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Abstract 

Autism spectrum disorder (ASD) is a lifelong condition, and its underlying biological 

mechanisms remain elusive. The complexity of various factors, including inter-site and 

development-related differences, makes it challenging to develop generalizable neuroimaging-

based biomarkers for ASD. This study used a large-scale, multi-site dataset of 730 Japanese 

adults to develop a generalizable neuromarker for ASD across independent sites and different 

developmental stages. Our adult ASD neuromarker achieved successful generalization for the 

US and Belgium adults and Japanese adults. The neuromarker demonstrated significant 

generalization for children and adolescents. We identified 141 functional connections (FCs) 

important for discriminating individuals with ASD from TDCs. Finally, we mapped 

schizophrenia (SCZ) and major depressive disorder (MDD) onto the biological axis defined by 

the neuromarker and explored the biological continuity of ASD with SCZ and MDD. We 

observed that SCZ, but not MDD, was located proximate to ASD on the biological dimension 

defined by the ASD neuromarker. The successful generalization in multifarious datasets and 

the observed relations of ASD with SCZ on the biological dimensions provide new insights for 

a deeper understanding of ASD. 

  



4 

Introduction 

Establishing robust biomarkers for autism spectrum disorder (ASD) is essential for 

understanding the pathophysiological mechanisms of this disorder and for early diagnosis and 

appropriate interventions. A plethora of modalities, including genetics, electrophysiology, and 

neuroimaging, are employed to identify biomarkers for ASD1. Yet, no reliable biomarker has 

been established2 because of the complicated relationships of various factors, such as genetic 

and environmental factors3,4, biological sex5, cultural factors6, and developmental factors7,8, all 

of which form the heterogeneity of ASD. Neuroimaging-based biomarkers, here we call 

neuromarkers, hold promise in their potential to achieve greater classification accuracy with 

fewer participants than genetic biomarkers, which only explain 2.45% of risk variance even 

with more than 10,000 cases9,10. However, there are several challenges to the development of 

robust neuromarkers. 

 

One of the challenges is the requirement for a large-scale dataset that often exceeds the capacity 

of a single institution. Multi-site initiatives, such as the Autism Brain Imaging Data Exchange 

(ABIDE)11,12, have enabled researchers to leverage neuroimaging and machine learning 

techniques to develop neuromarkers13,14. The classification performance of current 

neuromarkers ranges from 60% to 90%, depending on the sample size, cross-validation scheme, 

and brain features utilized in the classification15. This multi-site, large-scale data-sharing 

framework has greatly facilitated the development of neuromarkers for ASD. A recent meta-

analytic study, however, has reported that 93% of classification studies rely on the ABIDE 

data16, potentially introducing biases associated with repeatedly using the same dataset9,17. It is, 

thus, crucial to validate these neuromarkers with completely independent datasets to ensure 

their generalizability and robustness. 
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Another challenge is the inter-site variability caused by differences in the scanning protocols 

and MRI scanners. The diagnostic effect is smaller than the inter-site difference inherent in 

brain features18, which makes it challenging to capture the reliable diagnostic effect in multi-

site neuroimaging data. Various methods have been proposed to correct inter-site 

differences18,19; prior multi-site, case-control studies have confirmed the effectiveness of these 

methods20,21. Some classification studies have employed an inter-site cross-validation scheme 

to evaluate the generalizability of their classifiers to other imaging sites within a dataset22–24. 

However, this approach may not be enough as an index for generalizability, as it only repeats 

the analyses on the same dataset. Only a few studies have attempted to construct ASD 

neuromarkers and explicitly test them on completely independent datasets9,25–27. 

 

Once a generalizable neuromarker is established, it paves the way towards addressing further 

core questions on the neural mechanisms of ASD and psychiatric disorders more generally. One 

application is to examine whether persistent alterations exist in the autistic brain across different 

developmental stages. As suggested by developmental changes in the severity of clinical 

symptoms7,8, the patterns of structural and functional alterations in the autistic brain may change 

with the developmental stages28–30. Prior classification studies have reported that classifiers 

trained on the adult sample cannot distinguish adolescents with ASD from typically developing 

adolescents and vice versa31,32. On the other hand, recent large-scale, case-control studies have 

reported reproducible and trait-like alterations of resting-state functional connectivity (FC) in 

the ASD population21,33. These findings suggest that if any development-independent, atypical 

neural substrate exists throughout the lifespan, then a neuromarker may successfully generalize 

across developmental stages.  
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Another possible application is to investigate the biological continuity between ASD and other 

psychiatric disorders. There has been a growing interest in recent years to clarify the biological 

continuum between ASD and other psychiatric disorders due to the overlaps in the symptoms 

and impaired cognitive functions34,35. Utilizing neuromarkers as biological axes and projecting 

categorically-distinct disorders onto the biologically defined space allows for examining cross-

disease relationships without collecting additional symptom scales25. Our prior study has 

revealed the asymmetric relationships whereby schizophrenia (SCZ) exhibits greater proximity 

towards ASD than typically developing controls (TDCs) on the ASD neuromarker, while ASD 

exhibits greater closeness towards TDCs than SCZ on the SCZ neuromarker36. Despite the 

known high comorbidity rate of major depressive disorder (MDD) in ASD37, the relationship 

between ASD and MDD has yet to be examined on these biological dimensions. Replication of 

the relationship with SCZ and exploration of the relationship with MDD may disentangle the 

complicated relationships between ASD and these disorders. 

