
Morphology and gene expression profiling provide 
complementary information for mapping cell state

Gregory P. Way1,2,5, Ted Natoli3,5, Adeniyi Adeboye1,5, Lev Litichevskiy3, Andrew Yang3, 
Xiaodong Lu3, Juan C. Caicedo1, Beth A. Cimini1, Kyle Karhohs1, David J. Logan1,+, 
Mohammad H. Rohban1, Maria Kost-Alimova4, Kate Hartland4, Michael Bornholdt1, Srinivas 
Niranj Chandrasekaran1, Marzieh Haghighi1, Erin Weisbart1, Shantanu Singh1,6, Aravind 
Subramanian3,6,*, Anne E. Carpenter1,6,7,*

1. Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA

2. Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, 
Colorado 80045, USA

3. Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA

4. Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, 
Massachusetts 02142, USA

5. These authors contributed equally

6. Senior authors

7. Lead contact

Summary:

Morphological and gene expression profiling can cost-effectively capture thousands of features 

in thousands of samples across perturbations by disease, mutation, or drug treatments, but it is 

unclear to what extent the two modalities capture overlapping versus complementary information. 

Here, using both the L1000 and Cell Painting assays to profile gene expression and cell 

morphology, respectively, we perturb A549 lung cancer cells with 1,327 small molecules from 

the Drug Repurposing Hub across six doses, providing a data resource including dose-response 

data from both assays. The two assays capture both shared and complementary information for 
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mapping cell state. Cell Painting profiles from compound perturbations are more reproducible and 

show more diversity, but measure fewer distinct groups of features. Applying unsupervised and 

supervised methods to predict compound mechanisms of action (MOA) and gene targets, we find 

that the two assays provide a partially shared, but also a complementary view of drug mechanisms. 

Given the numerous applications of profiling in biology, our analyses provide guidance for 

planning experiments that profile cells for detecting distinct cell types, disease phenotypes, and 

response to chemical or genetic perturbations.

eTOC blurb

We tested 1,327 drug and tool compounds across six doses in two profiling assays: Cell 

Painting and L1000. Extracting cell morphology and gene expression readouts from the two 

assays, respectively, we characterized the assays’ reproducibility, signal diversity, and information 

content, revealing their complementarity for large-scale drug profiling.

Graphical Abstract

Introduction:

In a profiling experiment, biologists measure high-dimensional readouts from biological 

samples (e.g. single cells, organoids, tissue, whole organisms). The resulting profile contains 

measurements of hundreds to thousands of individual features that together form a systems 

biology representation of the sample of interest. Automation now allows biologists to probe 
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thousands of chemical and genetic perturbations to assess their phenotypic impact (Dixit 

et al., 2016; Keenan et al., 2018; Subramanian et al., 2017a). Therefore, perturbational 

profiling results in a large number of samples measured across a common set of high-

dimensional features. Biologists can then apply data mining and machine learning to these 

datasets to detect and quantify the similarities and differences among samples. These 

approaches have the potential to advance drug discovery, functional genomics, and precision 

medicine, for example, by annotating uncharacterized small molecules, cataloging the 

mechanistic outcome of gene editing, and testing the impact of specific perturbations on 

disease-associated phenotypes (Chandrasekaran et al., 2021; Malone et al., 2020; Musa et 

al., 2018).

Biologists can access different aspects of cell state through multiple profiling assays 

that capture different biological landscapes: DNA, RNA, epigenetic marks, metabolites, 

microbiota, proteins, kinases, and spatial information (Cazaly et al., 2019; Di Minno et al., 

2021; Litichevskiy et al., 2018; Ottestad et al., 2020; Wang and Ma, 2015; Waylen et al., 

2020; Yang et al., 2020). Some profiling approaches measure multiple data modalities in the 

same assay and are dubbed multi-omic or multi-modal assays (Cao et al., 2018; Hu et al., 

2018); others pool and demultiplex perturbations to increase throughput (McFarland et al., 

2020); still others test a single readout (e.g. viability) but across hundreds of cell types to 

yield a profile (Garnett et al., 2012; Yu et al., 2016).

Gene expression and cell morphology are currently the two highest-throughput, lowest cost, 

high-dimensional profiling data types for mammalian cells (Bray et al., 2016; Gustafsdottir 

et al., 2013; Subramanian et al., 2017a). These readouts measure fundamentally different 

aspects of biology. In the L1000 bead-based assay, probes targeting 978 genes measure 

mRNA transcript levels (gene expression) in a cell population (Subramanian et al., 2017a). 

In the Cell Painting assay, after treating cells with six fluorescent dyes to mark eight cellular 

compartments (Figure 1A), biologists use a microscope to image five channels and use 

software to analyze and extract several thousand morphology measurements from each cell 

(Bray et al., 2016). Both the gene expression and morphology landscapes change as cells 

respond to perturbations.

Scientists have used individual profiling modalities to advance a variety of drug discovery 

applications, including improving screening library diversity, predicting cytotoxicity, 

prioritizing compounds for follow-up study, and inferring the mechanism of action of 

chemicals (Feng et al., 2009; Filzen et al., 2017; Lapins and Spjuth, 2019; Ljosa et al., 

2013; Nyffeler et al., 2020; Perlman et al., 2004; Wawer et al., 2014; Way et al., 2021b). 

Integrating gene expression and morphology profiles with chemical structures revealed that 

each data type provides complementary information for predicting a drug’s mechanism 

of action (Haghighi et al., 2021; Nassiri and McCall, 2018), for predicting the effects of 

perturbations (Caicedo et al., 2021a), and for identifying nuisance compounds that can lead 

to false hits (Dahlin et al., 2021). As well, to some degree, gene expression and morphology 

datasets contain sufficient information to predict changes in each other (Haghighi et al., 

2021; Nassiri and McCall, 2018; Wakui et al., 2022).
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However, the field lacks a systematic study evaluating both assays’ information content in 

terms of distinct versus overlapping signals, diversity of cell states, and performance in 

useful tasks. The ability of a profiling assay to accomplish a biological task is a function 

of its technical reproducibility, its inherent information content, properties of bioinformatics 

pipelines, and natural biological variation. Therefore, our goal in this study is to determine 

how the assays compare with each other on useful biological tasks given all those sources of 

variation/noise and current best practices in data processing.

In this study, we collected L1000 and Cell Painting readouts from a common set of 1,327 

different Drug Repurposing Hub compounds and controls across six doses representing 

511 different mechanism-of-action (MOA) classes and 720 different gene targets (Corsello 

et al., 2017). After data processing, we observed that while Cell Painting suffers from 

more batch and well position effects that must be carefully adjusted, the assay showed 

higher profile reproducibility than L1000. While L1000 includes more independent feature 

groups than Cell Painting, the latter provides a higher sample diversity. We test the practical 

implications of these properties by predicting compound MOA and gene targets using two 

approaches: an unsupervised matching approach and supervised deep learning in which we 

train top-performing models from a recent Kaggle competition (Kaggle.com et al., 2020). 

Both assays predict a small set of mechanisms consistently well and certain mechanisms are 

better captured in one assay or the other. MOA prediction is a challenging task where even 

small improvements could impact drug discovery. In summary, we find that Cell Painting 

and L1000 each reproducibly measure a partly overlapping, partly distinct set of compound 

mechanisms. Based on this analysis we conclude that measuring both molecular and cellular 

phenotypes increases the ability to capture relevant biological mechanisms from unbiased 

compound screens.

Results

Measuring and processing morphology and gene expression data

One strategy to interrogate biological processes is to measure cell responses to various 

perturbations in high-throughput, high-dimensional profiling assays. Profiling assays vary in 

style and measurement, and the sensitivity and resolution with which they capture important 

biological signals depends on the assay chosen. In this experiment, we asked whether 

measuring the same perturbations using fundamentally different kinds of profiling assays 

provides advantages. We therefore created and analyzed two profiling datasets that capture 

different types of information: gene expression with the L1000 assay and cell morphology 

with the Cell Painting microscopy assay (Bray et al., 2016; Gustafsdottir et al., 2013; 

Subramanian et al., 2017a). We show raw data for both Cell Painting and L1000 assays in 

Figures S1 and S2, respectively.

We perturbed A549 lung cancer cells with a common set of 1,327 compounds and controls 

from the Drug Repurposing Hub (Corsello et al., 2017). We selected compounds that were 

in current clinical use or in advanced clinical testing and chose them to represent a diversity 

of mechanisms based on Drug Repurposing Hub annotations (Corsello et al., 2017). We 

measured a total of 1,258 compounds across six doses (usually, 0.04 μM to 10 μM); the 
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remainder had three to five doses. We provide compound annotations for MOAs and gene 

targets in Table S1.

We perturbed the cells under consistent experimental conditions, including the same 384-

well plate layouts (Figure S3A). We exposed cells to compounds for 24 hours prior to 

L1000 profiling and for 48 hours prior to Cell Painting, using standard assay time points 

based on past experience. At these time points and doses, we did not observe high amounts 

of cell death which otherwise might have impeded our ability to acquire cell responses to 

perturbation (Figure S4).

The compounds were arrayed in 25 different plate maps (compound layouts), and, in most 

cases, we collected three replicate plates per plate map for L1000 and five replicate plates 

per plate map for Cell Painting, given its lower cost per plate. Each replicate plate contained 

56 different compounds in six doses plus 24 dimethyl sulfoxide (DMSO) negative controls 

and 24 proteasome inhibitor positive controls.

We applied standard data processing pipelines for each assay (see Methods) to normalize 

and transform the data prior to downstream analyses (Figure S3B). Due to the limitations 

of the compound dispensing equipment, it was unfortunately infeasible to control for plate 

layout artifacts by scrambling perturbation locations within each plate across replicates. 

