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ABSTRACT
Dysbiosis of gut microbial community is associated with the pathogenesis of CD and may serve as 
a promising noninvasive diagnostic tool. We aimed to compare the performances of the microbial 
markers of different biological levels by conducting a multidimensional analysis on the microbial 
metagenomes of CD. We collected fecal metagenomic datasets generated from eight cohorts that 
altogether include 870 CD patients and 548 healthy controls. Microbial alterations in CD patients 
were assessed at multidimensional levels including species, gene, and SNV level, and then 
diagnostic models were constructed using artificial intelligence algorithm. A total of 227 species, 
1047 microbial genes, and 21,877 microbial SNVs were identified that differed between CD and 
controls. The species, gene, and SNV models achieved an average AUC of 0.97, 0.95, and 0.77, 
respectively. Notably, the gene model exhibited superior diagnostic capability, achieving an 
average AUC of 0.89 and 0.91 for internal and external validations, respectively. Moreover, the 
gene model was specific for CD against other microbiome-related diseases. Furthermore, we found 
that phosphotransferase system (PTS) contributed substantially to the diagnostic capability of the 
gene model. The outstanding performance of PTS was mainly explained by genes celB and manY, 
which demonstrated high predictabilities for CD with metagenomic datasets and was validated in 
an independent cohort by qRT-PCR analysis. Our global metagenomic analysis unravels the multi-
dimensional alterations of the microbial communities in CD and identifies microbial genes as 
robust diagnostic biomarkers across geographically and culturally distinct cohorts.
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Introduction

Crohn’s disease (CD), one of the two main forms of 
inflammatory bowel disease (IBD), is characterized 
by skip lesions and transmural inflammation of the 
gastrointestinal tract. The incidence of CD has risen 
globally in the past two decades, causing substantial 
economic burdens for patients and society.1,2 

Currently, diagnosis of CD is mainly based on the 
combined evaluation of endoscopic, radiographic, 
and pathological findings.3,4 However, the 

diagnostic power of endoscopy is often limited by 
patient compliance, bowel preparation quality, and 
other uncontrollable factors.5 Therefore, a sensitive, 
specific, and convenient noninvasive diagnostic tool 
for CD is urgently needed.

Serological and fecal biomarkers, such as 
C-reactive protein and fecal calprotectin, have 
been used as indicators to evaluate inflammatory 
activity in IBD.6,7 However, the accuracy and spe-
cificity of these biomarkers are not satisfactory. 
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Recently, the diagnostic potential of microbial sig-
natures has emerged as potential diagnostic mar-
kers for IBD.8–12 For instance, Pascal et al. 
constructed a diagnostic model using microbial 
species abundance and achieved a sensitivity of 
81.8% for CD.11 Similarly, Franzosa et al. reported 
a model that achieved an area under the ROC curve 
(AUC) of 0.92.12 Along this line, future efforts are 
needed to conduct similar analyses that incorpo-
rate multiple cohorts of distinct cultural and geo-
graphical backgrounds to identify markers of 
universal value.

Notably, species abundance may not be an accu-
rate representation of the microbial functions as 
reflected by the fact that the nomenclatures of 
many gut microbial species are currently and 

constantly being adjusted. In this regard, the diag-
nostic value of microbial genes and their poly-
morphisms has become a popular subject of 
investigation13–16 (Figure 1b). For example, micro-
bial functional genes outperformed microbial spe-
cies in distinguishing CRC from controls14. 
Similarly, a recent study demonstrated high accu-
racy of microbial SNVs for diagnosing CD17. 
Currently, an integrated investigation on multidi-
mensional signatures of CD at species, gene, and 
SNV levels is lacking and seems to be warranted in 
the clinic.

In this study, using large numbers of whole- 
metagenome sequencing (WMS) samples from 
multiple cohorts, we constructed diagnostic models 
for CD and systematically assessed the 

Figure 1. Overview of the fecal samples included in this study and the analysis protocol. (a) We collected a total of 1418 samples from 
eight cohorts with fecal shotgun metagenomic data. The discovery dataset included PRJNA398089 (D1), PRJNA385949 (D2), 
PRJNA400072 (PRISM) (D3), SRP057027 (D4) and PRJEB15371 (D5). The validation dataset included PRJNA389280 (V1), PRJEB1220 
(V2) and PRJNA400072 (LifeLines DEEP and NLIBD) (V3). (b) Three levels of analysis were conducted in this study: species, gene, and 
microbial SNV levels. (c) the overall workflow of the study: Firstly, the microbial alterations were identified to retrieve the differential 
multidimensional signatures of gut microbiome. Subsequently, diagnostic models were constructed and the optimal model was 
selected according to the performances of the models in internal and external validations. Finally, disease specificity of model was 
evaluated and model interpretation was conducted for final determination of the microbial biomarker, and then biomarkers were 
validated by qRT-PCR analysis.
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predictabilities of multidimensional signatures. 
Candidate biomarkers for CD diagnosis were iden-
tified and further validated by qRT-PCR with an 
independent cohort. Collectively, these results 
uncover multidimensional alterations of microbial 
communities in CD patients and provide universal 
and robust biomarkers for CD diagnosis.