 

In this study, we tackled the above challenges through the following procedures. First, we built 

an FC-based classifier using the multi-site, multi-disease dataset for the Japanese adult 

population, called the Strategic Research Program for the Promotion of Brain Science (SRPBS) 

dataset38. We then applied this adult ASD classifier to the U.S., Belgium, and Japanese adult 

validation datasets to evaluate its generalization performance to independent imaging sites. 

Generalization performance was further tested across different developmental stages by 

applying our adult ASD classifier to child and adolescent validation datasets. These analyses 

identified a set of FCs associated with ASD status that are invariant across different 

developmental stages. Finally, we examined the relationships between ASD and two major 

psychiatric disorders (i.e., SCZ and MDD) in the dimensional space defined by the 

neuromarkers.  
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The strengths of our framework are multifaceted. Firstly, we have evaluated the generalization 

performance of our ASD classifier on different types of validation datasets representing diverse 

ethnic and cultural backgrounds and developmental stages. This methodology allows for the 

assessment of generalization performance across independent imaging sites, geographical and 

cultural variations and different developmental stages. Secondly, we identified vital FCs in a 

data-driven manner. This approach can eliminate unwanted bias in identifying the neural 

substrate of ASD. Indeed, this procedure has identified FCs with a consistent diagnostic effect 

across datasets, potentially representing the core neural substrate of ASD. Lastly, the classifier 

was developed based on a dataset from the adult population. The utilization of adult data, in 

contrast to data from children, enables us to examine the commonalities and distinctions 

between ASD and major psychiatric disorders that manifest post-adolescence. This is of crucial 

importance for a deeper understanding of the relationship between ASD and other psychiatric 

disorders.  

 

Results 

Japanese-adult-based neuromarker for ASD generalized to two adult validation datasets 

The neuromarker built on the discovery dataset (550 TDC adults and 180 adults with ASD; see 

Table S1 for participant characteristics) with 71,631 FCs discriminated the ASD group from 

the TDC group with an accuracy of 76%, AUC of 0.84, and MCC of 0.46. The corresponding 

sensitivity and specificity were 76% and 75%, respectively (Fig. 1A; see Fig. S1A and Table 

S2 for the classification performance in each imaging site). These results demonstrate the 

acceptable discrimination ability of our ASD classifier on the discovery dataset. 
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We tested the generalizability of our neuromarker on the two independent adult validation 

datasets (see Table S1 for participant characteristics). For the ABIDE adult dataset, our 

neuromarker showed an accuracy of 62% (Fig. 1B). The corresponding AUC and MCC were 

0.70 and 0.25 (all P < 0.05, family-wise error (FWE) corrected). The sensitivity and specificity 

were 67% and 58%, respectively (see Fig. S1B and Table S2 for the classification performance 

in each imaging site). These results indicate that our marker has significant discrimination 

ability in the ABIDE adult dataset. For the newly collected Japanese adult dataset, our 

neuromarker exhibited an accuracy of 78% (Fig. 1C and Table S2). The corresponding AUC 

and MCC were 0.81 and 0.52, respectively (all P < 0.05, FWE-corrected). The sensitivity and 

specificity of this marker were 64% and 87%, respectively. These results suggest that our 

neuromarker for the ASD diagnosis generalizes to data from independent imaging sites in the 

same developmental stage. 

 

Adult ASD neuromarker is generalizable to the children and adolescents 

We further tested the generalizability of our adult ASD neuromarker to children (< 12 years 

old) and adolescents (12 < age < 18 years old) datasets (see Table S3 for participant 

characteristics). Our neuromarker showed significant classification performance in the children 

(accuracy = 61%, AUC = 0.66 and MCC = 0.27; P < 0.05, FWE-corrected; Fig. 2 and Table 

S4) and the adolescents (accuracy = 66%, AUC = 0.71, and MCC = 0.32; P < 0.05, FWE-

corrected). These results suggest that our neuromarker for adult ASD could generalize to other 

developmental stages even in independent imaging sites. 

