorporation of CNVs can improve prognostic models
for meningioma outcomes15,16, but the spatial architecture and evolution of meningioma CNVs over time
is incompletely understood. To determine if spatial expansion of sub-clonal CNVs underlies high-grade
meningioma recurrence, inferCNV44,45 was used to deconvolve paired primary and recurrent meningioma
spatial transcriptomes (Extended Data Fig. 5a). Spatial projection validated CNVs that were identi�ed in
the recurrent but not in the primary meningioma from paired samples using targeted next generation DNA
sequencing (Fig. 1b, 3c and Supplementary Table 2). Spatial projection also identi�ed clonal CNVs from
recurrent meningiomas in sub-clonal spatial transcriptomes from paired primary tumors that were below
the limit of detection using bulk molecular approaches (Fig. 3c). In support of these data, spatial
transcriptomes demonstrated decreased expression of MAPK genes (RAB7, MAPK11, PLCE1) or
epigenetic regulators (SMARCA2) that were lost through copy number deletions in paired recurrent versus
primary meningiomas (Fig. 3d). Interestingly, an intracranial meningioma overlying the frontal cortex
(M8) also demonstrated divergent histological, SSV, CNV, and spatial transcriptomic architecture
compared to patient-matched primary (M7) and recurrent (M7’) meningiomas overlying the occipital
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cortex (Fig. 1b, Extended Data Fig. 6a-i and Supplementary Table 1), suggesting regionally distinct
meningiomas can be associated with divergent genomic features.

To determine if the diverse genomic mechanisms underlying high-grade meningioma recurrence were
associated with convergent or divergent biochemical or cellular phenotypes, spatial protein pro�ling
(Fig. 4a and Extended Data Fig. 7a-d) was performed alongside multiplexed sequential
immuno�uorescence (seqIF) to stain and image whole mount sections of primary (M4-7) and recurrent
(M4’-7’) meningiomas (Fig. 4b, c, Extended Data Fig. 7e and Supplementary Table 7). Principal
component analysis of spatial protein pro�ling data demonstrated divergent biochemical mechanisms in
primary versus recurrent tumors (Extended Data Fig. 7a, b), but inspection of individual proteins revealed
conserved trends underlying high-grade meningioma recurrence (Extended Data Fig. 7c). Proteins
associated with cell proliferation (Ki-67) and PI3K-AKT signaling (PLCG1) were enriched in recurrent
meningiomas, whereas proteins associated with MAPK signaling (pan-Ras), immune signaling (CD45,
VISTA, CD14), and PI3K-AKT inhibition (INPP4B) were suppressed in recurrent meningiomas (Fig. 4a and
Extended Data Fig. 7d). In support of these �ndings, multiplexed seqIF showed Ki-67 was enriched in
recurrent versus primary meningioma cells that were marked by SSTR2A46 (Fig. 4c). Primary
meningiomas were enriched in pan-Ras, INPP4B, macrophages (CD68, CD163) that were concentrated in
the perivascular niche (CD31), and VISTA, an inhibitor of T cell activation (Fig. 4c). Meningiomas have
poor responses to immune checkpoint inhibitors that target T cells47,48, and T cells marked by CD4 or
CD8 were rare in either primary or recurrent meningiomas (Extended Data Fig. 7e). To validate these
�ndings, meningioma cell types were deconvolved from spatial transcriptomes using single-cell RNA
sequencing of 57,114 cells from 8 meningioma samples representing all DNA methylation groups13.
Spatial deconvolution of single-cell types showed CD163 macrophages, differentiated meningioma cells,
SSTR2A meningioma cells, and non-cycling G1 phase meningioma cells were decreased in recurrent
versus primary meningiomas (Fig. 4d). Cycling G2M phase and S phase meningioma cells were enriched
in recurrent versus primary meningiomas (Fig. 4d).

To test the generalizability of mechanisms underlying meningioma recurrence revealed by spatial
transcriptomic, protein pro�ling, multiplexed IF, and single-cell deconvolution approaches, MAPK and
PI3K-AKT target gene expression was analyzed in primary (n = 403) versus recurrent meningiomas (n = 
99) using bulk RNA sequencing data from independent meningiomas that were resected at UCSF (n = 
200) or HKU (n = 302)13,18. In support of results from spatial approaches, MAPK target genes such as
DUSP1 (p = 0.0013) and SPRY1 (p = 0.0059) were suppressed and PI3K-AKT target genes49 such as SMC6
(p = 0.0011), LSM4 (p = 0.0001), and LARS (p = 0.0007) were enriched in recurrent versus primary
meningiomas (Student’s t tests) (Supplementary Table 8).

Regionally distinct sub-clonal spatial transcriptomes, signaling mechanisms, and cell types underlie
histological heterogeneity in high-grade meningiomas

High-grade meningiomas can arise de novo, progress from lower grade meningioma at the time of
recurrence50–52, or may show predominantly low-grade histology with only focal evidence of high-grade
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treansformation53. Thus, regionally distinct histological or genomic intratumor heterogeneity can
in�uence meningioma classi�cation8,19, but the identity and spatial relationships among mechanisms
driving intratumor heterogeneity in high-grade meningiomas are unknown. To address this limitation in
our understanding of meningioma biology, spatial genomic and cellular mechanisms were studied across
high-grade meningiomas demonstrating regionally distinct intratumor heterogeneity (M9-10) (Fig. 5a-b,
Extended Data Fig. 8a-c and Supplementary Table 1).

Histological analyses of M9 revealed a well-demarcated area of increased cellularity, increased
immunostaining for Ki-67, and increased mitotic count that was su�cient for diagnosis of WHO grade 3
meningioma in 1 of 2 regionally distinct cores (Fig. 5a). Both cores from M9 were otherwise comprised of
WHO grade 2 histology, lower immunostaining for Ki-67, Hypermitotic meningioma DNA methylation
grouping, and high gene expression risk scores but showed divergent SSVs inactivating epigenetic
regulators (ARID1A, ASXL1) and divergent CNVs deleting chromosomes 4 and 14q that were only
identi�ed in the core with WHO grade 3 histology (Fig. 1b). Histological analyses of M10 revealed WHO
grade 3 meningioma with mosaic immunostaining for p16 that inversely correlated with immunostaining
for Ki-67 in 2 regionally distinct cores (Fig. 5b and Extended Data Fig. 8b). Both cores from M10 classi�ed
in the Hypermitotic meningioma DNA methylation group but showed divergent gene expression risk
scores and divergent CNVs amplifying chromosome 1q or deleting chromosomes 4q, 9p, and 10q
(Fig. 1b).