Results

Characterization of multicohort WMS data and 
study design

In this study, we collected eight fecal shotgun meta-
genomics datasets from published studies to char-
acterize the gut microbiome in CD patients 
compared to that in healthy controls (Figure 1a). 
Patients with a non-inflamed status and those trea-
ted with antibiotics were excluded. In total, we 
included 785 samples from CD patients and 456 
healthy control samples across geographically dis-
tinct regions from the U.S.A. and China as the 
discovery dataset. In addition, 85 CD samples and 
92 controls from three independent cohorts from 
the U.S.A., Spain, and the Netherlands were 
included as the validation dataset. The overall pro-
tocol for this study (Figure 1c) was based on the 
workflow of a previous study18 with modifications.

Multidimensional alterations in gut microbial 
profiles in CD patients

First, the effects of major confounders were assessed 
to be not significant (Figure S1), and differential 
signatures were identified at the species, gene, and 
SNV levels after adjusting for batch effects using the 
MMUPHin approach. At the species level, we found 
that alpha and beta diversities were significantly dif-
ferent between CD patients and controls (Figure 2a- 
b). A total of 80 bacterial species were identified with 
significantly different abundances between CD and 
control, such as Escherichia coli, Flavonifractor plautii, 
Klebsiella pneumoniae, and Bacteroides intestinalis. 
(Figure 2c ; Supplementary Table S5). Besides, 147 
non-bacterial species including 70 fungi, 42 viruses, 
and 35 archaea exhibited differential abundances 
between CD and controls, such as Aspergillus rambel-
lii, Capronia epimyces, Bacteroides phage B124–14, 

Klebsiella virus KpV80, and DPANN group archaeon 
LC1Nh (Figure S2 and Supplementary Table S5). 
Further, we investigated the differences in microbial 
interactions between CD and controls by performing 
co-abundance analysis via SparCC. Interestingly, 
interactions among intra-kingdom species were 
more frequently observed in the network of CD, 
compared to the network of controls (Figure S3), 
indicating large-scale alterations in the structure and 
function of the gut microbiome in CD.

Next, we assessed the microbial alterations at the 
KEGG Orthology (KO) gene level and identified 
497 genes with increased abundance and 1043 
genes with decreased abundance in CD patients, 
such as the genes encoding cellobiose PTS system 
EIIC component (celB), mannose PTS system EIIC 
component (manY), flagellin (fliC) and peptide/ 
nickel transport system permease protein (ABC. 
PE.P) (Figure 2e; Supplementary Table S6). For 
better understanding of these differential KO 
genes, we performed gene set enrichment analysis 
(GSEA). As a result, 59 enriched pathways were 
identified, including 18 pathways with increased 
abundances and 41 with decreased abundances in 
CD patients (Figure S4a and Supplementary Table 
S7). In detail, propanoate metabolism, quorum 
sensing, phosphotransferase system (PTS), and 
purine metabolism exhibited increased abundances 
in CD, while biosynthesis of secondary metabolites, 
pantothenate, and CoA biosynthesis exhibited 
decreased abundances in CD.

For microbial SNV-level analysis, a total of seven 
commonly observed species that have sufficient 
coverage were annotated (see in Method section), 
with the number of SNVs ranging from 74 with 
Bacteroides rodentium to 99,305 with Bacteroides 
vulgatus (Figure S4b and Figure S5). In total, 21,877 
differential SNVs were identified in the seven 
annotated species (Figure S4c). For instance, 
Bacteroides vulgatus, belonging to the most com-
monly encountered Bacteroides species in the 
human colon, had 11,134 significantly differential 
SNVs that were located on genes, such as panC, 
rodA, and ruvB (Figure 2d ; Supplementary Table 
S8). These differential SNVs are potential candi-
dates of risk factors mediating abnormal gene func-
tions. Collectively, we systemically assessed the 
multidimensional microbial alterations in CD 
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Figure 2. Multidimensional alterations in the gut microbiome of CD patients at species-, gene- and SNV-levels. (a) Alpha diversity 
measured by Shannon, ACE, Simpson and Chao1 index of patients with CD (orange, n = 785) and control individuals (blue, n = 456); 
*P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001. (b) Principal coordinate analysis (PCoA) of samples from all five cohorts based 
on Bray–Curtis distance, which shows that microbial compositions were different between groups (R2 = 0.0265, P = 0.001). P values 
were calculated by 999 permutations (two-sided test). (c) Phylogenetic tree showing the differential bacteria species, grouped by the 
phyla. The differential species in each dataset are shown in each circle ‘D1-D5’ (P < 0.05, two-sided test); the meta-analysis results in 
integrated dataset were marked by ‘All’. Increased and decreased abundances are indicated by red and blue, respectively. (d) the 
chord diagram shows the distributions of annotated SNVs in Bacteroides vulgatus genome. The outer circle represents the genome of 
B. vulgatus; the inner circles represent the GC-content (cyan indigo lines), sequencing depth (purple lines) and sites of differential SNVs 
(brown points) in the genome, respectively. (e) UpSet plot showing the number of differential KO genes identified via MaAsLin2 in 
each dataset and those shared by the datasets. The number above each column represents the intersection size of differential KO 
genes. The connected dots represent the common differential genes across connected cohorts. The set size on the right represents the 
number of differential genes in each cohort.
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patients compared to controls, and identified dif-
ferential signatures for further diagnostic model 
construction.