 

Potential factors affecting the generalization performance 

We explored the impacts of head motion, harmonization, and other experimental factors (i.e., 

diversity in imaging sites and the choice of atlas) on the generalization performance. The details 
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were described in Supplementary Materials. We first assessed whether the head motion 

artificially improved the generalization performance. A significant positive correlation was not 

found between the AUC and mean FD (r = -0.56, P = 0.002; Fig. S2), indicating that head 

motion did not improve the generalizability of our neuromarker. We next assessed the impacts 

of the harmonization method on generalization performance. In both validation datasets, we 

observed degraded generalization performance without the harmonization (ABIDE adults: 

accuracy = 60% and AUC = 0.64; Japanese adults: accuracy = 67% and AUC = 0.73; Table 

S5), supporting the necessity of the harmonization method for improving the generalization 

performance. We then examined the impacts of imaging sites on the generalization performance 

because our discovery dataset comprised some imaging sites having either the imbalanced 

patient/control ratio (i.e., Center for Innovation in Hiroshima University [COI], Kyoto 

University [KUT], and University of Tokyo [UTO1]) or a different scanning protocol (i.e., 

UTO2). Neither the inclusion of imbalanced imaging sites nor that of a site with a different 

scanning protocol affects the generalizability of our classifier (Tables S6 and S7). Finally, we 

checked whether our generalization performance was atlas-dependent. We constructed 

classifiers using the Schaefer cortical atlas 39 that provided atlases with multiple levels of 

resolutions ranging from 100 to 900. We did not observe any improvements specific to the 

Glasser atlas in the generalization performance (Table S8). 

 

The tests of generalizability of our ASD neuromarker to independent validation datasets depend 

on the assumption that altered FC patterns characteristic to ASD if any, should be reproducible 

between the discovery dataset and the validation datasets. To directly test this assumption, we 

used a mass-univariate analysis similar to previous studies40. Briefly, we first quantified the 

between-group difference in each FC by calculating the t-value (the diagnosis effect) for each 

dataset. We then computed the Pearson correlation coefficient of t-values between the datasets. 
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Statistical significance was tested using a permutation test with 1,000 iterations, and the 

statistical threshold was set to P < 0.05, one-sided. The discovery dataset showed statistically 

significant positive correlations with other datasets (ABIDE adult: r = 0.16; Japanese adult: r = 

0.31; and adolescent: r = 0.20, all P < 0.05) except for the child dataset (r = 0.02, P = 0.34; Fig. 

S3).  

 

FCs associated with the ASD diagnosis 

We identified a set of discriminative FCs associated with the ASD status (see Methods for 

details): 65 hyper-connections and 76 hypo-connections. We called these FCs as 

“discriminative FCs” hereafter. To examine the spatial distribution of these FCs, we counted 

the number of occurrences in which each brain region was selected as at least one of the 

terminations of each discriminative FC. Figs. 3A and 3B show the spatial distributions of 

identified FCs and their terminal regions, and Table S9 provides the connection details. In the 

cerebral cortex, the bilateral temporal cortices and dorsomedial and ventromedial prefrontal 

cortices (dmPFC and vmPFC) were notably affected. On the other hand, the right amygdala, 

midbrain, hippocampus, globus pallidum, and putamen were affected among the subcortical 

regions. 

 

To further functionally characterize these FCs, we delineated each of the hyper- and hypo-

connections into functional network anatomy41. Hyper-connections were dominantly 

characterized by between-network connections stemming from the subcortical and 

somatomotor networks to other networks, such as the default mode network (DMN), dorsal 

attention network (DAN), and frontoparietal network (FPN) (Fig. 3C). On the other hand, hypo-

connections were notably characterized by within-network connections of the DMN and 

between-network connections of the DMN and visual network (Fig. 3D). 
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Consistency of discriminative FCs across datasets 

Among 141 discriminative FCs identified by permutation tests, we further investigated which 

discriminative FCs showed consistent alterations across the five datasets. We computed a t-

value as the effect of diagnosis in each FC of each dataset. We then counted the number of FCs 

showing the same sign across the five datasets. Forty-two out of 141 discriminative FCs showed 

the same sign of t-values across all the datasets (Hyper-connection: 52.4% and hypo-

connection: 47.6%; Fig. 4A and Table S10). When considering over- and under-connectivity 

(i.e., the difference in the absolute of FC strength between groups), 69% of the reproducible 

FCs were under-connectivity (Fig. 4B). The ASD group exhibited atypical connections 

stemming from subcortical networks, including the midbrain, hippocampus, and amygdala, to 

other networks, such as the somatomotor network and FPN (Figs. 4C and 4D). 

