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Abstract

Multi-omic single-cell datasets, in which multiple molecular modalities are profiled within the 

same cell, offer an opportunity to understand the temporal relationship between epigenome 

and transcriptome. To realize this potential, we developed MultiVelo, a differential equation 

model of gene expression that extends the RNA velocity framework to incorporate epigenomic 

data. MultiVelo uses a probabilistic latent variable model to estimate the switch time and rate 

parameters of chromatin accessibility and gene expression and improves the accuracy of cell fate 

prediction compared to velocity estimates from RNA only. Application to multi-omic single-cell 

datasets from brain, skin and blood cells reveals two distinct classes of genes distinguished by 

whether chromatin closes before or after transcription ceases. We also find four types of cell 

states: two states in which epigenome and transcriptome are coupled and two distinct decoupled 

states. Finally, we identify time lags between transcription factor expression and binding site 
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accessibility and between disease-associated SNP accessibility and expression of the linked genes. 

MultiVelo is available on PyPI, Bioconda and GitHub (https://github.com/welch-lab/MultiVelo).

The regulation of gene expression from DNA to RNA to protein is a key process governing 

cell fates. Coordinated, sequential gene expression changes underlie the developmental 

processes by which cells specialize. Increasingly, high-throughput single-cell sequencing 

techniques are being applied to reveal these sequential gene expression changes. However, 

because experimental measurement destroys the cell, only temporal snapshot measurements 

are available, and it is not possible to observe the same individual cell changing over time.

Computational approaches can use single-cell snapshots to infer sequential gene 

expression changes during developmental processes. For example, cell trajectory inference 

algorithms1–5 use pairwise cell similarities to map cells onto a ‘pseudotime’ axis 

corresponding to predicted developmental progress. However, trajectory inference based 

on similarity cannot predict the directions or relative rates of cellular transitions. Methods 

for inferring RNA velocity6,7 address these limitations by fitting a system of differential 

equations that describes the directions and rates of transcriptional changes using spliced and 

unspliced transcript counts. A recent paper further extended the RNA velocity framework 

to include gene expression and protein measurements from the same cells but used the 

steady-state assumption to estimate parameters and thus did not estimate latent time values 

for each cell8. Single-cell epigenome values have also been used individually to infer 

future directions of cell differentiation, but these approaches did not incorporate gene 

expression9,10.

Single-cell multi-omic measurements provide an opportunity to incorporate epigenomic 

data into mechanistic models of transcription. For example, new technologies such as 

SNARE-seq11, SHARE-seq9 and 10x Genomics Multiome can quantify both RNA and 

chromatin accessibility in the same cell. The epigenome and transcriptome both change 

during cellular differentiation, and thus, the temporal snapshots in single-cell multi-omic 

datasets potentially reveal the interplay among these molecular layers.

Existing RNA velocity models assume that the transcription rate of a gene is uniform 

throughout the induction phase of gene expression. However, epigenomic changes play a key 

role in regulating gene expression, such as tightening or loosening the chromatin compaction 

of promoter and enhancer regions12–16. For example, a transition from euchromatin to 

heterochromatin reduces the rate of transcription at that locus because transcriptional 

machinery cannot access the DNA. Therefore, a more realistic model would reflect the 

influence of enhancer and promoter chromatin accessibility on transcription rate.

We present MultiVelo, a computational approach for inferring epigenomic regulation of gene 

expression from single-cell multi-omic datasets. We extend the dynamical RNA velocity 

model to incorporate multi-omic measurements to more accurately predict the past and 

future state of each cell, jointly infer the instantaneous rate of induction or repression for 

each modality and determine the extent of coupling or time lag between modalities.
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Results

MultiVelo: a differential equation model of gene expression incorporating chromatin 
accessibility

MultiVelo describes the process of gene expression as a system of three ordinary differential 

equations (ODEs) characterized by a set of switch time and rate parameters (Fig. 1a). 

This model represents a deliberately simplified view of gene expression in which the 

complex effects of chromatin modifiers, pioneer factors and transcription factors (TFs) 

are abstracted into rate constants. The time-varying levels of chromatin accessibility c , 

unspliced pre-mRNA u  and spliced mature mRNA s  are related by ODEs describing the 

rates of chromatin opening αco  and closing αcc , RNA transcription α , RNA splicing β
and RNA degradation or nuclear export γ . We assume that chromatin opening rapidly leads 

to full accessibility and similarly that chromatin closing rapidly leads to full inaccessibility. 