Spatial gene expression programs were analyzed across regionally distinct high-grade meningioma cores
after sample integration and batch-correction with Harmony (Fig. 5c-f). Clusters C3, C6, and C9 in M9
correlated with WHO grade 3 histology (Fig. 5a, e) and differential expression analysis of spatial
transcriptomes revealed shared enrichment of embryonic transcription factors (SOX11, ELF3) but
divergent expression of meningeal homeostasis (PTGDS in C3) or immune genes (CXCL8 in C6, HLA-
DPA1, IGHG1 in C9) in WHO grade 3 regions (Fig. 5g-i). Clusters C2, C8, and C10 in M9 correlated with
WHO grade 2 histology that was immediately adjacent to the WHO grade 3 region and lacked embryonic
transcription factor expression but was enriched in meningeal homeostasis (PTGDS in C2 and C10) or
immune genes (HLA-DPA1 in C8). Clusters C1, C4, C5, and C7 in M9 correlated with WHO grade 2
histology that was distant from the WHO grade 3 region and was enriched in tissue differentiation (FIBIN
in C1 and C5, ACTA2 in C4) and innate immune genes (IFI27, IFIT3 in C7). M10 clusters C4, C5, and C6
correlated with reduced immunostaining for p16 (Fig. 5b, f), and differential expression analysis of
spatial transcriptomes revealed shared enrichment of cell signaling and proliferation genes (GPC1,
CRABP1) but divergent expression of immune genes in these regions (IGHG1, IGKC, CLEC3B in C6)
(Fig. 5j-l). Cluster C8 correlated with intermediate immunostaining for p16 and demonstrated divergent
cell signaling and proliferation genes (MET, EGFL6), supporting the hypothesis that regionally distinct
mechanisms activating the cell cycle can exist in individual meningiomas (Fig. 2d, e). The remainder of
M10 showed diffusely positive immunostaining for p16 and was enriched in senescence and cell cycle
regulation genes (MX2 in C7, CDKN2B in C9 and C10). Multiplexed seqIF showed that Ki-67 was enriched
in the WHO grade 3 region of M9 and in the region of M10 with reduced immunostaining for p16 (Fig. 6a-
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c). Moreover, M9 and M10 showed regionally distinct expression of pan-Ras, INPP4B, CD68, CD163,
VISTA, and the pericyte marker CD31. Spatial deconvolution of meningioma single-cell types13 validated
regionally distinct changes in CD163 macrophages, pericytes, endothelia, SSTR2A meningioma cells,
extracellular matrix (ECM) remodeling meningioma cells, and G1/G2M/S phase meningioma cells in M9
and M10 (Fig. 6d). Thus, in support of the genomic, biochemical, and cellular phenotypes underlying
temporal evolution of high-grade meningiomas (Fig. 3, 4 and Extended Data Fig. 4–7), regionally distinct
cell proliferation, cell signaling, and immune mechanisms underlie spatial evolution of high-grade
meningiomas.

A preclinical platform for testing personalized medical
therapies to overcome intratumor heterogeneity in high-
grade meningiomas
Sub-clonal evolution underlies tumor recurrence and treatment resistance1–5, but preclinical models of
intratumor heterogeneity or tumor evolution in response to treatment are scarce. To develop reagents to
study high-grade meningioma heterogeneity and evolution in response to treatment, patient-derived high-
grade M10G meningioma cells stably expressing CRISPRi machinery (M10GdCas9 − KRAB)8,13 were
transduced with sgRNAs suppressing the cell cycle inhibitors CDKN2A (sgCDKN2A) or CDKN2B
(sgCDKN2B), the epigenetic regulator ARID1A (sgARID1A), or non-targeted control sgRNAs (sgNTC)
(Extended Data Fig. 9a). RNA sequencing of triplicate M10GdCas9 − KRAB cultures with differential
expression and ontology analyses revealed CDKN2A/B suppression inhibited developmental and
metabolic gene expression programs, whereas ARID1A suppression induced metabolic and mitotic gene
expression programs (Fig. 7a and Supplementary Table 9). These data suggest drivers of high-grade
meningioma intratumor heterogeneity, such as CDKN2A/B homozygous deletion or SSVs inactivating
epigenetic regulators like ARID1A (Fig. 1b), may be associated with non-overlapping therapeutic
vulnerabilities. In support of this hypothesis, preclinical experiments demonstrate meningiomas with loss
of cell cycle regulators are susceptible to CDK4/6 inhibitors such as abemaciclib13, and meningiomas
with loss of epigenetic regulators may be susceptible to histone deacetylase inhibitors such as
vorinostat17.

To identify pharmacologic strategies inhibiting intratumor heterogeneity in high-grade meningiomas,
M10GdCas9 − KRAB cells transduced with sgCDKN2A/B, sgARID1A, or sgNTC were reciprocally labeled with
red or green �uorescence proteins to track pharmacologic responses and assembled into 3D organoid co-
cultures for live cell microscopy. Abemaciclib blocked the growth of M10GdCas9 − KRAB cells with
CDKN2A/B suppression but did not block the growth of M10GdCas9 − KRAB cells with ARID1A suppression
or sgNTCs (Fig. 7b, c). To identify therapeutic vulnerabilities underlying meningiomas with loss of
epigenetic regulators, spatial protein pro�ling was analyzed across 21 regions with or without SSVs
inactivating ARID1A from M10 (Fig. 1e). These data revealed regionally distinct potential vulnerabilities to
small molecule inhibitors of the DNA damage response (niraparib), EGFR signaling (erlotinib), MEK/ERK
signaling (selumetinib), MET signaling (capmatinib), or PI3K-AKT signaling (copanlisib) (Fig. 7d).
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Vorinostat, niraparib, erlotinib, selumetinib, and copanlisib blocked the growth of M10GdCas9 − KRAB cells
expressing sgNTC, and selumetinib and copanlisib blocked the growth of cells with ARID1A suppression
(Fig. 7e). To determine if combination molecular therapy could overcome intratumor heterogeneity in
high-grade meningiomas, 3D organoid co-cultures of M10GdCas9 − KRAB cells expressing sgCDKN2A and
sgNTC (Fig. 7f), or sgCDKN2A and sgARID1A (Fig. 7g), were treated with abemaciclib and selumetinib, or
abemaciclib and copanlisib. Combination molecular therapy blocked the growth of meningioma cells
with loss of CDKN2A and loss of ARID1A in both co-culture conditions and attenuated the growth of
meningioma cells expressing sgNTC (Fig. 7h, i). Thus, high-grade meningiomas with loss of cell cycle
and/or epigenetic regulators are susceptible to combination molecular therapy blocking CDK4/6,
MEK/ERK signaling, and PI3K-AKT signaling.