 

The statistical significance of the consistency among the five datasets was examined using a 

binomial test42. The number of consistent FCs within the discriminative FCs was 42, while the 

number of FCs showing the same sign of diagnostic effects in the whole FCs (i.e., 71,631 FCs) 

was 9,547. We assumed a binomial distribution, Bi(n, p), where n stands for the number of 

discriminative FCs (i.e., n = 141), and p stands for the probability of being consistent across the 

datasets in the whole FCs (i.e., p = 9,547/71,631). The binomial test confirmed that 

discriminative FCs were reproducible across different ethnicities and cultures (i.e., U.S., 

Belgium, and Japan) and different developmental stages (i.e., child, adolescent, and adult) (P < 

0.05). The binomial tests confirmed the statistical significance of the consistency between the 

discovery dataset and every dataset (see Supplementary Materials for details). These results 

indicate that the selection of discriminative FCs showing consistent alterations may yield the 

generalizability of our neuromarker across independent imaging sites and developmental stages. 
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Specificity of the ASD neuromarker  

We applied our ASD neuromarker to SCZ and MDD to test the specificity of the neuromarker 

(see Table S11 for participant characteristics). Our ASD neuromarker exhibited 56% and 33% 

sensitivities for SCZ and MDD, respectively (Fig. 5A). As expected, the sensitivities for both 

disorders were greatly decreased compared with that for the ASD diagnosis. However, the 

sensitivity to the SCZ diagnosis was still statistically significant (P = 0.014), whereas the 

marker showed no sensitivity to the MDD diagnosis (P = 0.638). These results indicate that 

SCZ, but not MDD, was located proximate to ASD on the biological dimension defined by the 

ASD neuromarker. 

 

Relationships between ASD and other psychiatric disorders on biological dimensions 

To further explore the relationships of the three disorders on multiple biological dimensions, 

we built two additional classifiers for the SCZ and MDD (see Table S12 for the classification 

performance of both classifiers). We then applied each of them to the other two disorders (see 

Supplementary Materials for details). The SCZ classifier exhibited poor sensitivity to the 

ASD and MDD diagnoses (ASD = 34% and MDD = 44%, all P > 0.39; Fig. 5B). On the other 

hand, the MDD classifier showed poor sensitivity to the ASD diagnosis (sensitivity = 47%) but 

high sensitivity to the SCZ diagnosis (sensitivity = 83%; Fig. 5C). We next plotted each 

participant onto the two-dimensional planes defined by the neuromarkers to illustrate the 

relationship between ASD and other psychiatric disorders. On the two-dimensional plane 

characterized by the ASD and SCZ neuromarkers, ASD predominantly resided in the lower 

right quadrant, while SCZ was primarily situated in the upper right quadrant (Fig. 5D), 

suggesting an asymmetric proximity between ASD and SCZ. In contrast, on the two-

dimensional space demarcated by the ASD and MDD neuromarkers, ASD was mainly 
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distributed in the lower right quadrant, while MDD was mainly localized in the upper left 

quadrant (Fig. 5E). These results suggest that, although SCZ shares characteristics with ASD, 

ASD and MDD appear to be distinct entities on the biological dimensions. 

 

We further investigated why ASD and SCZ neuromarkers showed an asymmetric proximity by 

first checking the spatial overlap of discriminative FCs between the two neuromarkers. 

Permutation tests with 100 iterations identified discriminative FCs for SCZ (Fig. S4 and Table 

S13; see Fig S5 and Table S14 for the discriminative FCs for MDD). When comparing them 

with those for ASD, we observed no spatial overlap between the two neuromarkers. Next, we 

examined the similarities of the diagnosis effects between the two groups. We expected that the 

effects of diagnoses were similar in the ASD neuromarker but not in the SCZ neuromarker. We 

observed significant positive correlations in the ASD neuromarker (hyper-connection: r = 0.63, 

P < 0.05; hypo-connection: r = 0.60, P < 0.05) but not in the SCZ marker (hyper-connection: r 

= 0.05, P > 0.86; hypo-connection: r = -0.44, P < 0.05; Fig. S6). These results indicate that the 

asymmetric diagnostic effects on both neuromarkers yield such relationships between ASD and 

SCZ on the biological dimensions. 

 

Discussion 

In this study, we developed an FC-based neuromarker for ASD diagnosis using the Japanese 

adult multi-site dataset. Our ASD neuromarker was generalizable with >70% AUC value to 

both the ABIDE and Japanese adults from independent imaging sites. This neuromarker also 

exhibited acceptable generalization performance to children and adolescents, suggesting the 

presence of atypical neural basis that persists in ASD from childhood to adulthood. We 

identified 141 FCs that were pivotal in determining the ASD status. These FCs spanned multiple 

networks, including the DMN, somatomotor, and subcortical networks, and comprised social 
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brain regions, such as the vmPFC, dmPFC, STG, right amygdala, midbrain, and hippocampus. 

Forty-two out of 141 FCs displayed consistent effects of diagnostic status across all the five 

datasets. By utilizing our neuromarker as a biological axis and mapping SCZ and MDD onto 

the axis, we replicated previous findings suggesting proximity between ASD and SCZ and a 

greater distance between ASD and MDD. Our neuromarker-based analytical framework offers 

novel insights into the neural underpinnings of the autistic brain and provides an effective tool 

for elucidating transdiagnostic continuity. 