Indeed, we observed plate position effects in the Cell Painting data, particularly in edge 

wells (Figure S5). Therefore, we applied a spherize transform using negative control DMSO 

wells to combine data across batches and adjust for these plate-position effects. Spherizing, 

also known as whitening, adjusts all profiles such that the DMSO wells are transformed to 

have an identity covariance matrix (Ando et al., 2017; Kessy et al., 2018) (see Methods for 

more details). In all the downstream analyses, we use spherized Cell Painting profiles and 

the original, unspherized L1000 profiles unless indicated otherwise (L1000 did not benefit 

from spherizing, see Figure S5, bottom).

Assessing profile reproducibility in L1000 and Cell Painting assays

To study a perturbation’s function, a scientist must reliably and robustly measure its 

biological effect. Therefore, we introduced and calculated a reproducibility metric, based 

on median pairwise Spearman correlations, which we call “percent replicating” (Figure S6). 

Specifically, percent replicating captures the percentage of profile replicates (treatment of 

the same compound measured at the same dose) that are more similar to one another than to 

a randomly-permuted null distribution that adjusts for dose, sample size, and well position 

(see Methods for complete details).

As expected, percent replicating increased with dose in both assays, as higher concentrations 

of drug are more likely to impact cell systems (Figure 1B). However, we observed much 

higher percent replicating scores in Cell Painting (57% to 83%, from lowest to highest dose) 

compared to L1000 (16% to 35%, from lowest to highest dose) (Figure 1B); 35% at the 

highest dose for L1000 is consistent with prior observations (Subramanian et al., 2017a). We 

provide median pairwise correlations and percent replicating p values for all compounds per 

assay in Table S2.
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We expected to observe higher percent replicating scores for Cell Painting over L1000 

because we had, typically, five replicates of Cell Painting and only three replicates of 

L1000 per treatment as per standard assay guidelines. Indeed, a subsampling experiment 

that randomly sampled Cell Painting replicates to match the number of L1000 replicates 

reduced percent replicating (from 57% to 37% and 83% to 67%, from lowest to highest 

dose), although still higher than L1000 (Figure S7). Another possible explanation for 

higher Cell Painting reproducibility metrics is that plate layout effects artificially increased 

replicate correlations preferentially for that modality versus L1000. Indeed, we observed that 

percent replicating increased if we failed to adjust our null distribution for well position, 

and decreased if we failed to correct for plate-position effects (Figure S7). However, 

reproducibility metrics were robust to edge well filtering and different null distributions, 

as we observed similar performance if we 1) prefiltered edge wells as quality control, 2) 

adjusted null distributions only for dose and not sample size, and 3) dropped dose altogether 

when sampling the null distribution (Figure S8). These results underscore the importance of 

maximizing replicate treatments, proper construction of null distributions, and proper profile 

normalization in Cell Painting. The same normalization did not improve scores for L1000.

Plate layout effects are a serious concern in profiling experiments where practical reasons 

require scientists to measure replicates of a sample at the same well position across physical 

plates; it is known that the location on the plate, especially distance from the edge of the 

plate, can impact many cell phenotypes. Therefore, to more closely study the impact of plate 

position on pairwise correlations, we performed a non-replicate diffusion analysis in which 

we systematically increased the well neighborhood size in calculating the null distribution of 

non-replicate correlations (see Methods). Briefly, we started with a diffusion size 0, which 

looks at the non-replicate correlations of different samples that are in the exact same well 

position, across different plate maps. As we increased diffusion (the well neighborhood 

size) to include adjacent and nearby wells, we observed a slight dampening of non-replicate 

correlations (Figure S9A). While this analysis revealed increased plate-position effects in 

Cell Painting compared to L1000, this bias is relatively small compared to the overall 

replicate correlation signal (Figure S9B). Taken together, plate layout effects do impact 

profiling assays but are unlikely to have driven the signal we observed in this experiment. 

Nevertheless, when possible, we recommend scrambling replicates across wells to avoid this 

potential confounding effect.

Comparing median pairwise replicate correlations across individual treatments, we observed 

that most compounds have higher correlations in Cell Painting compared to L1000, but 

many compounds are highly correlated in both assays (Figure 1C). Interestingly, we 

observed that certain compounds contained signal in only one assay or the other (Figure 

1C). We observed that 11% of compounds in the lowest dose (133 / 1,258) and 34% of 

compounds in the highest dose (422 / 1,258) produced signal in both assays. Combining 

both assays together, we found that 62% to 85% of compounds (from lowest to highest dose) 

produced signal higher than random (Figure 1D).
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Analyzing the diversity of perturbed cell states manifesting in gene expression and 
morphology

While percent replicating captures the proportion of compounds that significantly change 

cell state, it does not quantify the diversity of those cell states when considering the impact 

of different compounds. Diversity of cell states is critical for many applications, such 

as MOA matching as described below, because more diversity indicates more potential 

for interesting biological findings. For example, quantifying cell state diversity is critical 

when selecting compounds for inclusion in a screening library, as the goal is typically to 

maximize phenotypic diversity among the compounds; strategies that reduce redundancy 

allow inclusion of more diverse phenotypes and are therefore more likely to result in drug 

discovery pipeline “hits” (Wawer et al., 2014).

To qualitatively assess the diversity of profiles produced by each profiling assay, we applied 

a unified manifold approximation (UMAP) transform (McInnes et al., 2018). We observed 

that, in both assays, many compounds form distinct islands that consistently group specific 

MOAs, while a sizable set of compounds are relatively similar to negative controls (Figure 

2A). MOAs with higher correlations more often form islands in either assay (Figures S10 

and S11). The islands separated more with increasing dose, and we identified similarly 

distributed clusters using t-distributed stochastic neighbor embedding (t-SNE) (van der 

Maaten, 2008) (Figure S12). Furthermore, a principal components analysis (PCA) grouped 

together compounds with low replicate reproducibility, representing drug treatments that 

failed to have a consistent phenotypic impact (Figure S13).

The primary data collection for this project used a single cell line, A549; a small 

dataset we gathered using three cell lines (A549, MCF7, and U2OS) showed more 

phenotypic separation according to cell line and incubation period (Figure S14). This 

separation demonstrated higher biological diversity induced by inherent cell line differences 

as compared to diversity induced by different perturbations, which is consistent with 

observations for L1000 data (Squires et al., 2020).

For a quantitative analysis, we fit different clustering algorithms to approximate the number 

of unique groups of compounds that manifest in each data modality. We observed more 

distinct clusters in Cell Painting compared to L1000 readouts. This observation was 

consistent across different clustering solutions (from k=2 to k=40), with different clustering 

algorithms (k-means clustering and Gaussian mixture models) and using three different 

metrics (Silhouette scores, Davies Bouldin scores, and Bayesian information criterion) 

(Figure S15). Observing global patterns of pairwise sample correlations in a heatmap 

provides further evidence of increased diversity in Cell Painting measurements as indicated 

by lower pairwise correlations across different compounds (Figure 2B). Taken together, this 

analysis suggests that morphology profiles measured by Cell Painting capture more diverse 

cell states than the gene expression profiles measured by L1000, under the experimental 

conditions tested.
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Assessing the complementarity of profiling morphology and gene expression features

By design, different profiling technologies measure different biological features. L1000 is 

a gene expression assay and therefore measures molecular features; specifically, mRNA 

transcript levels in a biological sample. Cell Painting is an image-based assay that instead 

measures cell features; both morphological and spatial. Nevertheless, biological signals 

are often related or even tightly coupled. We therefore sought to approximate how many 

independent groups of features exist in both modalities. This is distinct from our analysis of 

the number of groups of samples described in the prior section.

In general, we observed higher diversity of feature signals in L1000 compared to Cell 

Painting (Figure 3A). Across doses, individual Cell Painting features had higher coefficient 

of variance (CV) than L1000 features, but both assays had similar feature variance between 

replicates (Figure S16). Much higher absolute value pairwise correlations among Cell 

Painting features, even after feature selection (see Methods), indicate more redundant 

measurements compared to L1000 (Figure 3B). Indeed, the top Principal Components (PCs) 

explain a higher proportion of variance in Cell Painting compared to L1000 data, providing 

further evidence of increased feature redundancy in Cell Painting (Figure 3C). Both assays 

attempt to reduce redundancy in some way. For L1000, scientists deliberately chose the 

genes’ mRNAs to measure (the 978 distinct molecular entities) to minimize redundancy 

in measurements while maximizing the ability to infer transcriptome-wide gene expression 

(Subramanian et al., 2017a). Following the standard image-based profiling pipeline (Caicedo 

et al., 2017), we also removed highly correlated features from the Cell Painting assay. Taken 

together, this analysis suggests that there is a higher diversity of gene expression features 

than morphology features, as measured by these two assays.

Because we collected thousands of perturbations with replicates, we can study the specific 

features, in either assay, that were highly impacted by individual compound treatments. 