Diagnostic models for CD based on microbial 
multidimensional signatures

Based on all differential signatures at species, gene, 
and microbial SNV levels, we constructed models 
using feedforward neural network (FNN) algo-
rithm. At the species level, we first evaluated the 
capability of single-kingdom species for distin-
guishing CD from controls. The average AUCs of 
the cross-validation based on fungal, viral, and 
archaeal signatures were 0.89, 0.81, and 0.76, 
respectively. Compared to non-bacterial species, 
bacterial species demonstrated a better perfor-
mance in ten-fold cross-validation (average AUC  
= 0.94) (Figure S6a-d). Furthermore, we merged 
single-kingdom signatures together, and found 
that the species model based on multi-kingdom 
signatures had higher diagnostic accuracy with an 
average AUC of 0.97 (Figure 3a ; Figure S6e). 
Interestingly, we noticed that several fungal spe-
cies, including A. rambellii and A. ochraceoroseus, 
were top-ranking features of the model with high 
SHAP values, suggesting their largely alterations in 
CD patients and may be associated with CD patho-
genesis (Figure S7a and Supplementary Table S9).

Subsequently, we constructed a diagnostic model 
using all of the 1047 differential KO genes. The gene 
model achieved an average AUC of 0.95 in 10-fold 
cross-validation, slightly lower than that of the 
multi-kingdom species model (Figure 3a). From 
feature importance evaluation, we found that CDP- 
abequose synthase (rfbJ), type VI secretion system 
protein ImpB (impB), nitrite reductase (NO- 
forming) (nirK), and celB were the most important 
KO genes with SHAP values ranged from 0.006 to 
0.008 (Supplementary Table S10). Notably, the KO 
gene celB was found to be significantly increased in 
CD patients of each dataset (Figure S7b), suggesting 
an outstanding contribution of celB gene to the 
diagnostic power of the model.

Furthermore, we explored the diagnostic 
potentials of microbial SNVs. The SNV model 
achieved an average AUC of 0.77 in cross- 
validation (Figure 3a). The most important 

SNVs were mainly from Bacteroides species 
including B. ovatus, B. vulgatus, and 
B. uniformis (Figure S8a and Supplementary 
Table S11). As the most widely colonized 
microbes in the gut, Bacteroides species contri-
butes to the major diagnostic power of the SNV 
model in our results.

Finally, we constructed a model with the 
combination of species, gene, and SNV signa-
tures (Figure S9d). The combined model 
achieved an average AUC of 0.95. Interestingly, 
the performance of combined model was not 
significantly improved compared to species and 
gene models, and most of the top-ranking fea-
tures were from KO genes (Figure 3a ; Figure 
S8b). These results suggest that the gene signa-
tures are the most powerful biomarkers for CD. 
All the evaluation metrics of our diagnostic 
models in model training and validation are 
provided in Supplementary Table S12 and 
Figure S10.

Gene model achieves superior robustness and 
generalization

To assess the robustness and generalization of spe-
cies, gene, SNV, and combined models, we per-
formed internal and external validations. With the 
internal validation cohorts, the gene model 
achieved the highest average AUCs of 0.87 and 
0.89 in cohort-to-cohort transfer and leave-one- 
cohort-out (LOCO) validation, respectively 
(Figure 3c-d), compared to other diagnostic mod-
els at species and SNV levels (Figure S11a-g). In 
external validation, the gene model also exhibited 
the best performance, with an average AUC of 0.91 
in three independent cohorts (Figure 3b). Taken 
together, the gene model demonstrated superior 
diagnostic capability compared to the species, 
SNV models and even the combined model.

Gene model is highly specific for CD

To ascertain the discriminative power of the gene 
model, that is, the model is specific for CD but not 
other microbiome-related diseases, we chose five 
microbiome-related diseases including UC, CRC, 
PD, T2D, and LC to evaluate the disease specificity 
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of the gene model. Adding UC samples to three 
independent validation cohorts decreased the AUC 
by 6.6%, 10.1%, and 12.9%, respectively (Figure 3e). 
These changes were not significant considering the 
baseline values of the altered AUCs when adding 
CD samples to the validation dataset (decreased 

AUCs by 10.7%, 17.5%, and 20.5%, respectively, 
Figure S11h). With CRC cohort, slight and insig-
nificant changes of AUCs in validation (decreased 
by 0.7%, 1.1%, and 1.3%, respectively) were 
observed. Similarly, slight and insignificant 
changes of AUC were observed in validations 