Each gene has distinct rate parameters describing its unique kinetics. We assume that 

the transcription rate is proportional to the chromatin accessibility c t  and thus is time-

varying, and we model the distinct phases or states k that a cell traverses as its time t
advances. There are two states each for chromatin accessibility c  and RNA u, s : chromatin 

opening, chromatin closing, transcriptional induction and transcriptional repression. Each 

state begins at an associated switch time (tc, ti and tr; chromatin opening begins at to = 0) and 

converges to an associated steady-state value as t ∞. The rate parameters and switch times 

are estimated for each gene using the three-dimensional phase portrait of c, u, s  triplets 

observed across a set of single cells. The state k and time t for each cell are determined by 

projecting the cell to the nearest point on the curve described by the ODEs.

Starting from these assumptions gives a mathematical model with two interesting qualitative 

properties. First, there are multiple mathematically feasible combinations of chromatin 

accessibility and RNA transcription states. That is, chromatin can be either opening 

or closing while transcription is being either induced or repressed. This means that 

multiple orders of events are possible: chromatin closing can occur either before or after 

transcriptional repression begins (Fig. 1b). We refer to the first ordering (chromatin closing 

begins before transcriptional repression) as model 1 and the second ordering as model 2.

The second interesting qualitative property is that two distinct types of discordance between 

chromatin accessibility and transcription can occur. At the beginning of the gene expression 

process, chromatin opens before transcription initiates. This creates a time interval during 

which c t  is positive but u t  and s t  are both zero (Fig. 1c). We refer to this phenomenon 

as priming. In addition, at the end of the gene expression process, chromatin closing 

and transcriptional repression can occur at different times. This creates a time interval in 

which chromatin accessibility and gene expression move in opposite directions (Fig. 1d), a 

phenomenon we refer to as decoupling.

MultiVelo infers and quantifies these phenomena of multiple orders and types of discordance 

through the ODE parameters estimated from single-cell data. First, the switch times 

(tc, ti, and tr) indicate when chromatin closing, transcriptional induction and transcriptional 

repression begin. Thus, the lengths of priming and decoupling phases are estimated by the 
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model: Δtpriming = ti − to = ti and Δtdecoupling = tr − tc. Furthermore, because each cell is assigned 

latent time t  and latent state k  values, MultiVelo determines whether each cell is in a 

primed, decoupled or coupled phase for each gene (Fig. 1e). Thus, we refer to the four 

possible states as primed (red), coupled on (orange), decoupled (green) and coupled off 

(blue). Second, the parameters fit by MultiVelo can be used to determine, for each gene, 

whether its observed c, u, s  values are best fit by model 1 or model 2 (Fig. 1f,g). Intuitively, 

it is possible to distinguish these models because model 1 genes achieve their highest 

accessibility values during the transcriptional induction phase, whereas model 2 genes reach 

maximum accessibility during the transcriptional repression phase.

Because both the cell times and the ODE parameters are unknown, we use an iterative 

expectation-maximization algorithm to jointly estimate them. Briefly, we initialize both 

the parameters and cell times using heuristics derived from the steady-state assumption 

(Methods). Then, we iterate the following steps: (1) calculate the most likely time of each 

cell based on the current ODE parameter estimates, and (2) update the ODE parameters to 

maximize the data fit given the current time estimates.

We further derived a stochastic version of the MultiVelo model (Methods), which uses 

moment equations and the steady-state assumption to perform parameter estimation. 

Runtime and memory usage statistics are in Supplementary Table 1 and Methods.

MultiVelo distinguishes two models of gene expression regulation in embryonic mouse 
brain

We first applied MultiVelo to 10x Multiome data from the embryonic mouse brain 

embryonic day 18 (E18). MultiVelo accurately fits the observed chromatin accessibility, 

unspliced pre-mRNA and spliced mRNA counts across the population of brain cells, 

identifying 426 genes whose patterns fit the model with high likelihood. The resulting 

velocity vectors and latent time values inferred by MultiVelo accurately recover the known 

trajectory of mammalian cortex development. Specifically, radial glia (RG) cells in the outer 

subventricular zone give rise to neurons, astrocytes and oligodendrocytes17–19. Cortical 

layers are formed in an inside-out fashion during neuron migration, with newborn cells 

moving to upper layers and older cells staying in deeper layers20. RG cells can divide 

into intermediate progenitor cells (IPC) that serve as neural stem cells and further generate 

various mature excitatory neurons in different layers21,22.