 

We confirmed the validity of our neuromarker through stringent evaluations of its 

generalization performance on independent validation datasets. Most prior studies have relied 

on cross-validation procedures within the ABIDE dataset15,16. Reliance on these methods poses 

the risk of overestimating the classification performance and introducing biases into the 

results9,17. It is, therefore, critical to evaluate the generalization performance of a neuromarker 

using a completely independent external dataset43. A handful of studies have evaluated the 

external validity of their neuromarkers using independent validation datasets and have reported 

generalization performance ranging from 67% to 75%9,25,26, comparable to our results. The forte 

of our study is the thorough evaluation of generalization performance. Through our assessment, 

we verified the generalizability of our neuromarker utilizing four independent validation 

datasets that varied in terms of imaging sites, ethnic and cultural backgrounds, and 

developmental stages. Additionally, we confirmed that the generalizability of our neuromarker 

remained intact when utilizing another brain atlas featuring multiple resolution levels (Table 

S8). These thorough evaluations ensure the robustness of our neuromarker and provide a new 

tool for further exploring several hypotheses in the autistic brain. 

 

Developmental-dependent changes in FCs have been a major bottleneck for transferring 
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neuromarkers to other developmental stages31,32. Nevertheless, our adult ASD neuromarker 

successfully distinguished children and adolescents with ASD from TDCs. The successful 

generalization may be due to the LASSO method used in this study. The autistic brain likely 

presents a mosaic pattern of age-specific and age-unspecific atypical FCs44–46. To support this 

view, Alaerts and colleagues have reported that, depending on the terminal regions, the 

posterior superior temporal sulcus exhibits distinct age-related patterns of abnormal FCs in the 

autistic brain29. In such a complicated situation, non-sparse machine learning algorithms such 

as support vector machines may have failed to select features appropriately, yielding reduced 

generalization performance when transferring neuromarkers to other developmental stages. The 

LASSO method tends to choose atypical FCs consistent within the discovery dataset during 

nested cross-validation. As a result, dataset-independent atypical FCs may have been selected 

in our adult ASD neuromarker.  

 

Our ASD neuromarker identified 141 discriminative FCs distributed across multiple networks, 

most notably the DMN, somatomotor, and subcortical networks. One of the most prominent 

features is hypo-connectivity within the DMN, including the dmPFC, vmPFC, and temporal 

cortices. The hypo-connectivity within the DMN and its association with socio-communicative 

deficits in ASD have been repeatedly reported47–49. While, in this study, discriminative FCs 

stemming from temporal cortices exhibited the effect of ASD status consistently across the five 

datasets, those stemming from dmPFC and vmPFC did not. Given that population heterogeneity 

is associated with the DMN, especially dmPFC, vmPFC, and precuneus50, the dataset-

dependent effect of ASD status on these discriminative FCs across the datasets may reflect 

differences in the population diversity. 

 

Another prominent feature is alterations in FCs within and between subcortical and 
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somatomotor networks, encompassing the amygdala, hippocampus, midbrain, and STG. In 

addition, we observed that 26 of 42 discriminative FCs that showed a consistent effect of ASD 

status across the five datasets belonged to these networks. Our findings imply that abnormalities 

in these networks may serve as the core neural basis for this disorder. To support this possibility, 

several lines of evidence suggest functional alterations within and between subcortical and 

somatomotor networks11,45,46 and their associations with the clinical symptoms, such as 

restricted and repetitive behaviors and atypical sensory processing21,41. Furthermore, the 

association between atypical sensory processing and socio-communicative impairments is 

supported by previous literature51,52. Replicability, associations with core symptoms, and 

consistency of abnormalities through developmental stages may distinguish these networks as 

a core basis for ASD. 

 

We demonstrated the utility of our generalizable neuromarker-based analytic framework for 

examining the biological continuum of ASD with SCZ and MDD by mapping these disorders 

onto the biological dimensions defined by the neuromarkers. Previous studies have highlighted 

the substantial overlap between ASD and SCZ at genetic53, neural54, and behavioral levels55. 

However, these findings are less replicable due to methodological differences 56. In contrast, 

we reproduced the asymmetric proximity between the ASD and SCZ group, whereby the SCZ 

group manifested stronger adjacency to the ASD group than the TDC group on the ASD 

neuromarker, whereas the ASD group displayed stronger proximity to the TDC group than the 

SCZ group on the SCZ neuromarker, by using different datasets and methods36. Our replicable 

approach may provide a clue to investigating the spectrum structure among psychiatric 

disorders. 