Figure 3. The performance of diagnostic models constructed with multidimensional signatures. (a) the ROC curves from ten-fold cross- 
validation of species, gene, SNV, and combined diagnostic models. (b) the AUCs of species, gene, SNV, and combined diagnostic 
models in external validation dataset. (c) the AUCs of each model in cohort-to-cohort validation. Each number represents the average 
AUC of validation with the cohort specified by its column tag as the training cohort, and all other cohorts as the validation cohorts. (d) 
the AUC of each model in LOCO validation. Each number represents the resulting AUC of validation with the cohort specified by its 
column tag as the validation cohort while the other cohorts combined as training cohort. (e) Prediction performances as AUC values 
on the validation cohorts when adding an external set of control and case samples from non-CD disease cohorts (ulcerative colitis 
(UC), colorectal cancer (CRC), type-2 diabetes (T2D), liver cirrhosis (LC) and Parkinson’s disease (PD)). Gray and colored bars are the 
AUCs after adding control and case samples from the non-CD disease cohorts, respectively.
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with T2D (increased by 2.0%, 3.4%, and 4.0%, 
respectively), liver cirrhosis (increased by 1.5%, 
2.5%, and 3.0%, respectively), and PD (increased 
by 1.6%, 2.6%, and 3.1%, respectively). Altogether, 
the slight changes in AUCs suggest limited effects 
of the samples with non-CD diseases on the CD 
model, indicating that our diagnostic model is spe-
cific for CD.

Outstanding contributions of phosphotransferase 
system to the diagnostic capability of the gene 
model

To evaluate the respective contributions of each 
gene set and of key gene feature in the gene 
model, the KO gene features were grouped by 
gene set, and the importance of each gene set was 
evaluated as described in Methods section. Relative 
to the baseline AUC of 0.91, the abundance dis-
turbance of the gene sets including quorum sen-
sing, PTS, and ABC transporters caused the 
greatest decrease of AUC in the predictive model 
by 1.09% to 1.70% (Figure 4a). Further, we per-
formed recursive feature elimination using gene 
sets and reconstructed diagnostic models. We 
found that the AUC of cross-validation did not 
decrease significantly until the glycerolipid meta-
bolism gene set was eliminated, which confirmed 
the important contribution of quorum sensing, 
PTS, ABC transporters, fructose and mannose 
metabolism, and glycerolipid metabolism to the 
diagnostic model (Figure S12a). To further 
strengthen these results, we constructed a sub- 
model with genes of these five gene sets, which 
achieved an AUC of 0.89 in cross-validation 
(Figure S12b). The sub-model displayed decent 
robustness in internal validations and achieved an 
average AUC of 0.81 in external validation (Figure 
S12c). Notably, we found that celB was the most 
important feature of the sub-model 
(Supplementary Table S13). These results suggest 
that the above-identified gene sets are key contri-
butors to the diagnostic capabilities of the gene 
model.

Next, we assessed the prediction power of repre-
sentative KO genes of each gene set 
(Supplementary Table S14). Notably, celB and 
manY displayed excellent diagnostic capabilities 
with AUCs of 0.74 and 0.71, respectively 

(Figure 4b). Since celB and manY (also a member 
of fructose and mannose metabolism) are both 
members of the PTS, the above-mentioned results 
indicated that the PTS gene set mediated the most 
significant functional alterations of the gut micro-
biome in CD patients. Finally, we validated the 
abundances of celB and manY in an independent 
cohort of CD patients and controls using qRT- 
PCR. Consistent with the metagenomic data 
(Figure 4c), both celB and manY were significantly 
more abundant in CD patients (Figure 4d). 
Additionally, we validated the abundances of 
those genes that belong to important pathways 
and with high feature importance using qRT-PCR 
(Figure S13). These results revealed the respective 
contributions of individual gene feature to the 
diagnostic capability of the gene model and identi-
fied celB and manY as the individual biomarkers 
with the highest predictive power for diagnos-
ing CD.

Altered interactions within and between each level 
of microbial signatures in CD

For a global understanding of the interactions 
among all microbial signatures in CD, we investi-
gated the associations among all the microbial sig-
natures via HALLA (Figure 5a-b). In both CD and 
control networks, considerable associations were 
observed between KO genes and species, but few 
were observed between SNVs and the other two 
levels (|correlation| > 0.4) (Figure 5b, Figure S14a, 
d). More associations were observed in the network 
of CD (206 associations) (Figure S14c) than in the 
network of controls (163 associations) (Figure S14f 
; Supplementary Table S15–S16). Interestingly, 
there were more negative associations between 
the gene- and the species-signatures in the control 
network than that in the CD network. For example, 
D-nopaline dehydrogenase (nos), type IV secretion 
system protein TrbJ (trbJ) genes were negatively 
associated with R. hominis, R. bassiana, and 
C. aerofaciens. Notably, we found that KO genes 
had a stronger degree centrality than the species in 
the CD network (Figure S14b). Moreover, com-
pared with the control network, these KO genes 
in CD tended to form isolated clusters, as exempli-
fied by the independent module consisting celB and 
manY in the CD network (Figure 5a)
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Figure 4. The model interpretation of the gene model. (a) the left column lists the average percent change of AUC after shuffling the 
abundance values of the genes in each gene set in validation dataset with the background color indicating the degrees of AUC 
change; the center left column lists the number of KO genes in each gene set with the background color indicating the set size; the 
center right column is the representative signature of each gene set; and the right column lists the cross-validation AUC of the 