Calculating a metric called “activity score” (Subramanian et al., 2017a), which combines 

both replicate reproducibility and number of impacted features (see Methods), we observed 

that certain compounds disrupt L1000 and Cell Painting features with different strengths in a 

dose-dependent manner (Figure 3D). Nearly all of the compound perturbations disrupted 

more morphology readouts than expression readouts. This observation was even more 

pronounced when we focused on compounds with high reproducibility scores in both assays 

in at least three different doses (Figure 3E). In particular, Dasatinib, Alisertib, Brequinar, 

Aphidicolin, AT13387, and STA-5326 consistently induced many morphological changes 

while changing relatively few expression values. By performing separate pathway analyses 

using the few genes most disrupted by each of the aforementioned compounds, we observed 

compound-specific associations with specific pathways: Dasatinib altered genes associated 

with sulfur compound biosynthetic process (GO:0044272, p = 5.8×10−4), Alisertib with 

serine/threonine protein kinase complex (GO:1902554; p = 4.4×10−3), Brequinar with 

cellular response to UV (GO:0034644, p = 1.7×10−4), Aphidicolin with cellular response 

to starvation (GO:0009267, p = 1.4×10−3), AT13387 with regulation of endothelial cell 

migration (GO:0010594, p=7.4×10−4), and STA-5326 with cholesterol biosynthetic process 

(GO:0006695, p =6.7×10−9) (Figure 3F). Conversely, l-Ergothioneine and Lasalocid induced 

many more transcriptional changes than morphological changes, which included genes 
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associated with regulation of RNA stability (GO:0043487, p = 6.1×10−3) and cellular 

polysaccharide metabolic process (GO:0044264, p = 7.8×10−4), respectively (Figure 3F). 

We provide pathway analysis results for all eight of these high differential activity score 

compounds in Table S3. This type of analysis opens the door to exploring relationships 

between particular mRNA levels and specific morphologies when perturbing cells (Haghighi 

et al., 2021; Nassiri and McCall, 2018).

Assessing the ability of Cell Painting and L1000 to capture compound mechanism of 
action

We next tested a more demanding, application-oriented metric based on a common use case 

when profiling compounds: determining a compound’s MOA. A large range of perturbation 

experiments have mechanistic prediction as a central goal (Schenone et al., 2013). As 

described in more detail in the Discussion, this is a “notoriously” challenging step in 

drug discovery where existing methods are useful but have low success rates, usually so 

low that they have not been calculated systematically. The most common strategy in the 

pharmaceutical industry is to attempt several painstaking methods and combine results 

to formulate hypotheses for further testing. In fact, because determining a compound’s 

mechanism is often time- and labor-intensive, existing annotations for a compound may be 

incomplete, incorrect, or ignore off-target effects and polypharmacology (Proschak et al., 

2019; Rastelli and Pinzi, 2015). Nevertheless, MOA prediction is one of the few biological 

applications where any modicum of sufficient “ground truth” is available to test a variety 

of compounds from diverse classes and perform a relative comparison of profiling methods; 

thus we use it here despite its limitations.

We introduced the metric “percent matching” to quantify how often a profiling assay can 

group together compound profiles that have the same annotations (see Methods). Unlike 

percent replicating, this metric is not influenced by plate layout effects in our experiment, 

because compounds with the same annotated MOA are not located in the same well location 

across plate maps.

Comparing MOAs within dose, we observed higher percent matching scores for Cell 

Painting (ranging from 16 – 28%) than for L1000 (7 – 21%) (Figure 4A). However, when 

we compared MOAs across doses, we observed substantially higher percent matching scores 

for both Cell Painting (44%) and L1000 (50%) (Figure 4A). The increased scores highlight 

the challenges of drug discovery, as many compounds may have different effects at varying 

doses. Comparing percent matching scores between assays, we observed many overlapping, 

but also many assay-specific MOAs (Figure 4B). In general, we observed stronger signals in 

L1000 from a smaller number of MOAs, compared to weaker signals from a larger number 

of MOAs for Cell Painting, as indicated by more points above the dotted line for L1000 but 

higher percent matching scores for Cell Painting (Figure 4B and 4C).

The overlapping MOAs, captured by both L1000 and Cell Painting and including at least 

three different compounds, ranged from 3% of MOAs at the lowest dose (4 / 127), 18% 

of MOAs at the highest dose (23 / 127), and 27% of MOAs across all doses (34 / 127). 

Moreover, when considering both assays together, they collectively captured 20% of MOAs 

at the lowest dose (25 / 127), 31% of MOAs at the highest dose (39 / 127), and remarkably, 
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69% of MOAs when comparing across doses (88 / 127), although we caution that percent 

matching scores cannot be directly interpreted as the ability to accurately predict MOA 

(see next section) (Figure 4C). Assaying multiple doses, one captures 19% more MOAs by 

adding Cell Painting to L1000 and 24% more MOAs by adding L1000 to Cell Painting. 

These observations can guide researchers in selecting a particular profiling modality that 

provides more consistent measurements when studying specific compounds or MOAs 

(Figure S17A).

Because percent matching, which is based on the statistical concept of recall, will not 

sufficiently address how distinguishable MOA classes are from each other (see Methods 

for more details), we also calculated average precision for all MOAs. Many MOAs 

demonstrated high average precision across assays and doses, including proteasome 

inhibitors, MEK inhibitors, and glucocorticoid receptor agonists, but many MOAs were 

assay-specific (Figure 4D). MOA average precision correlated strongly with median 

pairwise Spearman correlations of MOAs (Figure S17B). While we observed increased 

percent matching when using all doses, we did not observe corresponding increases in 

all dose average precision, indicating an increase in false positive rate when all doses are 

considered. Therefore, we advise a careful consideration of both metrics when defining 

thresholds for follow up experimentation.

We note that in any MOA analysis, low matching scores may result from noise or 

technical limitations of the assays, but they may also reflect real biological signals resulting 

from either inaccurate annotations, which is a known challenge (Lin et al., 2019), or 

alternatively because the assay is capturing mechanistic differences between compounds 

that are annotated with the same MOA; such polypharmacology is common. We directly 

observed this difficulty in matching MOAs, as we failed to reliably measure between 102 to 

88 different MOAs (80.3% to 69.3% from lowest to highest dose) (Figure S17C). Across all 

comparisons, we failed to reliably measure 29 different MOAs (23%), some of which related 

to bacterial or fungal processes and others to functions of specialized cell types (Figure 

S17D).

Repeating the average precision analysis using compound gene targets (instead of MOA 

classes) also revealed high complementarity, as evidenced by many gene targets with off-

diagonal precision (Figure 4E). L1000 captures activity of compounds targeting MAPK 

family genes and heat shock protein (HSP90AA1) strongly, while Cell Painting captures 

aurora kinase genes (AURKA, AURKB), PLK genes (PLK1, PLK2, PLK3) and BRD4 with 

high precision (Figure 4E). We provide a full list of median pairwise replicate correlations, 

percent matching p values, and average precision metrics for compound MOAs in Table S4 

and compound targets in Table S5.

Different profiling modalities provide complementary deep learning predictions of 
compound mechanisms and gene target pathways

We next took a targeted approach and trained supervised machine learning algorithms to 

directly predict compound MOA and gene targets annotated to Gene Ontology (GO) terms. 

Repurposing the top model architectures from a related Kaggle competition to predict MOA 

from L1000 readouts and cell viability data (Kaggle.com et al., 2020), we retrained four 
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deep learning models (feed forward neural network, ResNet, TabNet, and a 1D convolutional 

neural network) and a K-Nearest Neighbor baseline on multi-label objectives. We also 

averaged model probabilities to form an ensemble model, and considered compounds that 

map to multiple MOAs and gene targets as positive labels for all individual categories. 

We compared model performance for training each model using L1000 and Cell Painting 

readouts separately and merged together (Figure 5A).

Many individual MOAs could be predicted rather robustly by both assays including MEK 

inhibitors, MTOR inhibitors, and EGFR inhibitors (Figure 5B). However, some MOAs could 

be consistently predicted better by L1000 (e.g. HSP inhibitors) or by Cell Painting (e.g. 

PLK inhibitors), and many MOAs could be predicted by neither assay (e.g. Glucocorticoid 

receptor antagonist) (Figure S18A). In the held out test set, the MOA predictions were 

correlated between the two assay modalities (Spearman correlation = 0.70, p < 2.2e-16), 

but some MOAs were predicted better in one assay compared to the other (Figure 5C). In 

general, while performance across all MOA predictions sufficiently improved over several 

baselines, overall performance was relatively low, demonstrating the general difficulty of the 

task (Figure 5D). Poor predictions might be a result of noisy readouts or the ability of the 

data type to reveal more subtle compound-specific signals such as off-target effects.

Overall, L1000 performed slightly better at MOA prediction than Cell Painting across a 

wide range of different deep learning architectures (Figure 5D). The Kaggle competition 

selected for models especially suited to L1000 and cell viability data; it is possible that 

alternate architectures might favor Cell Painting data. Concatenating features of both assays 

together and predicting MOA did not improve performance, but this is likely because of 

the need to randomly match replicates since there is no one-to-one correspondence (see 

Methods) (Figure S18B). Subsampling the Cell Painting data to match the sample count of 

L1000 slightly decreased performance, indicating that collecting more than three replicates 

in either assay is likely to increase performance (Figure S18B). We also observed that 

performance increased in step with treatment dose (Figure S18C).

In addition to MOA predictions, we also trained these same deep learning architectures to 

predict gene pathways. The genes that compounds target are often well characterized, and 

we hypothesized that Cell Painting and L1000 could predict compounds targeting genes in 

the same pathway. Therefore, we mapped Drug Repurposing Hub compound gene target 

annotations to Gene Ontology (GO) terms, and retrained the same MOA models to instead 

predict GO terms (Ashburner et al., 2000; Gene Ontology Consortium, 2021). In our dataset, 

we assayed compounds that targeted 720 different genes, which mapped to 5,822 unique GO 

terms. After filtering GO terms that included 20 different compounds or more, we trained 

models to predict different terms.