Incorporating both chromatin accessibility and gene expression improves the accuracy of 

velocity estimation compared to RNA-only models such as scVelo (Fig. 2a). In particular, 

the RNA-only model predicts biologically implausible backflows inside upper layer neurons 

(Fig. 2b). Cell cycle scores7,23 indicate that the developmental process begins with a cycling 

population (Fig. 2c) near RG, confirming the latent time inferred by MultiVelo.

We expect the addition of chromatin accessibility to be most helpful for distinguishing 

cell states where chromatin remodeling and gene expression are out of sync, such as 

when a gene’s promoters and enhancers have begun to open but little transcription has 

occurred. Two clear examples are Eomes and Tle4, canonical markers of IPCs and deep 

layer neurons24–27. RNA transcripts from these genes are highly expressed in only one or 
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two specific cell types. The remaining cells are densely clustered near the origin of the u, s
phase portrait, making it difficult for RNA velocity methods to distinguish their relative 

order (Fig. 2d). However, the chromatin accessibility of these genes begins to rise before 

the gene expression, revealing gradual changes that are not visible from gene expression 

alone. To put it another way, incorporating chromatin allows us to infer 3D velocity 

vectors indicating each cell’s predicted differentiation for each gene, better resolving cellular 

differences than the two-dimensional phase portraits from RNA alone.

MultiVelo identifies clear examples of genes that are best described by either model 1 or 

model 2 in this dataset. Comparing the phase portraits of the genes assigned to model 1 

and model 2 shows clear differences in the timing of maximum chromatin accessibility, 

consistent with the model predictions (Fig. 2e). Model 1 genes such as Satb2 reach 

maximum chromatin accessibility during the transcriptional induction phase (above the 

diagonal steady-state line on the phase portrait6), whereas the accessibility of model 2 

genes like Gria2 is highest during the transcriptional repression phase (below the diagonal 

steady-state line). The distinction between model 1 and model 2 is also evident when 

inspecting pairwise phase portraits of c, u and c, s (Fig. 2f). However, the models cannot 

be distinguished by inspecting the RNA information alone in a phase portrait of u, s; the 

distinction requires the additional information from chromatin. We further investigated 

the model 1 and model 2 genes to see if they have any characteristic properties. The 

genes in the two classes do not differ significantly in their total expression or accessibility 

levels (Wilcoxon P = 0.38 and = 0.32 ). Gene ontology analysis showed that M2 genes are 

significantly enriched for terms related to the cell cycle, such as ‘positive regulation of 

cell cycle’, ‘mitotic cell cycle’ and ‘regulation of cell cycle phase transition’. Furthermore, 

model 2 genes tend to achieve their highest spliced expression earlier in latent time than 

model 1 genes (P = 9 × 10−7, Wilcoxon rank-sum one-sided test; Fig. 2g). We hypothesize 

that cells may use model 2 for rapid, transient activation of genes that do not need to 

maintain expression, whereas model 1 may be useful for genes that need to be stably 

expressed.

We next looked at how often each type of gene expression kinetics (induction only, 

repression only, model 1 or model 2) occurred. Most of the highly variable genes show 

both induction and repression phases (a complete trajectory), and for genes that only have 

partial trajectories, induction-only phase portraits appear more often than repression-only 

(29.5% versus 2.4% of variable genes; Fig. 2h). Note that, because model 1 and model 2 

make the same predictions during the induction phase, we cannot distinguish model 1 versus 

model 2 for induction-only genes. Among the genes with both an induction and repression 

phase, the majority are best explained by model 1 (41.4% of variable genes), while the 

remainder are best fit by model 2 (26.7% of variable genes). The fact that model 1 is more 

common is consistent with the expectation that chromatin state changes generally precede 

mRNA expression changes.

Whether genes have complete or partial kinetics, MultiVelo fits ODE parameters that 

describe the three-dimensional trajectory of their chromatin accessibility and gene 

expression dynamics (Fig. 2i). We also found that MultiVelo can recover very similar results 
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on this dataset even if computationally inferred multi-omic profiles from separate datasets, 

rather than 10x Multiome or SHARE-seq9, are used (Supplementary Fig. 1).

MultiVelo identifies epigenomic priming and decoupling in embryonic mouse brain

An exciting property of MultiVelo is its ability to quantify the discordance and 

concordance between chromatin accessibility and gene expression within differentiating 

cells. Specifically, MultiVelo infers switch time parameters that identify the intervals during 

which each gene is in one of the four possible states (primed, coupled on, decoupled and 

coupled off; Fig. 1e). We next investigated whether these inferred states and time intervals 

can accurately capture the interplay between epigenomic and transcriptomic changes in 

embryonic mouse brain cells.