8 S. GAO ET AL.



In addition, we found that the oral microorgan-
isms Streptococcus and Veillonella spp. were posi-
tively correlated with PTS-related genes 
(Figure 5c). In detail, Streptococcus oralis (R = 0.5, 
P < 2.2e-16) and Veillonella parvula (R = 0.2, P =  
5e-13) were increased in CD patients and were 
positively correlated with the PTS-related genes 
(Figure 5d-e, Figure S15a-b). Besides, Aspergillus 
rambellii (R = 0.42, P < 2.2e-16) and K. pneumoniae 
(R = 0.13, P < 6.6e-06) with increased abundance 
also showed a positive correlation with gene celB 
(Figure 5f-g, Supplementary Figure S15c-d). 
Several studies have reported relevant evidence of 
the impact of Aspergillus rambellii and 
K. pneumoniae infection on gut ecology.19–21

Discussion

In this study, multidimensional microbial signatures 
of CD were systematically analyzed with multiple 
cohorts of distinct cultural and geographical back-
grounds. By comparing the diagnostic capabilities of 
the microbial signatures including differential spe-
cies, genes, and SNVs, the gene model achieved 
superior accuracy and robustness in distinguishing 
CD from controls, and the gene model was specific 
for CD against other microbiome-related diseases. 
Finally, the major contributing genes in the gene 
model were identified and validated, and their 
pathogenic characteristics in CD are highlighted.

Multidimensional alterations of the gut micro-
biome in CD patients contain massive amounts of 
information that can predict the disease state. 
Therefore, we employed a deep learning method 
to fit the underlying characteristics of the gut 
microbiome in patients with CD. With the micro-
bial species models, while bacterial species achieved 
the best performance among single-kingdom mod-
els, multi-kingdom models with both bacterial and 
non-bacterial species achieved better accuracy than 
the single-kingdom models, which is similar to our 
observations with the microbial models for color-
ectal cancer.14

Comparing models of the three different types, 
the gene model demonstrated the best generaliza-
tion and robustness in model evaluations com-
pared to the species-, SNV- and combined 
models. This is reasonable, considering that homo-
logous genes of different microorganisms may con-
tribute to the same abnormalities in the gut 
microbiome in connection to specific pathological 
processes22.

By examining the contributions of individual 
gene set and gene to the diagnostic capabilities of 
the gene model, we found that genes that belong to 
the PTS gene set had a great impact on the model 
accuracy in abundance disturbance analysis. The 
importance of the PTS gene set in the diagnosis 
model was also demonstrated in recursive feature 
elimination analysis and in cross-validation of the 
sub-model. In gut bacteria, PTS is known as 
a system that catalyzes sugar transport as well as 
sugar phosphorylation23,24. In addition, PTS regu-
lates a wide variety of transport, metabolic pro-
cesses, biofilm formation, and virulence;25 thus, it 
is considered a comprehensive regulation and 
coordination system. We observed that the CD 
patients exhibited increased abundance in PTS 
and that the KO genes in PTS were associated 
with the differential species in CD (Figure 5c).

Furthermore, numerous studies have suggested 
colonization of the gut by oral commensals, such as 
Streptococcus, Prevotella, Veillonella, Haemophilus, 
and Bifidobacterium, in inflammatory bowel 
diseases26,27. In our results, the increased abun-
dances of S. oralis and V. parvula and their positive 
correlations with the PTS-related genes indicated 
the essential role of these species in CD pathogen-
esis. Consistently, several studies reported that 
S. oralis26,28 and V. parvula29 were enriched in 
IBD patients and closely associated with IBD 
pathogenesis. Therefore, we hypothesize that the 
nutrient environment alteration related to PTS bio-
logical process under gut dysbiosis may be respon-
sible for the ectopical colonization of the oral 
microorganisms.

representative microbial gene with the background color indicating an increased (red) or decreased (blue) AUC. The line plot shows 
the values of feature importance of the representative signatures (upper horizontal axis); the box plot shows the AUCs of each gene 
set in validation dataset with the dotted line representing the baseline AUC of 0.91 (lower horizontal axis). (b) The ROC curve shows 
the diagnostic performance of microbial genes celB and manY, respectively. (c-d) The box plot shows the abundances of celB (upper) 
and manY (lower) in metagenomic data (c) and qRT-PCR data (d) (N = 37, CD; N = 36, control), respectively. Data are presented as 
mean ± standard deviation. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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Figure 5. The cross-talk among multidimensional signatures. (a-b) Correlations among species-, gene and SNV signatures in the 
control (a) and the CD (b) networks. Node color indicates different levels of signatures: species (green), KO genes (yellow), and SNVs 
(brown). Red line indicates positive interaction; and blue line indicates negative interaction (|correlation|>0.4, FDR < 0.05). (c) The 
correlations between genes in PTS and microbial species (bacterial species, blue columns; and fungal species, orange column). The 
color bar represents the ranges of correlation coefficients. (d-g) the relative abundance of S. oralis (d), V. parvula (e), A. rambellii (f) and 
K. pneumoniae (g) in CD and controls.
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More importantly, the KO gene celB, which 
encodes the enzyme IIC component (EIIC) of cel-
lobiose PTS, exhibited the highest predictability 
among all gene markers and an increased abun-
dance in CD patients. These observations support 
the outstanding potential for the microbial gene 
celB of PTS to be used as a biomarker for noninva-
sive CD diagnosis. Moreover, celB was associated 
with K. pneumoniae, which is in line with the roles 
of celB component of PTS in biofilm formation and 
virulence of K. pneumoniae,30 and the roles of 
K. pneumoniae in the initiation and perpetuation 
of the pathological damage of CD were also 
demonstrated21. We also observed a significant 
increase of K. pneumoniae in CD patients 
(Figure 5g). Therefore, it is reasonable to hypothe-
size that the interaction between celB and 
K. pneumoniae contributes to the development of 
CD. Overall, these findings reveal the crucial 
microbes involved in the pathogenesis of CD, 
which still requires further investigation.