Discussion
Here we integrate spatial transcriptomics, spatial protein pro�ling, multiplexed seqIF, and spatial
deconvolution of single-cell RNA sequencing across high-grade meningiomas to identify genomic,
biochemical, and cellular mechanisms linking intratumor heterogeneity to the molecular, temporal, and
spatial evolution of human cancer. Our results reveal divergent intratumor gene and protein expression
programs distinguish high-grade meningiomas that are otherwise grouped together by the World Health
Organization Classi�cation of Central Nervous System Tumors20, one of the systems that is currently
used to determine patient eligibility on clinical trials6. Analyses of matched pairs of primary and recurrent
meningiomas reveal spatial expansion of sub-clonal copy number variants, decreased immune cell
in�ltration, decreased MAPK signaling, increased PI3K-AKT signaling, and increased cell proliferation
underlie treatment resistance and tumor recurrence. We �nd regionally distinct high-grade meningioma
samples displaying histological and molecular heterogeneity are associated with spatial gene expression
programs that correlate with intratumor heterogeneity and cell proliferation. To translate these �ndings to
clinical practice, we use epigenetic editing and lineage tracing approaches in human meningioma
organoid models to identify new combinations of FDA-approved molecular therapies that target
intratumor heterogeneity and block meningioma growth. In sum, our results establish a foundation for
personalized medical therapy to treat patients with high-grade meningiomas and provide a framework for
understanding mechanisms and therapeutic vulnerabilities driving intratumor heterogeneity and tumor
evolution.

The human meningiomas in this study that were analyzed using bulk genomic, spatial transcriptomic,
spatial protein pro�ling, multiplexed seqIF, and single-cell RNA sequencing deconvolution approaches
were clinical FFPE samples, as opposed to fresh, frozen, or curated research specimens that are used for
many exploratory investigations. Thus, the biological �ndings in this study may be generalizable to
routine clinical practice. In support of this hypothesis, we show mechanisms underlying meningioma
intratumor heterogeneity and evolution from our discovery cohort are conserved across a validation
cohort comprised of 504 meningiomas from independent, international institutions.



Page 12/33

Clinical trials of molecular therapy that are based on molecular inclusion criteria are underway for
patients with meningiomas6. We identify divergent temporal evolution in recurrent versus primary
meningiomas, suggesting that molecular analyses guiding clinical decision-making should be performed
on recurrent tumor tissue rather than archival samples from prior resections. Our results also indicate that
regionally distinct spatial evolution represents a barrier to accurate tumor classi�cation and should be
considered during histological or molecular analyses of meningiomas. Beyond classi�cation, our
preclinical model for testing personalized medical therapies to overcome intratumor heterogeneity may
address the limitations molecular, temporal, or spatial evolution place on improving treatments for
patients. Indeed, we show this system can enable medium-throughput screening of novel
pharmacological strategies to treat tumors that are resistant to standard interventions. This system also
suggests that meningioma cell growth patterns can be in�uenced by cell heterogeneity in the tumor
microenvironment (Fig. 7b, f, g), and phenotypes such as these may hint at additional response or
resistance mechanisms. To that end, clinical trials of abemaciclib (NCT02523014) or selumetinib
(NCT03095248) as monotherapy for meningiomas are ongoing, but our data suggest that combination
molecular therapy may be necessary to reverse the longstanding trend of non-positive clinical trials for
patients with meningiomas22,23,47,48.
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Inclusion and ethics

This study complied with all relevant ethical regulations and was approved by the UCSF Institutional
Review Board (13-12587, 17-22324, 17-23196 and 18-24633). As part of routine clinical practice at UCSF,
all patients who were included in this study signed a waiver of informed consent to contribute
deidenti�ed data to research projects.

Meningiomas, clinical data, histology, and light microscopy

The study cohort consisted of 16 samples from 10 clinically aggressive meningiomas that were resected
from 9 patients at UCSF from 2009 to 2021. Patient demographics, treatments, and clinical outcomes
were recorded from the electronic medical record (Supplementary Table 1). Magnetic resonance imaging
studies were reviewed to de�ne meningioma locations and clinical outcomes. Detailed pathologic
examination of the entire cohort was performed by a board-certi�ed neuropathologist (C-H.G.L) to assess
for histological or molecular heterogeneity. Histological and molecular grading were assigned using the
2021 WHO Classi�cation of Central Nervous System Tumors20. For bulk sequencing analyses,
meningioma tissue was isolated from formalin-�xed, para�n-embedded (FFPE) blocks using biopsy
punches (Integra Miltex Instruments, cat# 33-31-P/25). Genomic DNA was extracted from macro-
dissected FFPE tumor tissue using the QIAamp DNA (Qiagen, cat# 56404) and the QIAamp RNeasy FFPE
Tissue Kits (Qiagen, cat# 73504) at UCSF. For spatial pro�ling assays, 6 mm cores were punched from
FFPE blocks using biopsy punches, and serial sections were mounted onto glass slides for spatial
transcriptomic, protein pro�ling, H&E histology, or immunohistochemistry. Clinically validated
immunohistochemistry for Ki-67 (DAKO, 1:50 dilution, MIB1 clone, cat# M7240), H3K27me3 (Cell
Signaling, 1:50 dilution, C36B11 clone, cat# 9733, and p16 (MTM Labs, undiluted, E6H4 clone, cat# 9511)
were performed at UCSF on core mounts with appropriate controls using a Leica Bond III platform and
imaged using light microscopy on an BX43 microscope with standard objectives (Olympus). Images were
obtained and analyzed using the Olympus cellSens Standard Imaging Software package (v1.16).