With slightly worse performance than the MOA predictions, many individual GO terms 

could be predicted by either assay including neuron differentiation (GO:0030182), 

chromatin organization (GO:0006325), and steroid hormone binding (GO:1990239) (Figure 

S19A). As expected, some GO terms were better-predicted using L1000 data (e.g. 

transmembrane receptor protein tyrosine kinase activity; GO:0004714), others with Cell 

Painting data (e.g. positive regulation of G1/S transition of mitotic cell cycle; GO:1900087), 
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and others by neither assay (e.g. Cellular response to calcium ion; GO:0071277) (Figure 

S19B). However, GO term prediction performance was highly correlated between the two 

assays (Spearman correlation = 0.92, p < 2.2e-16; Figure S19C). We observed improvements 

over baselines, but general poor performance overall (Figure S19D). We provide all deep 

learning performance metrics in Table S6.

Discussion

Large-scale perturbational profiling experiments are time- and cost-intensive; comparing 

their relative abilities is important information for experimental design and planning. We 

found that mRNA profiling (via L1000) and morphological profiling (via Cell Painting) 

were generally complementary, given their current state of technical reproducibility and 

standard computational pipelines. Cell Painting had a higher diversity of samples and could 

match MOAs more consistently in an unsupervised setting, while L1000 had a higher 

diversity of features and better performance predicting MOAs in a supervised setting. Cell 

Painting is less expensive, enabling larger experiments for a given budget, but L1000 offers a 

larger pool of publicly available data to query (Subramanian et al., 2017a). A wide variety of 

biological pathways are readily captured by both data types, but some are better observed in 

one modality versus the other.

We had anticipated that morphological changes would generally not occur without 

concomitant changes in mRNA levels (whether as a cause or consequence), particularly 

at low doses, but found examples of compound treatments where this happens, and vice 

versa. It may be that the L1000 assay does not capture the mRNAs in the cell that change, 

due to technical noise or because it measures only ~5% of the transcripts in the cell. It could 

also be that mRNA changes do occur, but not at the short timescale of the mRNA detection 

(24 hours) as compared to the image capture (48 hours). It is also possible that the different 

incubation times for compound treatments increased our ability to detect changes, but it is 

unlikely any single time point is optimal for all treatments, given potential differences in cell 

and molecular response times (Niepel et al., 2017).

MOA prediction is “notoriously challenging” and a major bottleneck (Lill et al., 2021). No 

assay exists that can reliably succeed across a majority of known MOA classes (Pasquer et 

al., 2020). Of course, one would not expect any assay in a single cell line at a single time 

point or compound dose, to capture 100% of all biological mechanisms. For this reason, 

in practice it is more typical to assess compounds of interest with various strategies, each 

with low individual success rates. Our goal in this analysis was not to prove the efficacy 

of MOA prediction by mRNA and morphology profiling. Instead, in the MOA prediction 

analyses, we aimed to compare the relative strengths of the two assays, because this is a 

direct comparison task with the most available ground “truth”. In fact, both assays tested 

here have the advantage of being sufficiently inexpensive; most other strategies for MOA 

prediction report no success rates because they are not practically scaled to test on thousands 

of compounds systematically, for example, those that require modification of the compound 

or customization of cells (Pasquer et al., 2020).
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One can imagine future developments in both assays that could improve their performance 

in a variety of applications. For perturbational profiling of mRNA expression, the L1000 

assay offers a cost effective strategy for large-scale compound experiments, with a huge 

library of publicly available profiles. Fortunately, expression profiles from L1000 are 

similar to RNA-seq equivalents: out of 3,176 patient-derived RNA samples profiled on 

both platforms, 3,103 (98%) had high quality cross-platform correlations (Subramanian 

et al., 2017b). The development of novel methods that are even cheaper, more robust, 

and more comprehensive would be welcome. For imaging assays, deep learning-based 

segmentation and feature extraction offers promise but deep learning is not yet routine 

for image-based profiling (Chandrasekaran et al., 2021; Pratapa et al., 2021). As well, 

the standard Cell Painting pipeline population-averages measurements; methods that better 

leverage the assay’s single-cell measurements are likely to improve information capture 

from this assay. Using additional stains is another sensible route, although initial testing 

indicates it does not seem to dramatically improve MOA prediction performance (Rose et 

al., 2018). For both, screening additional cell types (Boyd et al., 2019; Cox et al., 2020; 

Rose et al., 2018) and timepoints might increase the ability to detect and characterize 

perturbations in cell state. If experiments capture both profiling types, the profiles might 

be integrated to increase their power and resolution (Caicedo et al., 2021b; Haghighi et al., 

2021; Huang et al., 2017; Lapins and Spjuth, 2019). Overall, this paper will help researchers 

to better understand the pros and cons of the two currently largest and cheapest methods of 

large-scale drug profiling.

STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

Lead Contact: Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Anne Carpenter (anne@broadinstitute.org).

Data and code availability:

Source data statement:  All code to reproduce this analysis is located at https://github.com/

broadinstitute/lincs-profiling-complementarity. All code to reproduce the Cell Painting 

image-based profiling pipeline is available at https://github.com/broadinstitute/lincs-cell-

painting. The L1000 data are available at figshare. Cell Painting images are deposited to 

the Image Data Resource (https://idr.openmicroscopy.org/) under accession number idr0125. 

Cell Painting images and single-cell profiles are available at the Cell Painting Gallery on the 

Registry of Open Data on AWS (https://registry.opendata.aws/cellpainting-gallery/) under 

accession number cpg0004. This paper also analyzes existing, publicly available data. These 

accession numbers for the datasets are listed in the Key Resources Table.

Code statement:  All code to reproduce this analysis is located at https://github.com/

broadinstitute/lincs-profiling-complementarity, which we archived on Zenodo (Way et al., 

2021a). All code to reproduce the Cell Painting image-based profiling pipeline is available at 

https://github.com/broadinstitute/lincs-cell-painting, which we archived on Zenodo (Natoli 

et al., 2021b). For all analyses, we used Python version 3.9.1 (Van Rossum and Drake, 

2009) and pandas version 1.2 (McKinney, 2010). For visualization we used R version 3.5.1 
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(R Core Team, 2021) and ggplot2 version 3.3.0 (Wickham, 2016). For versions of other 

critical software see our Key Resources Table and as discussed above. All computational 

environments can be reproduced in our github repository https://github.com/broadinstitute/

lincs-profiling-complementarity. We used conda version 4.10.3 and conda-forge to version 

all computational environments (Anaconda Inc., 2021; Community, 2015)

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Selection of compounds for testing—We selected compounds annotated by the Drug 

Repurposing hub using two criteria: 1) Compounds known to have diverse phenotypic 

outcomes with a variety of annotated MOAs; 2) Compounds that are in current clinical use 

or in advanced clinical testing (we deprioritized tool compounds). We did not filter our 

compound selection for prior performance-based observations based on past datasets.

We exposed A549 cells to six different doses of most compounds. The six dose points 

include 0.04μM, 0.12μM, 0.37μM, 1.11μM, 3.33μM, and 10μM. For several compounds 

the calculated dose was slightly different than one of the six dose categories, and in these 

instances, we rounded to the nearest dose category. The complete list of all compounds 

tested and their annotations can be found in Table S1.

METHOD DETAILS

Sample preparation: Cell Painting—We generated Cell Painting data according to 

(Bray et al., 2016). Briefly, we cultured A549 cells in RPMI (Mediatech) on 384 well plates 

and exposed them to compound treatment at various doses for 48 hours. After exposure, we 

fixed, stained, and then imaged all cells. Specifically, we used Hoechst 33342 to mark DNA, 

concanavalin A/Alexa Fluor 488 conjugate to mark the endoplasmic reticulum (ER), SYTO 

14 to mark nucleoli and cytoplasmic RNA, phalloidin to mark F-actin cytoskeleton, wheat-

germ agglutinin/Alexa Fluor 555 conjugate (WGA) to mark Golgi and plasma membrane, 

and MitoTracker Deep Red to mark mitochondria. For complete details about the Cell 

Painting procedure, see (Bray et al., 2016).

We performed all imaging using a Phenix Opera with a 20X/1.0NA water objective, 1×1 

binning, and filter sets described in Bray et al 2016 Supplementary Note 1. For the second 

batch of Cell Painting data (Figure S14) we treated cells at the same doses for 6, 24, and 48 

hours.

Sample preparation: L1000—We generated the L1000 data according to the protocol 

outlined in (Subramanian et al., 2017a). Briefly, we cultured A549 cells in RPMI 

(Mediatech) on 384 well plates and exposed them to compound treatment at various doses 

for 24 hours. After the incubation time, we lysed cells and subjected them to ligation-

mediated amplification (LMA) and detection. We captured mRNA using oligo-dT coated 

beads and reverse transcribed the sequences into cDNA. We PCR amplified the cDNA using 

biotinylated, barcoded primers and gene-specific juxtaposed probe pairs resulting in gene-

specific, barcoded, and biotinylated PCR amplicons. We then hybridized these amplicons to 
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Luminex beads, stained them with streptavidin R-phycoerythrin (SAPE), and detected them 

using a Luminex FlexMAP 3D scanner. Therefore, each bead reports the barcode, which 

determines gene identity, and we measure the SAPE fluorescent intensity, which indicates 

transcript abundance.

L1000 data processing—We processed L1000 data into perturbagen-specific differential 

expression signatures as described in (Subramanian et al., 2017a). Briefly, we captured 

raw fluorescent intensities (FI) from the Luminex FlexMAP 3D scanner for each of the 

978 L1000 landmark genes (Level 1 data). We then deconvoluted FI data to extract the 

median FI (MFI) for the two genes being measured by each Luminex bead barcode (Level 

2 data). We loess-normalized the MFI values to the ten L1000 invariant gene sets within 

each well, and then quantile normalized all wells on the same detection plate, which 

resulted in each sample having the same empirical distribution (Level 3 data). We then 

computed gene-wise robust z-scores per sample, using all other samples on the same plate 

as the reference distribution (Level 4 data). Lastly, we collapsed biological replicates into 

consensus signatures using a weighted average, where each replicate was weighted by its 

average correlation with the others (Level 5 data). We made all data and metadata publicly 

available on figshare (Natoli et al., 2021a).