Another microbial gene manY was also identi-
fied as a biomarker for CD diagnosis. manY 
encodes the EIIC component of mannose PTS sys-
tem (man-PTS) that is a part of the PTS regulatory 
network. The hairpin tips of IIC in man-PTS are 
coordinated with mannose and mediate mannose 
transport31. Interestingly, previous studies found 
that man-PTS and cellobiose-PTS were upregu-
lated in gut microbes by changing from a low-fat 
diet to a high-fat, high-sugar diet31,32, suggesting 
that the PTS of gut microbes is sensitive to the 
nutritional environment of mucosal surfaces. 
Thus, the upregulation of celB and manY in CD 
likely indicates upregulation of the biological activ-
ities of cellobiose-PTS and man-PTS in association 
with CD pathology. That is, manY may also be 
involved in the pathogenesis of CD. However, the 
cause of these alterations in CD remains unclear 
and requires further investigation.

Moreover, we noticed a trend toward more iso-
lated clusters of microbial genes in the CD network 
(Figure 5a). The concept of “guild” may be 
a possible explanation of such phenomenon. In 
a “guild”, or “functional groups”, the microbial 
members perform similar functions and tend to 

exhibit co-abundance patterns by thriving or 
declining together within a community33,34. 
“Guilds” may exist in both healthy and CD micro-
bial communities. However, when the gut ecosys-
tems were disturbed, “Guilds” may response 
differently. In our study, the independent module 
consisting celB and manY in the CD network 
(Figure 5a-b), which may represent 
a concentrated function of the “guild” in the phos-
photransferase system (PTS)-related niches and 
nutrients, where genes are with increased abun-
dance and become a major “guild” in CD microbial 
community. Considering that they occupy the 
same metabolic and spatial niches by exploiting 
the same class of environmental resources in 
a similar way,35,36 the competitions among guild 
members could be intense.

Collectively, our study systematically ana-
lyzed multimodal microbial signatures includ-
ing species, genes, and SNVs in CD patients. In 
addition, we identified universal biomarkers 
across distinct cultural and geographical back-
grounds by integrating multiple cohorts, and 
improved discrimination power for CD by tak-
ing advantage of the excellent adaptability and 
learning ability of AI. Moreover, one of the 
strengths of our study comes from the signifi-
cance of the identified microbial gene markers. 
The altered abundances in these genes suggest 
a possibly pathogenic origin for CD pathogen-
esis. However, this study did not provide an in- 
depth investigation on the microbial features of 
distinct inflammatory statuses and locations in 
CD patients for lack of relevant information. 
Besides, the discrepancy of several genes 
between metagenomics and qRT-PCR was 
likely due to the relatively smaller sample size 
in qRT-PCR validation and relatively lower 
resolution of the qRT-PCR method in micro-
biome analysis.

Conclusions

Our global metagenomic analysis unravels the mul-
tidimensional alterations of the microbial commu-
nities in CD and identifies microbial genes as 
robust diagnostic biomarkers across cohorts. 
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These genes are functionally related to the patho-
genesis of CD. Future studies on these genes may 
lead to the development of an effective, non- 
invasive diagnostic tool for CD.

Materials and methods

Study inclusion and data acquisition

For the discovery dataset, we used PubMed to 
search for studies that published fecal shotgun 
metagenomic data from CD patients and controls. 
Raw FASTQ files of 1241 fecal samples from four 
studies were downloaded from the European 
Nucleotide Archive (ENA) using the following 
identifiers: PRJNA398089 (D1) for Lloyd-Price et -
al.9, PRJNA385949 (D2) for Hall et al.37, 
PRJNA400072 (PRISM) (D3) for Franzosa et al.12, 
and SRP057027 (D4) for Lewis et al.38 (Figure 1a).

For the validation dataset, the raw data of 177 
samples from three studies were collected from the 
ENA using the following identifiers: PRJNA389280 
(V1) for Schirmer et al.39, PRJEB1220 (V2) for 
Nielsen et al.40 and PRJNA400072 (LifeLines DEEP 
and NLIBD) (V3) for Tigchelaar et al.12 (Figure 1a). 
The clinical characteristics of patients are presented 
in Supplementary Table S1. We excluded CD 
patients in remission and those treated with anti-
biotics within 1 month of sample collection in both 
discovery and validation datasets.