MultiVelo identifies clear examples of each of the four states in the 10x Multiome data (Fig. 

3a). For example, Grin2b is an induction-only gene with expression increasing toward the 

neuronal fate, so only induction states (primed and coupled on) were predicted for this gene 

(Fig. 3a, left). The phase portrait of Nfix, a model 1 gene, possesses a complete trajectory 

shape and was labeled with all four states (Fig. 3a, middle). Conversely, Epha5 is a model 

2 gene, and its accessibility continues to rise throughout the whole time range without an 

observed closing phase, so it only occupies the coupled on and decoupled states (Fig. 3a, 

right).

The state assignments can be confirmed qualitatively by plotting accessibility c
and expression u and ) on Uniform Manifold Approximation and Projection (UMAP) 

coordinates and examining them side-by-side (Fig. 3b). Visually, we observe that the colors 

of the c and u UMAP plots match when the state assignments are coupled on or coupled 

off, and the differences in color occur when the assigned states are primed or decoupled. 

For example, the largest discrepancy between Robo2 RNA expression and chromatin 

accessibility occurs in the circled region, which is predicted to be in the decoupled state 

(Fig. 3b, top). Robo2 is a model 1 gene; after chromatin closing begins, expression stays at a 

relatively high level, even though its accessibility has already experienced a drop toward the 

maturing neurons. Similarly, the accessibility of Gria2 differs from RNA in the decoupled 

state (Fig. 3b, middle). The chromatin accessibility of Gria2, a model 2 gene, continues to 

increase beyond the transcriptional induction phase. Furthermore, the gene Grin2b shows a 

clear example of the chromatin priming phase, during which chromatin opens before RNA 

production (Fig. 3b, bottom).

Plotting c, u and s along the inferred time t for each gene allows us to inspect the state 

transitions in detail (Fig. 3c). First, the u t  and s t  values for Robo2 show two inflection 

points during the transcriptional repression phase, corresponding to the transitions from 

coupled on to decoupled states and from decoupled to coupled off states (Fig. 3c, top). This 

pattern suggests that the distinct effects of chromatin closing and transcriptional repression 

are visible in u t  and s t . In other words, MultiVelo predicts that for Robo2, chromatin 

closing decreases the overall transcription rate as RNA level begins to drop immediately 

following the chromatin switch. The subsequent switch of transcription rate from positive 

to zero causes a second inflection, leading to even more rapid down-regulation of RNA 
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expression. The plots of c t , u t  and s t  for Gria2 show the opposite trend: c continues to 

rise even after the switch to transcriptional repression, causing c and u to move in opposite 

directions during the decoupled state (Fig. 3c, middle). In Grin2b’s long priming phase c t
begins to rise while u t  and s t  stay at zero (Fig. 3c, bottom).

Because MultiVelo fits rate and switch time parameters for each gene, our analysis provides 

an opportunity to observe general trends in gene regulation. First, to determine whether 

the states of different genes are temporally coordinated, we counted the number of high-

likelihood genes in each state per cell. There is indeed a cascade of state transitions through 

the neuronal clusters; multiple genes per cell are often simultaneously in the priming or 

decoupling states (Fig. 3d). Second, we looked for trends in the switch time and rate 

parameters. We placed each gene’s induction/repression cycle on a time scale between 0 

and 1 and found that the coupled-on and coupled-off states account for a larger proportion 

of the gene expression process than the primed and decoupled states (Fig. 3e). This finding 

makes sense, because even if genes experience some level of decoupling and time lag 

between the two modalities, chromatin accessibility and gene expression should still be 

generally correlated28–31. The median primed interval length is 21% of the overall time, 

and the median decoupled interval length is 19% of the overall time. Furthermore, we can 

rank genes by how long their priming and decoupling intervals are to find examples of 

discordance between accessibility and expression (Extended Data Fig. 1d). Additionally, we 

found that chromatin generally opens and closes at similar rates; the median ratio between 

inferred chromatin closing rate αcc  and chromatin opening rate αco  is almost exactly 1 (Fig. 

3f).