DNA methylation pro�ling and analysis

Genomic DNA underwent bisul�te conversion using the EZ DNA Methylation kit (Zymo Research, cat#
D5004), followed by ampli�cation, fragmentation, and hybridization to In�nium EPIC 850k Human DNA
Methylation BeadChips (Illumina, cat# 20020530) according to manufacturer’s instructions at the
Molecular Genomics Core at the University of Southern California (Los Angeles, CA). Bioinformatic
analysis was performed in R (v3.6.1). Meningioma DNA methylation data were preprocessed using the
SeSAMe pipeline (Bioconductor v3.10) as previously described13,54. In brief, probes were �ltered and
analyzed using normal-exponential out-of-band background correction, nonlinear dye bias correction, p-
value with out-of-band array hybridization masking, and β value calculation
(β=methylated/[methylated+unmethylated]). Meningioma samples were assigned to Merlin-intact,
Immune-enriched, or Hypermitotic DNA methylation groups using a support vector machine classi�er, as
previously described13.
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Targeted DNA sequencing and analysis

Targeted DNA sequencing was performed using the UCSF500 NGS panel, as previously described26. In
brief, this capture-based next-generation DNA sequencing assay targets all coding exons of 479 cancer-
related genes, select introns, and upstream regulatory regions of 47 genes to enable detection of
structural variants such as gene fusions and DNA segments at regular intervals along each chromosome
to enable genome-wide copy number and zygosity analyses, with a total sequencing footprint of 2.8 Mb
(Supplementary Table 2). Multiplex library preparation was performed using the KAPA Hyper Prep Kit
(Roche, cat# 07962355001). Hybrid capture of pooled libraries was performed using a custom
oligonucleotide library (Nimblegen SeqCap EZ Choice). Captured libraries were sequenced as paired-end
reads on an Illumina NovaSeq 6000 at >200x coverage for each sample. Sequence reads were mapped to
the reference human genome build GRCh37 (hg19) using the Burrows-Wheeler aligner (v0.7.17).
Recalibration and deduplication of reads was performed using the Genome Analysis Toolkit (v4.3.0.0).
Coverage and sequencing statistics were determined using Picard (v2.27.5) CalculateHsMetrics and
CollectInsertSizeMetrics. Single nucleotide variant and small insertion/deletion mutation calling was
performed with FreeBayes, Uni�ed Genotyper, and Pindel. Large insertion/deletion and structural
alteration calling was performed with Delly. Variant annotation was performed with Annovar. Single
nucleotide variants, insertions/deletions, and structural variants were visualized and veri�ed using
Integrative Genome Viewer (v.2.16.0). Genome-wide copy number and zygosity analysis was performed
by CNVkit and visualized using NxClinical (Biodiscovery, v6.0).

Targeted RNA sequencing and analysis

Targeted gene expression pro�ling was performed using a hybridization and barcode-based RNA
sequencing NanoString panel, with quality control from internal negative and spike-in positive controls on
the NanoString nCounter Analysis System at the San Francisco Veterans Affairs Core (San Francisco,
CA). 200 ng of total RNA per sample was hybridized to barcoded reporter probes and biotin-conjugated
capture probes from a custom codeset targeting genes of interest at 65C for 16 hours according to
manufacturer instruction. Hybridization mixtures were washed and target/probe complexes were puri�ed
and bound to streptavidin coated cartridges. Cartridges were scanned on the nCounter Digital Analyzer
with a FOV setting of 550. Gene expression risk scores spanning 0 to 1, with a greater value denoting
higher risk of recurrence, were calculated using a previously trained and validated algorithm based on
Lasso Cox regression and bootstrap aggregation using log2-transformed, housekeeping gene normalized
gene expression counts from a 34-gene signature as input. Previously identi�ed cutoffs were used (low
risk <0.3761, high risk >0.5652)24.

Spatial transcriptome sequencing and analysis

Spatial transcriptomic pro�ling was performed on FFPE sections using the 10x Genomics Visium Spatial
assay (v1, cat# 1000336). 6 mm cores were mounted within capture areas on Visium glass slides,
depara�nized, stained with H&E, and imaged at the Gladstone Institutes Histology Core (San Francisco,
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CA). Libraries were prepared according to manufacturer instructions at the Gladstone Institutes Genomics
Core (San Francisco, CA). Libraries were sequenced on an Illumina NovaSeq 6000 instrument at the UCSF
Center for Advanced Technology. Sequencing was performed with the recommended protocol (read 1: 28
cycles, i7 index read: 10 cycles, i5 index read: 10 cycles, and read 2: 91 cycles). FASTQ sequencing �les
and histology images were processed using the 10x SpaceRanger pipeline and the Visium Human
Transcriptome Probe Set v1.0 GRCh38-2020-A. Data were visualized using the 10x Loupe Browser
software (v6.3.0). Principal component analysis (PCA) was run on the normalized �ltered feature-barcode
matrix to reduce the number of feature (e.g. gene) dimensions. Uniform manifold approximation and
projection (UMAP) analysis was used to visualize spatial transcriptomes in a 2D space. Graph-based
clustering was performed to cluster spatial transcriptomes with related expression pro�les together based
on their concordance in PCA space. Differential expression analyses were performed using mean gene
expression in each cluster, log2 fold-change of gene mean expression in a cluster relative to all other
spatial transcriptomes, and a p-value denoting gene expression signi�cance in each cluster relative to
spatial transcriptomes in other clusters. P-values in each cluster were adjusted for false discovery rate to
account for the number of genes being tested. Heatmaps of spatial transcriptomic data were generated in
the Loupe Browser, which considers the top N genes for each cluster, sorted by log2 fold-change (by
default N = 120/X, where X is the total number of spatial transcriptome clusters). Heatmaps were
generated using hierarchical clustering with euclidean distance and average linkage.