To evaluate whether the prediction model is 
specific for CD rather than non-CD diseases, we 
further collected five cohorts of non-CD diseases 
including ulcerative colitis (UC) from 
PRJNA400072 PRISM12, colorectal cancer 
(CRC) from PRJEB2792813, type-2 diabetes 
(T2D) from PRJEB178641, liver cirrhosis (LC) 
from PRJEB633742, and Parkinson’s disease 
(PD) from PRJEB1778443.

Patient recruitment and sample collection of 
Chinese cohorts

The Chinese cohort consisted of 40 CD and 53 
control samples that were sequenced and pub-
lished in He et al.44 (Supplementary Table S2). 
The CD patients and controls were enrolled at 
the Sixth Affiliated Hospital of the Sun Yat-sen 
University, Guangdong Province, China. The 

raw metagenomic sequencing data were avail-
able from the ENA Database (Accession No. 
PRJEB15371).

For qRT-PCR validation, we enrolled CD 
patients and controls at the Shanghai Tenth 
People’s Hospital. Patients diagnosed with CD 
were included in the study. Potential partici-
pants were excluded if they were pregnant, 
diagnosed with indeterminate colitis, had an 
acute gastrointestinal infection, or had received 
antibiotic therapy within 3 months. In total, we 
collected 73 fecal samples (N = 37 for CD and 
N = 36 for control, Supplementary Table S3) 
that were then stored at −80°C before DNA 
extraction. The study was approved by the 
Institutional Review Board at the Shanghai 
Tenth People’s Hospital, Tongji University, 
Shanghai (No. 20KT863), and informed con-
sent was obtained from each participant.

Quality control of WMS sequencing data

For preprocessing the WMS sequencing data, qual-
ity control was performed using KneadData V0.6.0. 
Subsequently, reads with length lower than 50 bp, 
or with low-quality bases were filtered out by 
Trimmomatic software (V0.32). Furthermore, 
reads that mapped to the mammalian genome, 
bacterial plasmids, UNiVec sequences, and chi-
meric sequences were removed.

Annotation and abundance estimation of microbial 
taxa, genes, and SNVs

For multi-kingdom species level analysis, 
a customized reference database was constructed 
with 18,756 bacterial, 359 archaeal, and 9346 viral 
reference genomes from the NCBI RefSeq database 
(accessed in January 2020), and 1094 fungal refer-
ence genomes from the NCBI RefSeq database, 
FungiDB (http://fungidb.org) and Ensemble 
(http://fungi.ensembl.org) (all accessed in 
January 2020). Quality-filtered reads were aligned 
and quantified using Kraken2 and Bracken soft-
ware, respectively.

For microbial gene-level analysis, quality- 
filtered metagenomes were assembled into contigs 
with Megahit (v1.2.9) using ‘meta-sensitive’ para-
meters. Contigs shorter than 500-bp were excluded 
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for further analysis. Prodigal (v2.6.3) software was 
used to predict genes at the metagenome mode (−p 
meta). A non-redundant microbial gene reference 
was constructed with CD-HIT using a sequence 
identity cutoff of 0.95, and a minimum coverage 
cutoff of 0.9 for the shorter sequences. The refer-
ence was annotated with the EggNOG mapper 
(v2.0.1) based on EggNOG orthology data. 
Subsequently, CoverM (V4.0) was used to estimate 
gene abundance by mapping reads to the non- 
redundant reference and to calculate the coverage 
of genes in the original contigs. Finally, the abun-
dance of KEGG Orthology (KO) groups were cal-
culated by summing the expression of genes 
annotated to the same KOs. KO is a collection of 
orthologous genes in organisms based on sequence 
similarity45, which represents similar molecular 
functions of genes/proteins. Thus, KO abundance 
can provide an overall profile of gene functions in 
gut microbes.

For SNV-level analysis, MIDAS (V1.3.2) was 
used to perform microbial SNV annotation. 
A customized reference genome database was con-
structed to include seven species with sufficient 
coverage (>3×) in at least 20% of all samples. The 
WMS reads were then mapped to the reference 
database for SNV calling. Subsequently, the SNV 
profiles of all samples were merged, with only bi- 
allelic positions chosen. The other parameters were 
identical to those of the preset option ‘—core_snps’ 
(merge_midas.py snps – core_snps).

All processed metagenomic data in this study 
has been uploaded in the National Omics Data 
Encyclopedia under accession no. OEP003761.

Diagnostic model construction and evaluation

Model construction
Artificial intelligence (AI) algorithm called 
feedforward neural network (FNN) was 
employed to construct the diagnostic model. 
In detail, the hidden layers were activated by 
a rectified linear unit (ReLU) activation func-
tion, and the output layer was activated by 
a sigmoid function. Subsequently, we per-
formed stratified ten-fold cross-validation to 
avoid overfitting issues and model estimation 
using Scikit-learn 1.1.0. Finally, we trained the 

diagnostic model with well-optimized hyper-
parameter combinations using TensorFlow 
2.8.0. In order to comprehensively evaluate 
the performances of our models and facilitate 
the comparisons between similar diagnostic 
studies, we assessed the model performance 
with various metrics, especially the normalized 
Matthews correlation coefficient (MCC)46 that 
can produce a more accurate and informative 
score in evaluating binary classifications. The 
feature importance was evaluated with SHapley 
Additive exPlanations (SHAP)47 to explain the 
output of machine learning model.