Image feature extraction—To extract image features, we built a CellProfiler 

(version 2.3.1) (Kamentsky et al., 2011) image analysis pipeline and ran it on 

Amazon Web Services using Distributed-CellProfiler (McQuin et al., 2018). We also 

performed illumination correction to standardize readouts and account for confounding 

factors by homogenizing light across all fields of view (Singh et al., 2014). The 

image analysis pipeline segments cells by distinguishing nuclei from cytoplasm and 

then extracts measurements for specific features related to the various channels 

captured (see Sample preparation: Cell Painting). Specifically, we measured fluorescence 

intensity, texture, granularity, density, location, and various other measurements for 

each single cell (see https://cellprofiler-manual.s3.amazonaws.com/CPmanual/index.html 

for more details). Following the image-analysis pipeline, we obtain 110,012,425 

cells and 1,790 feature measurements across 136 different plates. The pipelines 

are available online here https://github.com/broadinstitute/imaging-platformpipelines/tree/

3eb4ff5676aa7889666f09b606cd915c8b9ea839/cellpainting_a549_20x_phenix_b in1.

Cell Painting image-based profiling—After extracting CellProfiler readouts from all 

Cell Painting images of segmented single cells, we applied an image-based profiling 

pipeline to process morphology readouts (Figure S3B). In the first step of this pipeline, 

we used cytominer-database (https://github.com/cytomining/cytominer-database) to collect 

and validate all CellProfiler output measurements from Cells, Cytoplasm, and Nuclei 

compartments for every site (field of view). The output of this first step is a set of SQLite 

files that contain raw single cell profiles per plate (level 2 data).

Next, we used pycytominer to process the single cell readouts (Way, G.P., Chandrasekaran, 

S.N., Bornholdt, M., Fleming, S.J., Tsang, H., Adeboye, A., Cimini, B., Weisbart, E., Ryder, 

P., Stirling, D., Jamali, N., Carpenter, A.E., Singh, S., 2021). We performed a standard 

image-based profiling pipeline (Caicedo et al., 2017) consisting of profile aggregation, 

Way et al. Page 15

Cell Syst. Author manuscript; available in PMC 2023 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cellprofiler-manual.s3.amazonaws.com/CPmanual/index.html
https://github.com/broadinstitute/imaging-platformpipelines/tree/3eb4ff5676aa7889666f09b606cd915c8b9ea839/cellpainting_a549_20x_phenix_b
https://github.com/broadinstitute/imaging-platformpipelines/tree/3eb4ff5676aa7889666f09b606cd915c8b9ea839/cellpainting_a549_20x_phenix_b
https://github.com/cytomining/cytominer-database


annotation (level 3 profiles), normalization (level 4a), feature selection (level 4b), and 

forming consensus signatures (level 5). We performed median aggregation and normalized 

aggregated profiles using the “mad_robustize” method, which scales features independently 

by subtracting each value by the median and dividing by the median absolute deviation. 

We normalized each plate using the DMSO controls only, which allows us to more 

easily compare profiles across plates. We also performed several standard feature selection 

operations to remove features with missing data (“drop_na_columns”), remove features 

with low variance (“variance_threshold”), remove features that are highly correlated with 

other features (“correlation_threshold”), and remove blocklist features (“blocklist”). These 

blocklist features include CellProfiler features that we’ve previously observed to be unstable 

and noisy (Way, 2020).

Because the negative control DMSO profiles were noisy due to technical artifacts, we 

applied a spherize transform (also known as whitening) to mitigate the impact of well 

positioning (Ando et al., 2017; Kessy et al., 2018). More specifically, we used the 

zero-phase whitening filters (ZCA) solution calculated on the profile correlation matrix 

(ZCA-cor) to minimize the absolute distance between the transformed profiles and the 

untransformed profiles (Bell and Sejnowski, 1997). We also formed consensus signatures 

(level 5) by moderated z-score (MODZ) aggregating all replicate wells across plate maps 

into a single signature. We applied feature selection to the consensus signatures and batch 

effect corrected profiles separately using the same operations as described above. We applied 

the same pipeline to batch 1 (A549) and batch 2 (A549, MCF7, and U2OS) Cell Painting 

datasets.

Different drug treatments induce differing amounts of cell death and cell growth rates. To 

predict the amount of cell death, we applied a recently derived machine learning model to 

predict cell death readouts from Cell Painting features (Way et al., 2021b) We specifically 

used the “percent dead” machine learning model originally trained using the cell viability 

panel of the Cell Health assay to make predictions (see Figure S4).

We provide all the image-based profiles (level 3 and up) and the data processing pipelines 

in a versioned and publicly available github repository at https://github.com/broadinstitute/

lincs-cellpainting/ (Natoli et al., 2021b).

Calculating reproducibility metrics - percent replicating—The first step in 

calculating percent replicating is to calculate the median pairwise Spearman correlation 

of all treatments (compound and dose). We determined if this median correlation was 

greater than what we expected by chance by comparing it to carefully-matched null 

distributions. We report the metric per assay (under different normalization and null 

distribution conditions). See Figure S6 for a graphic fully explaining this metric, and see 

below for a full description of how we designed the null distribution.

We designed null distributions to control for three things: 1) different replicate cardinalities 

between different compound treatments, 2) well position on the 384 well plate, and 3) 

treatment dose. We controlled for replicate cardinalities to account for stability in median 

values across sample counts, the position of the well on a plate to account for potential plate 
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position effects, and treatment dose to account for the higher likelihood that higher doses 

contain more nonspecific signals, and would therefore result in higher absolute correlations 

between unrelated compounds.

Specifically, for percent replicating, for a given perturbation x located on well w measured 

across n replicates and treated with dose p, we randomly sampled n non-replicate profiles 

assayed in well w (but from different plate maps) from all perturbations that were treated 

with dose p. We performed this sampling procedure 1,000 times per replicate cardinality 

(e.g. compounds with 3 replicates, 4 replicates, 5 replicates, etc.) with two additional 

restrictions: (1) the random sample did not include replicates for perturbation x, and (2) 

no two compounds of the same non-x perturbation were included in the same null group. 

For example, in cases where a compound treatment at a specific dose had five replicates, 

we sampled 1,000 groups of five randomly sampled non-replicate profiles of the same dose. 

We used level 4 profiles considering compound and dose information as replicates, and we 

considered a replicating profile one in which the ground truth median pairwise replicate 

correlation was higher than 95% of the null distribution. We therefore calculate the percent 

replicating metric as the proportion of all replicating profiles over all common perturbations. 

This 95% thresholding procedure is equivalent to calculating per-treatment non-parametric p 

values (by counting how many times the replicate pairwise correlation was greater than the 

non-replicate null distributions) and reporting how many compounds were above an alpha 

p-value threshold of 0.05. We report this percent replicating implementation in Figure 1.

We also calculated percent replicating by relaxing the two null distribution constraints 

separately. We performed the procedure as described above except we 1) did not require 

the non-replicates be drawn from the same well position and 2) did not require the non-

replicates to be drawn from the same dose. We relaxed these constraints to observe the 

impact of well position and dose on percent replicating interpretation. We compare these 

results in Figure S7.

Calculating reproducibility metrics - percent strong—We also introduced and 

calculated a second metric, which we called “percent strong” (see Figure S8). In percent 

strong, we construct the non-replicate null distribution without adjusting for well position 

or replicate cardinality. We did still, however, calculate both dose-specific and dose-

independent null distributions. Specifically, for dose-specific metrics, for each modality and 

normalization strategy independently, we calculate a single null distribution for each dose by 

randomly sampling 1,000 groups of non-replicate profiles per replicate cardinality (the same 

null distributions for percent replicating, but we ignore replicate cardinality) and compare 

them to median non-replicate pairwise correlations. For our dose-independent analysis, we 

do not restrict profiles from being measured at the same dose.

We subsequently calculate percent strong as the percentage of replicate median pairwise 

Spearman correlations greater than 95% of the full non-replicate null distribution. Percent 

strong provides more possible combinations of non-replicate sampling and therefore is not 

as susceptible to sampling biases as percent replicating. In other words, because percent 

replicating strictly samples non-replicates from the same well, if a specific well, by chance, 

housed similar perturbations, the non-replicate distribution might be unduly skewed and 
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deflate percent replicating scores. Percent strong is the least constrained null distribution and 

is robust to normalization strategy and subsampling (see subsampling subsection).

We calculated percent replicating and percent strong using Cell Painting and L1000 input 

data with five different normalization strategies: 1) Cell Painting level 4 spherized profiles; 

2) Cell Painting level 4 non-spherized profiles (median aggregated features with z-score 

normalization); 3) Cell Painting level 4 spherized subsampled profiles (see below); 4) L1000 

level 4 spherized profiles; and 5) L1000 level 4 non-spherized profiles. We also calculated 

percent strong without dose-specific null distributions (dose-ind.) and after filtering edge 

wells using spherized Cell Painting level 4 and non-spherized L1000 level 4 profiles.

Subsampling Cell Painting level 4 profiles to match L1000 replicate count—
We collected fewer L1000 profiles than Cell Painting profiles. In most cases, with some 

exceptions, we collected three L1000 replicates and five Cell Painting replicates. We 

collected samples according to standard operating procedures for both assays, which pertain 

to sample handling and costs.