Spaceranger generated �ltered feature matrices were imported into a Seurat object (v4.3.0, arguments
min.cells=3, min.features=100) using R (v4.2.1) and RStudio (v2022.07.2 Build 576) (Supplementary
Table 4). The individual count matrices were normalized by nFeature_RNA count
(subset=nFeature_RNA>1500 and nFeature_RNA<9500) and integrated with Harmony (v0.1.1). Optimal
cluster resolution was determined using Clustree (v0.5.0, analyzing resolutions 5, 2, 1, 0.9, 0.8, 0.7, 0.6,
0.6, 0.5, 0.4, 0.3, 0.1, 0.0), and subsequent principal component (npcs=30) and UMAP (dims=1:30,
min.dist=0.2) analyses were performed. UMAP projections and cluster distributions were visualized in the
Loupe browser after combining spatial transcriptomic data from individual capture areas using the 10x
Spaceranger aggr pipeline (v2.0.0). CNV analysis from spatial transcriptomes was performed using
inferCNV (v1.14.0) and spatialinferCNV (v0.1.0). Capture areas of interest were combined with an
additional capture area containing a geographic population of non-neoplastic cells, using the 10x
Spaceranger aggr pipeline and Harmony, as described above. The cluster distribution was visually
assessed in the Loupe browser to identify the cluster containing non-neoplastic tissue such as brain or
endothelial. All cluster annotations were exported into a csv �le and imported into R, along with the
aggregate �ltered feature matrix. The count matrix, annotated clusters, and a gene order �le were input
into inferCNV (arguments: cutoff=0.1, cluster_by_groups=TRUE, HMM = TRUE, denoise=TRUE) to
generate a six-state CNV probability model for each spatial transcriptomic cluster. Deconvolution of
meningioma cell types from single-cell RNA sequencing was performed using SCDC (v 0.0.0.9000). To do
so, each spatial transcriptome was treated as a pseudobulked RNA sequencing dataset and leveraged
against known cell types from a reference single-cell RNA sequencing dataset comprised of 57,114 cells
from 8 human meningioma samples representing all DNA methylation groups13. Spatial and single-cell
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transcriptomic data were separately processed for quality control using QC �ltering, normalization,
dimensionality reduction, and clustering. Single-cell transcriptomic data were subsampled to 1000 cells
per cell type, and the top differentially expressed genes were selected for each cell type. Using this
expression set, spatial transcriptomes were deconvolved to yield a matrix with predicted proportions of
cell type for each spatial transcriptome, which were visualized using SpatialFeatureplot (Seurat v3).

Spatial protein pro�ling and analysis

Spatial protein pro�ling was performed on FFPE sections using the NanoString Digital Spatial Pro�ler at
the UCSF Laboratory for Cell Analysis Genome Core (San Francisco, CA). Meningioma sections were
labeled with DAPI and a multiplexed cocktail of 78 oligo-conjugated antibodies (Supplementary Table 5)
using human protein panel modules generated at NanoString Technologies (Seattle, WA). H&E stained
whole slide images were overlayed on �uorescent DAPI projections and 200μm regions of interest were
annotated based on histological and morphological heterogeneity by a board-certi�ed neuropathologist
(C-H.G.L). Oligonucleotides were released from regions of interest using ultraviolet cleavage, aspirated
tags were hybridized to optical barcodes, and processed using the NanoString nCounter Analysis System.
Barcodes were �rst normalized with internal spike-in controls and then normalized against housekeeping
genes. Principal components analysis was performed using the prcomp function in R (v3.6.1) using
default settings.

Multiplexed sequential immuno�uorescence (seqIF) and microscopy

Automated multiplexed seqIF staining and imaging was performed on FFPE sections at Northwestern
University using the COMET platform (Lunaphore Technologies). The multiplexed panel was comprised
of 29 antibodies (Supplementary Table 7). The 29-plex protocol was generated using the COMET Control
Software, and reagents were loaded onto the COME device to perform seqIF. All antibodies were validated
using conventional IHC and/or IF staining in conjunction with corresponding �uorophores and 4’,6-
diamidino-2-pheynlindole counterstain (DAPI, ThermoFisher Scienti�c, cat# 62248). For optimal
concentration and best signal-to-noise ratio, all antibodies were tested at 3 different dilutions, starting
with the manufacturer-recommended dilution (MRD), MRD/2, and MRD/4. Secondary Alexa �uorophore
555 (ThermoFisher Scienti�c, cat# A32727) and Alexa �uorophore 647 (ThermoFisher Scienti�c, cat#
A32733) were used at 1/200 or 1/400 dilutions, respectively. The optimizations and full runs of the
multiplexed panel were executed using the seqIF technology integrated in the Lunaphore COMET
platform (characterization 2 and 3 protocols, and seqIF protocols, respectively). The seqIF work�ow was
parallelized on a maximum of 4 slides, with automated cycles of iterative staining of 2 antibodies at a
time, followed by imaging, and elution of the primary and secondary antibodies, with no sample
manipulation during the entire work�ow. All reagents were diluted in Multistaining Buffer (Lunaphore
Technologies, cat# BU06). The elution step lasted 2min for each cycle and was performed with Elution
Buffer (Lunaphore Technologies, cat# BU07-L) at 37°C. Quenching lasted for 30sec and was performed
with Quenching Buffer (Lunaphore Technologies, cat# BU08-L). Imaging was performed with Imaging
Buffer (Lunaphore Technologies, cat# BU09) with exposure times set at 4min for all primary antibodies,
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except P16 antibody at 8min, and secondary antibodies at 2min. Imaging was performed with an
integrated epi�uorescent microscope at 20x magni�cation. Image registration was performed
immediately after concluding the staining and imaging procedures by COMET Control Software. Each
seqIF protocol resulted in a multi-stack OME-TIFF �le where the imaging outputs from each cycle were
stitched and aligned. COMET OME-TIFF �les contain a DAPI image, intrinsic tissue auto�uorescence in
TRITC and Cy5 channels, and a single �uorescent layer per marker. Markers were subsequently
pseudocolored for visualization of multiplexed antibodies.