Model interpretation
To better interpret the compositions and correspond-
ing contributions of features in model, we grouped 
KO genes by gene sets based on the priori knowledge 
of the KEGG database. Subsequently, we randomly 
shuffled the abundance values of KO genes of a gene 
set in validation dataset, and performed predictions 
using the constructed diagnostic model. The decrease 
of AUC was considered to indicate the importance of 
gene set to the diagnostic model. The above proce-
dure was repeated for 50 times.

Evaluation of the model’s robustness and 
generalization
To test the robustness and generalization of the 
selected optimal model among distinct cohorts, we 
performed cohort-to-cohort transfer and leave-one- 
cohort-out (LOCO) validation as described in our 
previous studies18,48. For cohort-to-cohort transfer, 
diagnostic models were trained on one single cohort 
and validated on each of the remaining cohorts. For 
LOCO validation, one single cohort was set as the 
validation dataset, while all other cohorts were pooled 
together as the discovery dataset.

Disease specificity assessment of prediction model

Using non-CD diseases samples of UC, CRC, 
T2D, LC, and PD, we evaluated the disease 
specificity of the predictive model for CD, fol-
lowing the method described by Thomas et al.49 

In detail, we randomly selected 10 control sam-
ples and 10 case samples from non-CD external 
data and added them into the control group in 
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the validation dataset. If the model is specific for 
CD, the model would not perform worse with 
the addition of a case relative to the addition of 
the controls, because the model does not cover 
the characteristics of non-CD diseases. This pro-
cedure was repeated 50 times.

Validation of microbial genes by qRT-PCR

gDNA was extracted using the TIANamp Stool 
DNA Kit (Cat# 4992205, TIANGEN) according 
to the manufacturer’s instructions. The primers 
used for validation are listed in Supplementary 
Table S4. To perform the qRT-PCR analysis, 
the reaction mixture contained the primer 
pair with concentrations diluted to 0.2 μM and 
10 ng gDNA in a 10 μl final volume with the 
SYBR Green qPCR Mix (Thermo Fisher 
Scientific). The cycling program was as follows: 
pre-denaturation at 95°C for 10 min, 40 cycles 
of denaturation at 95°C for 15 s and annealing 
at 60°C for 60 s, followed by melting curve 
analysis. The qRT-PCR results were quantitated 
by calculating −ΔΔCt values between candidate 
genes and the 16S gene. The significance of the 
comparison between CD and control samples 
was tested by a two-sided Wilcoxon rank-sum 
test (P < 0.05).

Statistical analysis

Confounder analysis

Permutational multivariate analysis of variance 
analysis (PERMANOVA) was performed to quan-
tify the effects of potential confounding factors. 
The total variance of a given signature was com-
pared to the variance explained by group and the 
variance by confounding factors (age, BMI, sex, 
and disease location) in a linear model. Variance 
calculations were performed using the same proce-
dure as in our previous study.48

Differential signature identification

A formal meta-analysis approach called 
MMUPHin50 was performed to identify CD- 
related differential microbial signatures, which 
enabled the batch effect correction and 

combination of multiple microbial community stu-
dies. The MMUPHin approach can fit environ-
mental exposures, phenotypes, and population 
structures across microbial community studies via 
a combat-like extended linear regression method50. 
When fitting our microbiome data using the multi-
variate linear modeling framework in MMUPHin, 
the cohort factor was treated as the main “batch” 
and the other confounders, including age, BMI, 
sex, and disease location, were treated as covariates 
of biological interest. Overall, MMUPHin provides 
a meta-analysis by aggregating individual study 
results with established fixed effect models to iden-
tify consistent overall effects.

Alpha and beta diversity analysis

Alpha diversity of taxonomic profiles including 
Shannon, ACE, Simpson, and Chao1 index were 
calculated using R (V4.0.5) “vegan” (V2.5.7) pack-
age. Beta diversity between groups was calculated 
based on Bray-Curtis distance using PERMANOVA 
called adonis test, and significance was evaluated 
with 999 permutations.

Co-abundance analysis

First, we generated species abundance profiles 
of CD and controls, respectively. We then 
employed SparCC to perform a co-abundance 
analysis of differential multi-kingdom species. 
Correlations between differential multi- 
kingdom species were determined by estimat-
ing the observations of Dirichlet distribution 
for 50 times. Then, SparCC resampled the ori-
ginal dataset through a bootstrap method to 
obtain random datasets. Later, pseudo-p-values 
are calculated from these random data sets to 
assess the significance of the initial observation 
scores. The network was visualized with Gephi 
(V0.9.5).

Multidimensional signatures association analysis

To further explore the potential associations 
between multidimensional signatures, 
Hierarchical All-against-All association testing 
(HALLA, V 0.8.20) was performed. We gener-
ated species, gene, and SNV profiles of CD 
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patients and controls, respectively. Subsequently, 
the associations between the species, gene, and 
SNV signatures were calculated in pairs using 
HALLA. After that, we merged the output cor-
relation matrices. Correlations with |cor| > 0.4 
and P-values <0.05 were used to construct the 
network and visualized with Gephi (V0.9.5).
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