To determine the extent to which our percent replicating metrics were biased by replicate 

count, we performed a subsampling experiment using the spherized Cell Painting profiles. 

Specifically, we randomly sampled Cell Painting profiles without replacement to match 

exactly the same number of L1000 replicates for the individual compound of interest. Using 

this subsampled dataset, we calculated percent replicating. We also recalculated the null 

distribution using subsampled profiles.

Plate diffusion analysis to test the impact of plate position effects—We 

performed a plate diffusion analysis to assess plate position biases in Cell Painting and 

L1000 data. Specifically, for a given well w with treatment x collected on plate map 

P, we collected all non-replicate samples across all plate maps except P in a specific 

well neighborhood as defined by diffusion parameter d. In other words, we selected all 

non-replicate wells in a predefined local neighborhood around well w. We used five different 

diffusion parameters (0, 1, 2, 3, and 4) to define this neighborhood. For d=0, we only 

included non-replicate samples from the same well, for d=1, we included all adjacent 

neighbors of well w on different plate maps, for d=2, we included all adjacent neighbors 

plus all neighbors’ neighbors on different plate maps, and so on. After defining these non-

replicate samples, we calculated all combinations of pairwise replicate correlations between 

treatment x and all non-replicate samples and calculated the mean of the distribution of 

well-neighborhood pairwise correlations.

Furthermore, we not only considered the local neighborhood around well w, but also the 

local neighborhood around the hypothetical plate-flipped version of well w (e.g. well P24 

is the flipped version of well A01) in collecting non-replicates to analyze. In practice, the 

scientists collecting the data put the 384-well plate in the data collection machine in one of 

two orientations. Including this mirror parameter ensures that our diffusion analysis captures 

any technical plate effects introduced by different plate orientations.
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We used the same five level 4 input data sets with different normalization strategies as 

we defined in the percent replicating and percent strong methods subsection. We report 

the mean of the total well-neighborhood pairwise correlations to determine consistent plate 

position technical artifacts per well position. If a strong plate position effect were present, 

then we would expect to see neighborhood correlations substantially drop with increasing 

diffusion.

Quantitative assessment of profile clustering—Using spherized Cell Painting level 

4 profiles and non-spherized L1000 level 4 profiles, we performed three iterative clustering 

analyses in which we fit algorithms across a range of cluster numbers between k = 2 and 

k = 40 and acquired three goodness-of-fit heuristics (Silhouette scores, Davies Bouldin 

scores, and Bayesian Information Criterion (BIC) scores) for both datasets. Briefly, the 

Silhouette score is a metric indicating how separable clustering solutions are, with a score of 

1 indicating that the identified clusters are clearly separable (Rousseeuw, 1987). The Davies 

Bouldin score quantifies the ratio of within-cluster distances to between-cluster distances 

when comparing each cluster to their most similar neighboring cluster, and a lower value 

indicates more separable clusters (Davies and Bouldin, 1979). BIC is a measurement of 

cluster likelihood and cluster predictability with an added penalty for increased cluster 

number, and a lower value indicates better clustering (Schwarz, 1978). We visualize the 

tradeoff of these heuristics as we fit clustering algorithms with increasing cluster numbers.

For each model fitting, we used all 1,327 common compounds transformed into PCA space 

using 350 components. Therefore, we fit all clustering algorithms and calculated goodness-

of-fit metrics using data of the same feature dimension, which, if not identical, can skew 

metrics and make comparison difficult.

Specifically, we applied k-means clustering with a maximum of 1,000 random iterations, 

across the k=2 to k=40 cluster number range, and calculated Silhouette and Davies Bouldin 

scores from the resulting cluster solutions. We also fit full covariance Gaussian Mixture 

Models (GMM) with a k-means initialization and 1,000 maximum iterations, and we 

calculated BIC scores from the resulting clustering solutions. We performed this procedure 

using profiles resulting from each of the six different treatment doses independently, as well 

as using all profiles combined.

Calculating signature strength and activity score—To compare how different 

compound perturbations impacted individual feature measurements for both L1000 gene 

expression and Cell Painting morphology assays, we calculated signature strengths and 

activity scores as previously described (Subramanian et al., 2017a). Specifically, signature 

strength counts the number of features that substantially change when a sample is perturbed 

with a specific compound. We determined a substantially changed feature as one with 

a value greater than 2 after multiplying its z-score (transformed with respect to all 

compounds) by the square root of the number of replicates. We multiply by the square root 

of the number of replicates to enable more direct comparison of scores across compounds 

with different replicate counts.
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Counting features in this fashion is equivalent to computing the absolute magnitude of 

change – we are implicitly transforming each feature so that values above 2 (or below −2) 

are mapped to 1 (or −1) and the rest are mapped to 0 (a “hard” sigmoid), and are then 

measuring the L1 norm (or L1 magnitude) of the resulting transformed vector. Intuitively, 

compounds that induce many features to high absolute value z scores are disruptive of steady 

state, and compounds that don’t change many features are not broadly strong perturbations. 

Instead, these compounds may either have little impact or be highly specific, meaning they 

only target one, or a few features strongly.

Activity score, either Morphological Activity Score (MAS) or Transcriptional Activity Score 

(TAS) for the Cell Painting or L1000 assays respectively, is the geometric mean of signature 

strength and median replicate correlation, normalized by the square root of number of 

features in the assay such that the resulting metric ranges between 0 and 1. A high activity 

score indicates compounds that reproducibly induce large changes in many features for a 

particular assay readout.

Identifying independent groups of features in assay measurements—To analyze 

feature redundancy and estimate the number of feature modules per assay, we calculated 

pairwise Pearson correlations of level 5 consensus profiles of Cell Painting (spherized) 

and L1000 (non-spherized) assays. We applied the same feature selection procedure in 

both assays, using pycytominer (Way, G.P., Chandrasekaran, S.N., Bornholdt, M., Fleming, 

S.J., Tsang, H., Adeboye, A., Cimini, B., Weisbart, E., Ryder, P., Stirling, D., Jamali, 

N., Carpenter, A.E., Singh, S., 2021). Specifically, we removed redundant features (as 

defined as having pairwise Pearson correlations < 0.9), features with low variance, and 

blocklist features (Way, 2020). This resulted in 1,020 Cell Painting features and 974 L1000 

features. We calculated pairwise Pearson correlations of these features for all common 

compounds perturbed with 10 μM of compound. We visualized feature-level correlations 

using ComplexHeatmap (Gu et al., 2016).

Using sci-kit learn (Pedregosa et al., 2011), we applied principal component analysis 

(PCA) with n_components = 150 using feature-selected level 4 profiles for each assay 

independently. PCA provides the percentage of variance explained for each orthogonal 

component, and we use this information to determine the variety of signals in each feature 

space (Jolliffe, 1986).

MOA prediction - Calculating percent matching—For our percent matching metric, 

we performed a similar procedure as percent replicating (see above). The only differences 

were that we (1) used level 5 consensus signatures from both data sets and (2) considered 

MOA and dose information as replicates. We used level 5 consensus signatures instead of 

level 4 replicate signatures, because consensus signatures are less noisy and correct for 

potential different replicate cardinalities per compound within an MOA. We only considered 

MOAs that had three or more annotated compounds. This resulted in an analytical set of 127 

unique MOAs. We considered compounds annotated with multiple MOAs as independent 

entities.
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We subsequently constructed dose and MOA compound cardinality-specific null 

distributions to compare against. Specifically, for each MOA, we calculated its median 

pairwise replicate correlation. We next randomly sampled 1,000 groups of level 5 consensus 

profiles of the same cardinality of the MOA compound count. For example, if an MOA 

contained 10 compounds, we formed one group by randomly sampling 10 compounds from 

different MOAs. We only sampled compounds measured at the same dose, and we did not 

include any two compounds of the same MOA in each random sample. For each of the 1,000 

randomly groups, we calculated median pairwise correlations, which formed our percent 

matching null distribution. Lastly, we calculated a compound specific p value by dividing 

how many times the real median pairwise correlation of replicates was higher than all 1,000 

randomly sampled groups of median pairwise correlations. We considered a matched MOA 

one in which the ground truth MOA median pairwise correlation was higher than 95% of the 

null distribution. We therefore calculate the percent matching metric as the total number of 

matched MOAs over all common MOAs.

We also repeated the above percent matching procedure without the same-dose requirement 

for 1) the replicate compounds belonging to the same MOA and 2) the randomly sampled 

null distribution. To prevent overinflated metrics and to ensure signal is driven by different 

compounds of the same MOA, we did not consider replicates of the same compound 

across different doses when calculating median pairwise replicate correlations. In addition to 

calculating all-dose percent matching with the core 127 MOAs that passed the within-dose 

compound count filtering criteria, we also calculated percent matching with a relaxed MOA 

filtering. Specifically, when we considered the “All” dose comparison, we relaxed the MOA 

count constraint to contain two or more annotated compounds, which resulted in 210 unique 

MOAs. In effect, this enabled us to compare MOAs with two annotated compounds across 

multiple doses (“All” vs. “All*” bars in Figure 4 and Figure S17).

Calculating average precision for compound MOAs and compound gene 
targets—In a similar approach as described in the percent matching section above, we 

also calculated average precision as a metric to compare similarity of profiles targeting 

the same MOA and the same genes. We used this additional metric because percent 

matching measures cluster compactness and recall, and thus risks overlooking differences 

in separation among clusters of samples. Although the degree of separation among clusters 

is captured to some degree by the null, especially when it includes other samples and not 

just the negative control DMSO, this does not fully mitigate the issue. By contrast, average 

precision instead estimates the area under the precision recall curve, by averaging precision 

at various recall thresholds, thus measuring cluster separation, or, how compounds from the 

same MOA appear different from other compounds.