 

Despite the asymmetric proximity between the ASD and SCZ groups, there was no spatial 
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overlap in discriminative FCs between the ASD and SCZ neuromarkers. One possibility is that 

the SCZ neuromarker in this study was built on patients with chronic SCZ. Previous studies 

have reported that abnormal FCs in SCZ tend to change with the disease progression36,57. Owing 

to this change of abnormal FCs with disease progression, patients with SCZ may show 

abnormalities in discriminative FCs for the ASD neuromarker, which may result in asymmetric 

proximity between ASD and SCZ. Indeed, we observed that ASD and SCZ status had similar 

diagnosis effects on discriminative FCs for the ASD neuromarker but not on those for the SCZ 

neuromarker (Fig. S6). The inclusion of patients with SCZ from different disease stages may 

provide a clue for how this asymmetricity may arise. 

 

In addition to the relationship between ASD and SCZ, we examined the relationship between 

ASD and MDD, but no asymmetric proximity was observed between the two disorders. 

Although the comorbidity rate of MDD in ASD is known to be as high as 11%37, there are no 

case-control studies to date that examine FCs among ASD, MDD, and ASD comorbid with 

MDD. A few studies have examined the relationship between atypical FCs and depressive 

symptoms in ASD58,59. For example, Kleinhans and colleagues have reported that social 

impairments and depressive symptoms in ASD are separately associated with abnormal 

amygdala circuits, and the patterns of these associations in the autistic brain differ from those 

in TDCs59. Our findings may reflect that the diagnoses of ASD and MDD affect different neural 

circuits. The relationship between ASD and MDD on the biological dimensions could be further 

clarified by studies that were designed to include ASD cases comorbid with MDD. 

 

In conclusion, we developed an ASD neuromarker generalizable to diverse validation datasets 

from independent imaging sites and different developmental stages. We further demonstrated 

the applicability of our generalizable neuromarker to examine the effects of developmental 
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stages on the autistic brain and the biological continuum between ASD and other disorders. 

Using discriminative FCs identified by our ASD neuromarker, prospective future directions 

will be opened, including identifying biological subtypes within ASD60 and interventions based 

on those FCs as targets61. 

 

Methods 

Study design 

The aim of this study was twofold: the first was to construct a generalizable neuromarker for 

distinguishing adults with ASD from TDCs across diverse imaging sites, and the second was to 

demonstrate the utility of this neuromarker by examining its generalizability to children and 

adolescents and investigating the transdiagnostic continuity of ASD with SCZ, and MDD. This 

study used three adult resting-state fMRI (R-fMRI) datasets for the analyses: one was used as 

the discovery dataset, and the remaining two were used as independent validation datasets. 

Tables S1, S15, and S16 show the demographic information and scanning parameters for the 

three datasets. Data were sourced from three multi-site initiatives: the SRPBS38, ABIDE11,12, 

and Brain/MINDS Beyond (BMB) projects62. All the participants (if appropriate) and their 

respective parent/legal guardian provided written informed consent. See Supplementary 

Materials for the detailed descriptions of datasets and exclusion criteria.  

 

Participants 

The discovery dataset contained data of 550 TDCs from 5 scanners at 4 imaging sites (COI, 

KUT,  Showa University [SWA1], and UTO1, UTO2) and 180 adults with ASD from 2 sites 

(SWA1 and UTO2). The first validation dataset (ABIDE adult dataset) consisted of participants 

from the ABIDE-I11 and -II12. The ABIDE adult dataset comprised 54 adults with ASD and 67 

TDCs that were selected from the following 3 sites. The second validation dataset (i.e., the 
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Japanese adult dataset) consisted of 22 adults with ASD and 38 controls at Showa University 

(SWA2). The data were collected under the BMB project. The project details were described 

elsewhere62. See Supplementary Materials for more details of participants characteristics. 

 

R-fMRI data preprocessing and network construction 

We preprocessed all the R-fMRI data using fMRIPrep version 1.1.863 and the ciftify toolbox 

version 2.1.164. See Supplementary Materials for the details of preprocessing steps. We 

performed nuisance regression to remove the effects of artifactual and non-neural sources. 

Nuisance regressors consisted of six head-motion parameters, averaged signals from subject-

specific white matter and cerebrospinal fluid masks, global signal, their temporal derivatives, 

and linear detrending. After nuisance regression, we applied a band-pass filter (0.008–0.1 Hz) 

to the residuals. We used frame-wise displacement (FD) as a measure for detecting occasional 

head movement, and removed volumes with FD > 0.5 mm, as proposed in a previous study65. 

We used Glasser’s 379 surface-based brain parcellations (cortical 360 parcellations and 

subcortical 19 parcellations) as ROIs66. We computed the temporal correlations of signals 

among all possible pairs of ROIs and applied Fisher’s r-to-z transformation, resulting in 71,631 

unique FCs for each participant. Because the label of each ROI in Glasser’s atlas was not 

intuitive, we utilized Yeo’s resting-state network (RSN) labels67 to assign important ROIs to 

the corresponding RSN label. This study added the subcortical network label to the subcortical 

and cerebellar regions. 