Cell culture and molecular biology

M10G cells8 were cultured in a medium comprised of Advanced DMEM/F12 (Gibco, cat# 12634)
supplemented with 5% FBS, B-27 supplement without vitamin A (Gibco, cat #12587010), N-2 supplement
(Gibco, cat# 17502048), 100U/ml Anti-anti (Gibco, cat# 15240), 1% CTSTMGlutaMAXTM-1 (Gibco, cat#
A1286001), 20ng/ml EGF (R&D Systems, cat# 236EG200), and 20ng/ml FGF basic/FGF2 (R&D Systems,
cat# PRD23350). HEK293T cells (ATCC, cat# CRL-3216) were cultured in Advanced DMEM (Gibco, cat#
12491015) supplemented with 3% FBS and CTSTMGlutaMAXTM-1. Lentiviral particles containing
pMH0001 (UCOE-SFFV-dCas9-BFP-KRAB, Addgene, cat# 85969) were produced by transfecting HEK293T
cells with standard packaging vectors using the TransIT-Lenti Transfection Reagent (Mirus, cat# 6605).
M10G cells were transduced with lentiviral particles to generate M10GdCas9-KRAB cells. Successfully
transduced cells were isolated through selection of BFP positive cells using �uorescence activated cell
sorting on a Sony SH800. Single-guide RNA (sgRNA) protospacer sequences suppressing CDKN2A,
CDKN2B, or ARID1A were individually ligated into the pCRISPRia-v2 vector83 (Addgene, cat# 84832)
between the BstXI and BlpI sites. Each vector was veri�ed by Sanger sequencing of the protospacer.
Lentivirus was generated as described above for each sgRNA expression vector. M10GdCas9-KRAB cells
were transduced with lentivirus from each sgRNA expression vector and selected to purity using 20μg/mL
puromycin over 7 days.

Cell culture quantitative reverse-transcriptase polymerase chain reaction

RNA was extracted from M10G cells using RNeasy Plus Mini Kit (Qiagen, cat# 74134) and cDNA was
synthesized using the iScript cDNA Synthesis Kit (Bio-Rad, cat# 1708891). Target genes were ampli�ed
using PowerUp SYBR Green Master Mix and QuantStudio 6 thermocycler (Thermo Fisher Scienti�c). Gene
expression was calculated using the DDCt method, with normalization to GAPDH (sense: 5’-
ATGGGGAAGGTGAAGGTCG-3’, antisense: 5’-GGGGTCATTGATGGCAACAATA-3’). Target gene primers
included CDKN2A (sense: 5’-ATGGAGCCTTCGGCTGACT-3’, antisense: 5’-GTAACTATTCGGTGCGTTGGG-
3’), CDKN2B (sense: 5’-ACGGAGTCAACCGTTTCGGGAG-3’, antisense: 5’-GGTCGGGTGAGAGTGGCAGG-3’),
and ARID1A (sense: 5’-CCTGAAGAACTCGAACGGGAA-3’, antisense: 5’-TCCGCCATGTTGTTGGTGG-3’).

Cell culture RNA sequencing and analysis

RNA was extracted from triplicate M10G cultures (sgNTC, sgCDKN2A, sgCDKN2B, sgARID1A) using the
RNeasy Plus Mini Kit (Qiagen, cat#74134). 1ug of RNA from each condition was shipped to Medgenome
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(Foster City, CA) for bulk RNA sequencing (Supplementary Table 9). Quality control was performed using
FASTQC (v0.11.9) and the results were aggregated using MultiQC (v1.12). Adapter sequences and bases
with quality scores <30 at the 3’ and 5’ ends of the reads were trimmed using Cutadapt (v3.7). Trimmed
treads that were less than 20 bases in length were discarded. Processed reads were mapped to the
reference genome GRCh38 using HISAT2 (v2.2.0) with default parameters. FeatureCounts (v2.0.0) was
used to extract gene expression counts. The resulting count matrix was used to perform differential gene
expression analysis with DESeq2 (v1.36.0).

Gene Set Enrichment Analysis (GSEA, v4.3.2) was performed to determine whether differentially
expressed in M10G cultures belonged to common biological pathways. Gene rank scores were calculated
using the formula: sign(log2 fold-change) × −log10(p-value). Pathways were de�ned using the gene set
�le Human_GOBP_AllPathways_no_GO_iea_December_01_2022_symbol.gmt, which is maintained by the
Bader laboratory. Gene set size was limited to range between 15 and 500, and positive and negative
enrichment �les were generated using 2000 permutations. The EnrichmentMap App (v3.3.4) in Cytoscape
(v3.7.2) was used to visualize the results of pathway analysis. Nodes with FDR q value < 0.05 and p-value
< 0.05, and nodes sharing gene overlaps with Jaccard + Overlap Combined (JOC) threshold of 0.375 were
connected by blue lines (edges) to generate network maps. Clusters of related pathways were identi�ed
and annotated using the AutoAnnotate app (v1.3.5) in Cytoscape that uses a Markov Cluster algorithm to
connect pathways by shared keywords in the description of each pathway. The resulting groups of
pathways were designated as the consensus pathways in a circle.

Meningioma organoid pharmacology and microscopy

CRISPRi-modi�ed and �uorescently-labeled M10GdCas9-KRAB meningioma cells for 3D organoid
experiments were generated by mixing sgNTC-mScarlet with sgCDKN2A-FumGW cells, sgNTC-GFP with
sgARID1A-mCherry cells, or sgCDKN2A-FumGW with sgARID1A-mCherry cells 1:1. For pharmacologic
experiments, a minimum of 2000 cells were seeded into each well of a PrimeSurface ultra-low
attachment V-shaped 96 well plate (S-Bio, cat# MS-9096V). The following day, meningioma organoids
were transferred to a spheroid microplate (Corning, cat# 4515) prior to beginning 12 days of continuous
drug treatment. Organoids were maintained in a medium comprised of Advanced DMEM/F12 (Gibco,
cat# 12634) supplemented with B-27 supplement without vitamin A (Gibco, cat# 12587010), N-2
supplement (Gibco, cat# 17502048), 100U/ml Anti-anti (Gibco, cat# 15240), 1% CTSTMGlutaMAXTM-1
(Gibco, cat# A1286001), 20ng/ml EGF (R&D Systems, cat# 236EG200), and 20ng/ml FGF basic/FGF2
(R&D Systems, cat# PRD23350). A Zeiss Cell Observer Spinning Disc Confocal microscope �tted with a
temperature and carbon dioxide-controlled chamber was used to acquire �uorescence images of live
meningioma organoids during drug treatments using Plan-Apochromat 10x/1.3 air objective.