We used cmapPy version 4.0.1 to calculate pairwise Pearson correlations of all profiles 

within each dose and assay, independently (Enache et al., 2018). To avoid false negatives 

and extremely low positive counts, we considered compounds annotated with multiple 

MOAs or multiple gene targets as a positive match if one of their annotations overlapped 

with compounds with singleton annotations.
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We calculated average precision by comparing Pearson correlation to ground truth 

annotations. Average precision calculates the mean of precision at each threshold in a 

precision-recall curve. We used the default “macro” average method in scikit-learn version 

0.24.2 to calculate average precision, which does not weight precision means per label. We 

repeated this procedure without the same-dose constraint, designating repli

Supervised mechanism of action prediction: Multilabel-classification 
framework—We structured the classification task to predict compound MOAs and GO 

terms from different input profiling modalities. Specifically, we created a binary label matrix 

for each individual MOA or GO term with corresponding labels for each compound. This 

formulation created a multi-label framework because many compounds have previously 

been annotated with two or more specific mechanisms (Corsello et al., 2017). For example, 

if a compound is annotated to mechanism “A” and mechanism “B”, the binary matrix would 

include positive labels for two different columns.

We used Cell Painting and L1000 profiles to predict the same MOA or GO term binary 

matrix. In all cases, we used level 4 replicate profiles as input for model classification. For 

Cell Painting, we used feature-selected spherized profiles (level 4bs) and for L1000 we used 

non-spherized profiles. We treated each input datasets in exactly the same fashion as we 

describe in the subsections below.

Supervised mechanism of action prediction: Training and test splits—In order 

to prevent signal leakage from the training set into the test set, we carefully split the 

compounds as input into the training and test sets. Specifically, we first split compounds 

based on MOA count. This means, for example, that if an MOA was represented by just 

one compound, we placed that compound in the training set. However, if an MOA had more 

than one compound, we split the compounds for that individual MOA between training and 

test set based on the 80/20 train/test ratio. Because some compounds are annotated to more 

than one MOA (hence “multi-label”), we needed to iterate, repeating the random splits, 

until these conditions were satisfied for all MOAs. Ultimately, this results in zero overlap of 

compounds in the training set compared to the test set. We used the same exact training and 

test set compounds for each assay.

To ascertain and verify that the classification models are learning from the training set and 

that they could generalize well on test set data, we created a shuffle data set using data in the 

training set. The shuffle data set consists of the same features and data as the normal training 

set, but we randomly shuffled target labels. We provided incorrect MOAs for all replicate 

profiles, and retrained and reevaluated all models on the same tasks.

Supervised mechanism of action prediction: Cross validation and model 
selection—To account for class imbalance in compound replicates in each multi-label 

MOA in the training set, we divided the compounds into two major groups based on 

treatment replicate count: less frequent and highly frequent. The same compound may 

be annotated to multiple MOAs, but we considered each MOA label independently when 

splitting data for cross validation.

Way et al. Page 22

Cell Syst. Author manuscript; available in PMC 2023 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We then applied a 5-fold double-stratified cross-validation strategy to the training set. 

We split compounds across cross-validation folds balanced by MOA (or GO term) and 

according to compound replicate count. Specifically, we assigned replicates of less frequent 

compounds to the same fold, but we distributed replicates of highly frequent compounds 

evenly across folds. The threshold for dividing the compounds into less frequent and highly 

frequent categories is 20 for L1000 and 25 for Cell Painting. This threshold number means 

if the compound is found in less than 20 or 25 replicates in the training set it is considered 

less frequent, otherwise it is considered highly frequent. In practice, most compounds in 

our training set belonged to the “less frequent” category. This procedure, termed “drug 

stratification” in the MOA Kaggle competition (Kaggle.com et al., 2020), caused our 

training folds to be evenly distributed by MOA category and to mostly contain unique 

compound perturbations, which encourages models that generalize to never-before-seen 

compounds. We used our cross validation strategy to select optimal hyperparameters, but 

only evaluated models using a held-out test set of unique compounds.

Supervised mechanism of action prediction: Model architecture—We chose 

models for the multi-label MOA predictions from the top-2 winners from the MOA 

Kaggle competition (Kaggle.com et al., 2020). The models included 1D-Convolutional 

Neural Network (1D-CNN), TabNet (Attentive Interpretable Tabular Learning), Residual 

Neural Network (ResNet) and Simple Neural Network (Simple-NN) (Arik and Pfister, 

2019; Fukushima, 1980; He et al., 2016; LeCun et al., 2015). We modified the winning 

architectures to handle different assay input dimensions.

Specifically, the 1D-CNN architecture consisted of four convolutional layers with kernel 

sizes of 3 and 5, stride of 1 and padding sizes of 2 and 1. We added adaptive and max 

pooling layers, as well as batch normalization (Ioffe and Szegedy, 2015) and drop-out layers 

within the convolutional architecture to encourage better model generalization. The TabNet 

architecture consisted of a width of 64 for the decision prediction layer, a width of 128 for 

the attention embedding for each mask, 1 step in the architecture and gamma value of 1.3. 

The ResNet architecture consisted of six fully-connected layers with batch normalization 

and drop-out layers included within the architecture. We used rectified linear units (RELU) 

and exponential linear units (ELU) as activation functions between layers (Agarap, 2018; 

Clevert et al., 2015). The Simple-NN architecture consisted of three fully-connected layers 

accompanied with batch normalization layers, drop-out and linear activation function layers. 

The optimization phase for all the models was done using Adam Optimizer with varying 

learning rates (Kingma and Ba, 2014). We independently optimized each architecture using 

data from each assay using the cross validation strategy as described above.

We also used an ensemble of the above-mentioned models in the MOA predictions by 

combining individual model predictions (weighted equally), then averaging the predictions 

to get an ensemble/blended version of all the models. We used multi-label k-nearest 

neighbors (K-NN) as a baseline model to compare performance (Altman, 1992; Fix and 

Hodges, 1951).

For complete details of all architectures and implementation instructions, refer to https://

github.com/broadinstitute/lincs-profiling-complementarity (Way et al., 2021a).
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Supervised mechanism of action prediction: Feature engineering and data 
normalization—Prior to model training, we added features to the training and test sets. 

These features included principal components, UMAP features, factor analysis components, 

and statistical features such as sum, mean, kurtosis and standard deviation of all the features, 

for all four input datasets. Specifically, we added 25 UMAP features and 50 factor analysis 

components from the existing data prior to the Simple-NN, and we added 25 principal 

components to the 1D-Convolutional Neural Network, TabNet and ResNet models. Lastly, 

we added statistical features to the TabNet model. We normalized all features using z-score 

normalization prior to model training.

Supervised mechanism of action prediction: Model evaluation—The output of all 

the models is a probabilistic value between 0 and 1 corresponding to the probability of the 

model predicting a given MOA class label. We evaluated models calculating area under the 

Precision-Recall curve (AUPR). AUPR is a threshold-invariant metric that takes into account 

recall and precision, of which precision is particularly important because it measures 

the fraction of correct predictions among the positive predictions. AUPR accounts for 

imbalanced datasets, which is useful for evaluating classification tasks in highly imbalanced 

datasets (Saito and Rehmsmeier, 2015). We also calculated AUPR in randomly shuffled 

MOA class labels. To create this randomly shuffled matrix, we kept the MOA label count 

the same per MOA. To prevent unbalanced evaluation metrics in the test set, we removed 

bortezomib (positive control) from all evaluations.

We used micro-averaging in our AUPR calculation for both “global” performance and per-

MOA metrics. For the “global” AUPR (total performance) we aggregate the contributions 

of all compounds to compute the average metric. For the per-MOA AUPR we aggregate the 

contributions of all compounds annotated to the specific MOA.

Supervised Gene Ontology term prediction—For predicting GO terms, we repeated 

the same supervised learning procedures as described above for compound MOAs. A major 

step that was different for the GO term analysis was the requirement to map compound 

target annotations to GO terms.

In addition to MOA annotations, The Drug Repurposing Hub also includes gene target 

annotations for most compounds. We mapped these gene target annotations to all GO 

Biological Process, GO Molecular Function, and GO Cellular Component terms (GO.db 

version 3.14.0 (Carlson, 2017a)) using topGO version 2.46.0 (Adrian Alexa, 2017; Alexa et 

al., 2006) and org.Hs.eg.db version 3.14.0 (Carlson, 2017b). The same compound may be 

annotated to multiple gene targets, and we considered each gene target label independently. 

For example, if a compound targeted HDAC1 and PIK3CA, we considered that compound 

to belong to all GO terms containing both genes. We only considered GO terms for 

downstream supervised learning predictions if the term had 20 or more unique compound 

annotations. This procedure resulted in a total of 773 GO terms to predict.