 

Controlling for imaging site differences  

We used the ComBat harmonization method68 to control the imaging site differences inherently 

captured in FCs. Because of its simplicity and effectiveness, this method has been used for 

controlling the site differences in neuroimaging data69–71. In the current study, we incorporated 
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disease status (0 = TDC, and 1 = ASD), age, and sex as covariates of interest into the ComBat 

model. Of note, we separately applied the ComBat harmonization method to both discovery 

and independent validation datasets. 

 

Construction of the ASD neuromarker using the discovery dataset 

Based on previous studies25,36,40,72–74, we assumed that psychiatric disorder factors were 

associated with the limited number of FCs, rather than the whole-brain connections. We used a 

logistic regression analysis with a least absolute shrinkage and selection operator (LASSO) 

method75 that selects an optimal subset of FCs from the whole brain connections. See 

Supplementary Materials for the construction of our ASD neuromarker. We developed the 

ASD neuromarker using the LASSO method with 10-fold nested cross-validation (CV) and 10 

subsampling, yielding 100 trained classifiers (Fig. S7). The mean classifier output value was 

considered as diagnostic probability, indicating a likelihood of a participant belonging to the 

ASD class. We considered participants as those with ASD if their diagnostic probability values 

were higher than 0.5. We calculated the area under the curve (AUC) to assess the classification 

performance. We also computed accuracy, sensitivity, specificity, and the Matthews correlation 

coefficient (MCC). The MCC is suitable for the imbalanced dataset because this metric takes 

into account the ratio of the confusion matrix size76. We used AUC and MCC as performance 

indices throughout the paper. 

 

Generalizability of the ASD neuromarker to the ABIDE and Japanese adult datasets 

We tested the generalizability of the ASD neuromarker using two independent validation 

datasets: the ABIDE adult and the Japanese adult datasets. We applied all the trained classifiers 

to the independent validation datasets and obtained 100 diagnostic probabilities for each 

participant. We averaged these diagnostic probabilities for each participant and considered a 
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participant to be a participant with ASD if the mean diagnostic probability was > 0.5. To 

evaluate the generalization performance, we computed the following performance metrics: 

AUC, accuracy, sensitivity, specificity, and MCC.  

 

Generalizability of the ASD neuromarker to the child and adolescent datasets 

We further tested the generalizability of the adult ASD neuromarker to children (< 12 years 

old) and adolescents (12 < age < 18). We used these age ranges according to a previous study33. 

We created the child and adolescent datasets using the same exclusion criteria as the ones 

applied to the adult dataset. The child dataset consists of 119 children with ASD and 202 those 

with TDC from 5 sites. The adolescent dataset consists of 121 adolescents with ASD and 132 

TDCs from 8 sites. The details of demographic information and scanning parameters are in 

Tables S3 and S16. We applied the same preprocessing pipeline and harmonization method to 

both datasets.  

 

Statistical analyses 

Evaluation of the statistical significance of neuromarker’s generalizability 

The statistical significance of AUC and MCC was tested using a permutation test with 500 

iterations. At each iteration, we created a permuted dataset by shuffling the diagnostic labels. 

We then built a classifier for the permuted dataset in the same way as for the non-permuted 

dataset using a 10-fold nested CV with 10 subsamples, which resulted in 100 permuted 

classifiers at each iteration. Each individual of the independent datasets was classified based on 

100 diagnostic probability values, each of which was generated by 100 trained permuted 

classifiers. The threshold was set at the mean diagnostic probability value of 0.5. We calculated 

the AUC and MCC for a permuted classifier at each iteration. We constructed a null distribution 

for each performance index by aggregating those values across iterations. The statistical 
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threshold was set to 0.05. The Holm-Bonferroni method77 was used to control the FWE rate 

across all the validation datasets. 

 

Identifications of FCs associated with the clinical diagnosis of ASD 

We identified discriminative FCs using a permutation test with 500 iterations in a similar 

manner to our previous study40. First, as to each FC, we counted the number of times the 

LASSO selected the FC during the 10-fold CV. If a given FC was consistently important for 

discrimination throughout the training dataset, we expected that it would be selected 

significantly more times by the LASSO than the chance derived from a null distribution. We 

shuffled the diagnostic labels at each iteration to create a permuted dataset and constructed 

permuted classifiers. For each FC, we counted the number when the FC was selected by the 

LASSO across 10-fold cross-validation and 10 subsampling (i.e., across 100 classifiers). We 

used the maximum counts among all the connections at each iteration to construct a null 

distribution using these maxima. We considered FCs as significant contributors to the ASD 

status if their P-values were below 0.05. 