Statistics

All experiments were performed with independent biological replicates and repeated, and statistics were
derived from biological replicates. Biological replicates are indicated in each �gure panel or �gure legend.
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No statistical methods were used to predetermine sample sizes, but sample sizes in this study are similar
or larger to those reported in previous publications. Data distribution was assumed to be normal, but this
was not formally tested. Investigators were blinded to conditions during clinical data collection and
analysis of mechanistic or functional studies. Bioinformatic analyses were performed blind to clinical
features, outcomes or molecular characteristics. The clinical samples used in this study were
retrospective and nonrandomized with no intervention, and all samples were interrogated equally. Thus,
controlling for covariates among clinical samples is not relevant. Cells and animals were randomized to
experimental conditions. No clinical, molecular, or cellular data points were excluded from the analyses.
Unless speci�ed otherwise, lines represent means, and error bars represent standard error of the means.
Results were compared using Student’s t-tests, which are indicated in �gure legends alongside
approaches used to adjust for multiple comparisons. In general, statistical signi�cance is shown by
asterisks (*p£0.05, **p£0.01, ***p£0.0001), but exact p-values are provided in the �gure legends when
possible.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to
this article.

Figures
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Figure 1

Experimental design and work�ow. a, 16 high-grade meningioma samples from 10 meningiomas that
were resected from 9 patients were analyzed using comprehensive histologic, immunohistochemical, and
bulk and spatial bioinformatic techniques, including spatial transcriptomics, spatial protein pro�ling,
multiplexed sequential immuno�uorescence microscopy, and spatial deconvolution of meningioma
single-cell RNA sequencing. Results were validated using RNA sequencing from 502 meningiomas, and
CRISPR interference, pharmacology, and live cell imaging of meningioma organoid preclinical models.
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Scale bars, 1mm for meningiomas and 100μm for meningioma organoids.  b, Oncoprint comprised of the
clinical, histologic, genetic, epigenetic, and gene expression features of the meningioma samples in this
study. c, Uniform manifold approximation and projection (UMAP) of 38,718 meningioma spatial
transcriptomes after Harmony batch correction shaded by sample of origin. d, UMAP of meningioma
spatial transcriptomes after Harmony batch correction shaded by unsupervised hierarchical clusters. e,
Heatmap of meningioma spatial protein pro�ling comprised of 72 proteins from 82 regions revealing
signi�cant inter- and intratumor heterogeneity.
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Figure 2

High-grade meningiomas are distinguished by divergent intratumor gene and protein expression
programs. Spatial transcriptomics and protein pro�ling of meningiomas 1-3 (M1-3) with driver mutations
associated with adverse clinical outcomes, such as BAP1 loss (M1), CDKN2A/B loss (M2), or TERT
promoter mutation (M3). a, M1 H&E-stained section showing regions of spatial protein pro�ling. Scale
bar, 1mm. b, Spatial distribution of unsupervised hierarchical spatial transcriptome clusters from M1.
Insert shows Uniform manifold approximation and project (UMAP) analysis of M1 spatial transcriptomes.
Scale bar, 1mm. c, Representative H&E morphology and Ki-67 immunohistochemistry (IHC) of spatial
transcriptome clusters from M1. Colors correspond to spatial transcriptomes from b. Scale bar, 10μm. d,
Spatial distribution and expression of MKI67 or FOXM1 transcripts from M1. Scale bar, 1mm. e, Top 119
differentially expressed genes across unsupervised hierarchical spatial transcriptome clusters from M1. f,
M2 (left) or M3 (right) H&E-stained sections showing regions of spatial protein pro�ling. Scale bar, 1mm.
g, Spatial distribution of unsupervised hierarchical spatial transcriptome clusters from M2 (left) or M3
(right). Inserts show UMAP analyses of M2 or M3 spatial transcriptomes. Scale bar, 1mm. h,
Representative H&E morphology and Ki-67 IHC of spatial transcriptome clusters from M2 (top) or M3
(bottom). Colors correspond to spatial transcriptomes from g. Scale bar, 10μm.  i, Top differentially
expressed genes across unsupervised hierarchical spatial transcriptome clusters from M2 (top, 115
genes) or M3 (bottom, 110 genes). j, Principal component (PC) analysis of spatial protein pro�ling from
M1-3. k, Differentially expressed spatial proteins from M1-3 (all with Student’s t test p£0.05 for head-to-
head comparisons of one meningioma to at least one other meningioma).
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Figure 3

Spatial expansion of sub-clonal copy number variants underlies high-grade meningioma recurrence.
Spatial transcriptomics and protein pro�ling of matched pairs of primary and recurrent meningiomas
from patients 4-7 (M4 and M4’, M5 and M5’, M6 and M6’, and M7 and M7’). a, Preoperative T1 post-
contrast magnetic resonance imaging (MRI) of matched pairs of primary (blue, M4, M5, M6, M7) and
recurrent (red, M4’, M5’, M6’, M7’) meningiomas. b, UMAP analysis of matched pairs of primary and
recurrent meningioma spatial transcriptomes after Harmony batch correction. Scale bar, 1mm. c, Spatial
distribution of unsupervised hierarchical spatial transcriptome clusters harboring divergent copy number
variants from InferCNV. Scale bar, 1mm. d, Spatial distribution of differentially expressed genes
associated with copy number variants across matched pairs of primary and recurrent meningiomas.
Scale bar, 1mm.
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Figure 4