QUANTIFICATION AND STATISTICAL ANALYSIS

We performed all statistical analysis using the packages outlined in the Key Resources Table 

and can be reproduced in full using the details outlined in the computational reproducibility 
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and data availability sections. We chronologically discuss complete descriptions of all 

statistical procedures in relevant results and/or methods sections.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Cell Painting (morphology) and L1000 (mRNA) are complementary profiling 

assays

• Cell Painting is more reproducible but with more batch effect than L1000

• Cell Painting offers higher sample diversity but lower feature diversity than 

L1000

• Some drugs and pathways are captured and predicted better by one assay or 

the other
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Figure 1. Cell Painting and L1000 data provide complementary measurements of compound 
perturbations across doses.
(a) An example Cell Painting image of a single A549 lung cancer cell measured across five 

channels. We show a merged representation as well. ER = endoplasmic reticulum; Mito = 

mitochondria; AGP = actin, Golgi, plasma membrane. Scale bar is 20 μm. (b) The percent 

replicating metric measures the percentage of profiles that correlate with each other to a 

level higher than a carefully-matched and randomly-sampled null distribution. See methods 

for full details about sampling and data processing. The dotted blue line indicates the 95th 

percentile of the matched non-replicate distribution. (c) Median pairwise replicate Spearman 

correlations between profiles measured by the L1000 assay (y axis) and Cell Painting assay 

(x axis). The dotted black line is the line y = x, so anything above is measured with a 

higher replicate correlation in L1000 and vice versa. (d) The L1000 and Cell Painting 

assays reproducibly measure a complementary set of compound perturbations. The three 

numbers represent (from top to bottom) the number of compounds unique to L1000, the 

number of compounds captured in both assays, and the number of compounds unique 

to Cell Painting that have median pairwise replicate correlations above the randomized 

non-replicate correlation threshold.
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Figure 2. Cell Painting captures a more diverse sample space than L1000.
(a) Uniform manifold approximation (UMAP) coordinates of all perturbations (level 4 

replicates) across all doses by Cell Painting (left) and L1000 profiles (right). We highlight 

select MOAs that are consistently different from DMSO controls in either modality. Note 

that Cell Painting data is spherized and L1000 data is not, as explained in the main text; 

here this manifests in quite different patterns for the negative control DMSO samples. In 

particular, many of the otherwise-distinct islands of compounds for L1000 are populated 

by negative control DMSO. (b) Heatmaps of pairwise Pearson correlations of all measured 

compounds’ consensus signatures (see Methods) in either assay at the highest dose (10 μM) 

plus positive-control proteasome inhibitors at 20 μM and DMSO negative controls.
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Figure 3. Cell Painting morphology features are more redundant than L1000 gene expression 
features.
(a) Heatmaps of pairwise Pearson correlations of 1,020 Cell Painting features and 974 

L1000 features, in each case derived from feature-selected consensus signatures of the 

same compound treatments at 10μM. (b) The same data plotted as a density plot shows 

the distribution of correlations between pairs of L1000 or Cell Painting features. (c) The 

percentage of variance explained for the top 30 principal components derived from a 

Principal Component Analysis (PCA) in Cell Painting or L1000 readouts. (d) Comparing 
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activity scores for highly reproducible compound perturbations (as defined by having 3 

or more doses passing the percent strong threshold) reveals that most compounds induce 

a higher number of morphological changes than gene expression changes. (e) The mean 

MAS and TAS for compounds that are reproducible in at least three doses, with labels 

for compounds with the largest difference between MAS and TAS. (f) Overrepresentation 

analysis (ORA) for gene ontology (GO) terms using the genes most impacted by each 

individual compound treatment. We selected these compounds to include those that are 

reproducible in both L1000 and Cell Painting and that induce a high activity score in one 

assay, and a low activity score in the other. Each point is a GO term, comprising L1000 

landmark genes that were consistently modulated by that compound.
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Figure 4. Cell Painting and L1000 differentially measure compound perturbations by mechanism 
of action (MOA).
(a) Percent matching metrics for median pairwise replicate correlations of groups of 

compounds with a given MOA annotation, measured in both assays and across doses. The 

color of the point represents how many compounds were annotated to a given MOA class. 

(b) Median correlation between compounds annotated with the same MOA. We derived the 

null threshold through a nonparametric permutation test of randomly sampled compounds 

(see Methods). The size of the points represent how many compounds belong to the MOA 

class. (c) The L1000 and Cell Painting assays reproducibly measure a complementary set of 

MOAs. The three numbers represent (from top to bottom) the number of MOAs unique to 

L1000, the number of MOAs captured in both assays, and the number of MOAs unique to 

Cell Painting that have higher signal than a randomly permuted null distribution control. The 

All* bar represents matched MOAs for the 127 MOA set and the All bar represents matched 

MOAs for the 210 MOA set. Average precision of Cell Painting and L1000 compounds with 
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different (d) MOA and (e) gene target annotations. We highlight certain high performing 

MOAs and targets.
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Figure 5. Predicting compound mechanisms of action (MOA) in Cell Painting and L1000 reveals 
overlapping and complementary performance for different mechanisms.
(a) Deep learning workflow. We collected compound Cell Painting and L1000 data 

from compound perturbations and trained five different deep learning models to predict 

compound MOA and Gene Ontology terms. (b) Held out test set precision-recall curves for 

three well performing MOAs in both assays. (c) Individual MOA performance by held out 

test set area under the precision-recall curve (AUPR) in the top performing model using 

Cell Painting and L1000 data. (d) Overall held out test set model performance measured 

by AUPR for MOA prediction for our multi-label, multi-class prediction framework. We 

trained models from a recent Kaggle competition plus a K nearest neighbors baseline model. 

The dotted bar chart represents a negative control in which we trained models with shuffled 

labels. The solid lines indicate ensemble model performance by blending model predictions 

(see Methods). We trained all models using level 4 replicate profiles.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant 
Proteins

Buffer TCL QIAGEN Cat# 1031576

Tetramethylammonium chloride (TMAC) RSA Corporation Cat# 344

Puromycin Sigma-Aldrich Cat# P9620

SAPE Lifetech Cat# S21388

DMEM Fisher Scientific Cat# MT-10-017-CV

RPMI1640 Medium Mediatech Cat# 10040CV

100X penicillin-streptomycin-glutamine Invitrogen Cat# 10378-016

Fetal bovine serum (FBS) Sigma-Aldrich Cat# F4135

16% (wt/vol) Paraformaldehyde (PFA), 
methanol free

Electron Microscopy 
Sciences

Cat# 15710-S

HBSS (10×; Invitrogen) Invitrogen Cat# 14065-056

Triton X-100 Sigma-Aldrich Cat# T8787

Sodium bicarbonate HyClone Cat# SH30033.01

Methanol VMR Cat# BDH1135

MitoTracker Deep Red Invitrogen Cat# M22426

Wheat-germ agglutinin/Alexa Fluor 555 
conjugate

Invitrogen Cat# W32464

Phalloidin/Alexa Fluor 568 conjugate Invitrogen Cat# A12380

Concanavalin A/Alexa Fluor 488 conjugate Invitrogen Cat# C11252

Hoechst 33342 Invitrogen Cat# H3570

SYTO 14 green fluorescent nucleic acid stain Invitrogen Cat# S7576

DMSO Fisher Chemical Cat# D128-500

Critical Commercial Assays

384 TurboCapture Kit QIAGEN Cat# 72271

HotStarTaq Kit QIAGEN Cat# 203209

M-MLV Reverse Transcriptase Kit Promega Cat# M1705

Taq Ligase Kit NEB Cat# M0208L

MagPlex Microspheres Luminex N/A

Cell Titer Glo Promega Cat#G7573

Deposited Data

L1000 dataset (∼1.3M profiles) https://doi.org/10.1016/
j.cell.2017.10.049

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE92742

Auxiliary datasets and metadata https://doi.org/10.1016/
j.cell.2017.10.049

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE92742

L1000 assay probes and analyte mappings https://doi.org/10.1016/
j.cell.2017.10.049

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GPL20573

L1000 profiles This paper https://doi.org/10.6084/m9.figshare.13181966.v2

Cell Painting images This paper Image data resource accession number idr0125

Cell Painting profiles This paper https://doi.org/10.5281/zenodo.5008187

Experimental Models: Cell Lines

MCF7 (Cancer cell line; Breast; Female) ATCC HTB-22

Cell Syst. Author manuscript; available in PMC 2023 November 16.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742
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REAGENT or RESOURCE SOURCE IDENTIFIER

A549 (Cancer cell line; Lung; Male) ATCC CCL-185

U2OS (Cancer cell line; Bone; Female) ATCC HTB-96

Oligonucleotides

LUA sequences IDT https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GPL20573

L1000 probe pairs IDT https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GPL20573

T7 biotinylated primer: /5Biosg/
TAATACGACTCACTATAGGG

IDT N/A

T3 primer: CAATTAACCCTCACTAAAGG IDT N/A

Software and Algorithms

Reprodicible analysis repository https://github.com/
broadinstitute/lincs-
profiling-complementarity

https://doi.org/10.5281/zenodo.6522802

LINCS Cell Painting image-based profiling 
pipeline

https://github.com/
broadinstitute/lincs-cell-
painting

https://doi.org/10.5281/zenodo.5008187

CellProfiler https://github.com/
CellProfiler/CellProfiler

v2.3.1

cytominer-database https://github.com/
cytomining/cytominer-
database

v0.3.3

pycytominer https://github.com/
cytomining/pycytominer

Github Hash: 
4f37e019918256111933aed4e3b9afb50055b4a1

pandas McKinney et al. 2010 v1.2

scikit-learn Pedregosa et al. 2011 v0.24.2

cmapPy Enache et al. 2018 v4.0.1

GO.db Carlson 2017a v3.14.0

org.Hs.eg.db Carlson 2017b v3.14.0

topGO Alexa et al. 2017 v2.46.0

python Van Rossum and Drake 
2009

v3.9.1

R R Core Team 2021 v3.5.1

ggplot2 Wickham 2016 v3.3.0

anaconda Anaconda Inc. 2021 v4.10.3

Other

Detailed L1000 assay protocol https://doi.org/10.1016/
j.cell.2017.10.049

https://clue.io/sop-L1000.pdf

Detailed cell culture protocols https://doi.org/10.1016/
j.cell.2017.10.049

https://clue.io/sop-cell.pdf

Detailed Cell Painting protocol https://www.nature.com/
articles/nprot.2016.105

Cell Painting protocol v2 (Bray et al.)
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