 

Network-based characterization of discriminative FCs 

To interpret the spatial distribution of discriminative FCs at the network level, we used the 

network anatomy41. We identified discriminative FCs using the permutation test described 

above. We computed the mean weights for those FCs. We considered FCs with positive mean 

weights as hyper-connections and those with negative mean weights as hypo-connections in the 

ASD brain. It turned out that we found 65 hyper-connections and 76 hypo-connections (see 

Results). Then, we computed the probability of spatial overlap between FCs within or between-

RSNs defined by the Yeo atlas and hyper- or hypo-connections identified by our neuromarker. 
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P-values were computed using the hypergeometric cumulative density function “hygecdf” 

implemented in MATLAB as follows: 

𝑃	 = 	1	 − ℎ𝑦𝑔𝑒𝑐𝑑𝑓(𝑥,𝑀, 𝐾, 𝑛), 

where x stands for the number of overlapping FCs between hyper- or hypo-connections and 

within or between predefined RSNs. The variable, M, stands for the number of total FCs in the 

whole brain (i.e., M = 71,631), while the variables, n and K, were the total numbers of FCs in 

our network of interest and the canonical network of interest, respectively. We computed the 

P-values for hyper- and hypo-connections separately. Statistical significance was set to P < 

0.05, adjusted with Bonferroni correction for multiple comparisons.  

 

Sensitivity of the ASD neuromarker to other psychiatric disorders 

We tested whether the developed ASD neuromarker was sensitive to SCZ and MDD. To test 

this, we applied the neuromarker to data from SCZ and MDD included in the SRPBS dataset38. 

The details of their demographic information are in Table S11. We applied the same 

preprocessing pipeline, the exclusion criteria, and the harmonization method. 

 

We applied 100 trained ASD classifiers to SCZ and MDD datasets and obtained 100 diagnostic 

probability values for each participant. We considered a participant to have the ASD label if 

the mean diagnostic probability was > 0.5. Since participants with TDC were identical among 

the datasets, we used the diagnostic probability values during the training to compute the 

classification performance. We focused on sensitivity rather than other performance indices. 

Statistical significance was calculated based on the null distribution obtained by the 

permutation test with 500 iterations. The statistical threshold was set to P < 0.05. 
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Figures 

 

Fig. 1. The classification performance of the ASD classifier in the discovery and adult 

validation datasets. (A) The probability of the ASD diagnosis in the discovery dataset. 

(B) The probability of the ASD diagnosis in the ABIDE adult validation dataset. (C) The 

probability of the ASD diagnosis in the Japanese adult validation dataset. Abbreviations: 

AUC: area under the curve, ASD: autism spectrum disorder, MCC: Matthews correlation 

coefficient, and TDC: typically developing control. 
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Fig. 2. The classification performance of the ASD classifier in the child and adolescent 

validation datasets. (A) The probability of ASD diagnosis in children. (B) The probability 

of ASD diagnosis in adolescents. Abbreviations: AUC: area under the curve, ASD: 

autism spectrum disorder, MCC: Matthews correlation coefficient, and TDC: typically 

developing control. 
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Fig. 3. The spatial distribution and network-based characterization of discriminative 

functional connections for the ASD diagnosis. (A) The spatial distribution of 

discriminative hyper-connections and affected brain regions for the ASD diagnosis. (B) 

The spatial distribution of discriminative hypo-connections and affected brain regions for 

the ASD diagnosis. The node color represents the corresponding resting-state network. (C) 

Network-based characterization of hyper-connections. (D) Network-based 

characterization of hypo-connections. Abbreviations: ASD: autism spectrum disorder, 

DAN: dorsal attention network, DMN: default mode network, FPN: frontoparietal 

network, TDC: typically developing control, and VAN: ventral attention network. 
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Fig. 4. The distribution of atypical functional connections that are consistent across the 

datasets. (A) The spatial distribution of discriminative hyper-connections consistent 

across cohorts. (B) The spatial distribution of discriminative hypo-connections consistent 

across cohorts. (C) Pie-donut chart showing the details of reproducible hypo- and hyper-

connections. Abbreviations: ABIDE: autism brain imaging data exchange, DAN: dorsal 

attention network, DMN: default mode network, FPN: frontoparietal network, L: left, N: 

Negative, P: positive, R: right, and VAN: ventral attention network. 
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Fig. 5. Sensitivity of each neuromarker to other psychiatric disorders and dimensional 

relationships between ASD and other psychiatric disorders. (A) Sensitivity of the 

neuromarker for autism spectrum disorder (ASD) to schizophrenia (SCZ) and major 

depressive disorder (MDD). (B) Sensitivity of the SCZ neuromarker to ASD and MDD. 

(C) Sensitivity of the MDD neuromarker to ASD and SCZ. (D) Dimensional relationship 

between the ASD-ness and SCZ-ness defined by the diagnostic probability in ASD and 

SCZ classifiers, respectively. (E) Dimensional relationship between the ASD-ness and 

MDD-ness defined by the diagnostic probability in ASD and MDD neuromarkers, 

respectively. 
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