Decreased immune in�ltration, decreased MAPK signaling, increased PI3K-AKT signaling, and increased
cell proliferation underlie high-grade meningioma recurrence. a, Differentially expressed spatial proteins
from M4-7’ (all with Student’s t test p£0.05 for at least 3 of 4 primary versus recurrent meningioma
comparisons). b, Representative image of multiplexed seqIF microscopy showing intratumor
heterogeneity of signaling mechanisms and cell types in the region of M9 with WHO grade 2 (left) and
WHO grade 3 (right) histology, as well as ARID1A and Chr4/14q loss. Scale bar, 1mm. c, Multiplexed seqIF
microscopy showing temporal evolution of signaling mechanisms and cell types in primary versus
recurrent meningiomas. Images from M4 and M4’ that are representative of matched pairs of primary and
recurrent meningiomas from patients 4-7 (M4 and M4’, M5 and M5’, M6 and M6’, and M7 and M7’). Scale
bar, 100μm. d, Spatial deconvolution of meningioma single-cell RNA sequencing showing temporal
evolution of cell types from matched pairs of primary (blue) and recurrent (red) meningiomas. Scale bar,
1mm.
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Figure 5

Regionally distinct sub-clonal spatial transcriptomes underlie histological heterogeneity in high-grade
meningioma. a, Ki-67 immunohistochemistry (IHC) of regionally distinct samples from M9 demonstrating
heterogeneous histological (WHO grade 2 or 3), mutational (ARID1A, ASXL1), and cytogenetic
(chromosome 4, 14q) features (Fig. 1b). b, p16 IHC of regionally distinct samples from M10
demonstrating heterogeneous histological (p16, Ki-67) and cytogenetic (chromosome 1q, 4q, 9p, 10q)
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features (Fig. 1b). c, UMAP analysis of M9 spatial transcriptomes after Harmony batch correction shaded
by region of origin (left) or unsupervised hierarchical clusters (right). Scale bar, 1mm. d, UMAP analysis of
M10 spatial transcriptomes after Harmony batch correction shaded by region of origin (left) or
unsupervised hierarchical clusters (right). Scale bar, 1mm. e, Spatial distribution of unsupervised
hierarchical spatial transcriptome clusters from M9 after Harmony batch correction. Scale bar, 1mm. f,
Spatial distribution of unsupervised hierarchical spatial transcriptome clusters from M10 after Harmony
batch correction. Scale bar, 1mm. g, Distribution of unsupervised hierarchical spatial transcriptome
clusters from M9 after Harmony batch correction. Spatial transcriptome clusters correlating with WHO
grade 3 histology are annotated. h, Top 89 differentially expressed genes across unsupervised
hierarchical spatial transcriptome clusters from M9. I, Spatial distribution of differentially expressed
genes associated with histological variability across regionally distinct samples from M9. Scale bar,
1mm. j, Distribution of unsupervised hierarchical spatial transcriptome clusters from M10 after Harmony
batch correction. k, Top 110 differentially expressed genes across unsupervised hierarchical spatial
transcriptome clusters from M10. l, Spatial distribution of differentially expressed genes associated with
histological variability across regionally distinct samples from M10. Scale bar, 1mm.
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Figure 6

High-grade meningiomas are distinguished by regionally distinct intratumor immune in�ltration, MAPK
signaling, PI3K-AKT signaling, and cell proliferation. a, Multiplexed seqIF microscopy showing intratumor
heterogeneity of signaling mechanisms and cell types in the region of M9 with WHO grade 2 (left) and
WHO grade 3 (right) histology, as well as ARID1A and Chr4/14q loss. Scale bar, 1mm. b, Multiplexed seqIF
microscopy showing M9 from a at higher magni�cation. Scale bar, 200μmm. c, Multiplexed seqIF
microscopy showing intratumor heterogeneity of signaling mechanisms in the region of M10 with
reduced immunostaining for p16 (top) and Chr4q/9p/10q loss. Scale bar, 1mm. d, Spatial deconvolution
of meningioma single-cell RNA sequencing showing spatial evolution of cell types from in M9 in a and b
(left) or M10 in c (right). Scale bar, 1mm.
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Figure 7

A preclinical platform for testing personalized medical therapies to overcome intratumor heterogeneity in
high-grade meningiomas. a, Network of gene circuits distinguishing M10GdCas9-KRAB meningioma cells
expressing sgNTC (n=3), sgCDKN2A (n=3), sgCDKN2B (n=3), or sgARID1A (n=3) using RNA sequencing.
Nodes represent pathways and edges represent shared genes between pathways (p£0.05, FDR£0.05).
Red nodes are enriched and blue nodes are suppressed in experimental versus sgNTC control conditions.
b, Abemaciclib treatments of 3D organoid co-cultures of M10GdCas9-KRAB meningioma cells expressing
sgNTC, sgCDKN2A, sgCDKN2B, or sgARID1A. Scale bar, 100μm. c, Quanti�cation of abemaciclib
treatments of 3D organoid co-cultures of M10GdCas9-KRAB meningioma cells expressing sgNTC,
sgCDKN2A, sgCDKN2B, or sgARID1A. Representative of 8-10 biological replicates per condition. d,
Differentially expressed spatial proteins from M9 (all with Student’s t test p£0.05 for at least 2 of 3
regionally distinct comparisons). e, Quanti�cation of molecular therapy treatments of 3D organoid co-
cultures of M10GdCas9-KRAB meningioma cells expressing sgNTC or sgARID1A. Representative of 8-10
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biological replicates per condition. Scale from c. f, Combination molecular therapy treatments of 3D
organoid co-cultures of M10GdCas9-KRAB meningioma cells expressing sgCDKN2A or sgNTC. Scale bar,
100μm. g, Combination molecular therapy treatments of 3D organoid co-cultures of M10GdCas9-KRAB

meningioma cells expressing sgCDKN2A or sgARID1A. Scale bar, 100μm. h, Quanti�cation of
combination molecular therapy treatments of 3D organoid co-cultures of M10GdCas9-KRAB meningioma
cells expressing sgCDKN2A or sgNTC. Representative of 8 biological replicates per condition. Scale from
c. i, Quanti�cation of combination molecular therapy treatments of 3D organoid co-cultures of
M10GdCas9-KRAB meningioma cells expressing sgCDKN2A or sgARID1A. Representative of 8 biological
replicates per condition. Scale from c.
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