MultiVelo quantifies epigenomic priming in SHARE-seq data from mouse hair follicle

A recent study9 used SHARE-seq to investigate the rapid proliferation of transit-amplifying 

cells (TACs) in hair follicle tissue, which give rise to several mature effector cells, including 

inner root sheath (IRS) and layers of hair shaft: cuticle, cortical layer and medulla32. When 

applied to this dataset, MultiVelo correctly identified direction of differentiation from TACs 

to IRS and hair shaft cells (Fig. 4a), consistent with the diffusion map33 analysis reported 

in the initial paper9. Latent time predicted the TACs to be the root cells, agreeing with 

biological expectation, whereas velocity analysis using RNA alone failed to capture the 

hair-shaft differentiation direction (Fig. 4b). When using a similar number of high-likelihood 

genes, the latent time inferred by MultiVelo has a Spearman correlation coefficient of 0.51 

with the pseudotime inferred by Palantir4 in the SHARE-seq paper9, higher than scVelo’s 

0.44. We also observed more induction-only and fewer model 2 genes in this dataset 

compared to mouse brain (Fig. 4c).

One of the key results of the original SHARE-seq paper was the identification of 

genes where promoter and enhancer chromatin accessibility presaged gene expression, 

a phenomenon the authors termed ‘chromatin potential’. The clearest example of this 

phenomenon was Wnt3, which encodes a paracrine signaling molecule and is important 

in controlling hair growth34. Indeed, UMAP plots colored by accessibility, and unspliced 

and spliced mRNA expression show a clear time delay across modalities (Fig. 4d). We next 

examined the other genes identified in the SHARE-seq paper. Our fit models show that 
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MultiVelo faithfully captured the dynamics of each gene and provide clear illustrations of 

priming and decoupling regions (Fig. 4e). For instance, Wnt3 and Dsc1 show induction-only 

patterns and a priming state at the beginning, whereas Cux1, Dlx3 and Cobll1 have both 

induction and repression states with a short decoupling period in the middle.

To further quantify the temporal relationships among accessibility, unspliced expression 

and spliced expression, we used dynamic time warping (DTW)35 to align the time series 

values for each molecular layer. DTW nonlinearly warps two time series to maximize their 

similarity and identify possible lagged correlation. DTW results on Wnt3 show that the 

optimal warping function maps each point on the c time series forward in time, consistent 

with chromatin accessibility preceding gene expression (Fig. 4f, top). Unspliced and spliced 

expression show a similar pattern but with a shorter time delay (Fig. 4f, middle). Because 

DTW maps each time point on the earlier curve to a time point on the later curve, the 

time lag at each point in time can be computed by subtracting the times of the matched 

points (Fig. 4f, bottom). This analysis shows that both the delay between c and s and the 

delay between u and s remain positive throughout the observed time. In addition, the delay 

between c and s is longer than the delay between u and s throughout the observed range, with 

the maximum c and s delay reaching 0.6 (out of a total time range of 1).

MultiVelo reveals early epigenomic and transcriptomic changes in human HSPCs

Hematopoietic progenitors consist of stem-like cell populations that rapidly and 

continuously differentiate into various intermediate and mature blood cell types with 

progressively reduced self-renewal potential as they enter more lineage-restricted states30,36.

We obtained 11,605 high-quality cells post-filtering with both single-nucleus RNA-

sequencing and assay for transposase-accessible chromatin with sequencing (ATAC-seq) 

data. Using previously described marker genes37–40, we identified clusters resembling 

many of the populations of early blood development (Extended Data Fig. 2a), 

including hematopoietic stem cells (HSC), multipotent progenitors (MPP), lymphoid-

primed multipotent progenitors (LMPP), granulocyte-macrophage progenitors (GMP) and 

megakaryocyte-erythrocyte progenitors (MEP). We also identified clusters resembling early 

granulocytes, erythrocytes, dendritic cells (DC) and platelets.

Blood cell differentiation is a challenging system to model with RNA velocity41. 

Nevertheless, we find that incorporating chromatin information improves the local 

consistency and biological accuracy of predicted cell directions in our hematopoiesis dataset 

(Fig. 5a). In comparison, velocity vectors inferred from RNA alone do not accurately reflect 

the known differentiation hierarchy of hematopoietic stem and progenitor cells (HSPCs). As 

with the mouse brain, MultiVelo predicts model 1 to be more common than model 2 in this 

dataset; induction only is the second most common gene class (Fig. 5b). The median lengths 

of observed primed and decoupled intervals are shorter than those of the coupled phases 

(Fig. 5c). These patterns are consistent with what we observed in the mouse brain dataset, 

suggesting a possible common underlying biological mechanism.

As with the mouse brain dataset, model 2 genes in the HSPC dataset are significantly 

enriched for gene ontology terms related to the cell cycle. The terms ‘regulation of mitotic 
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cell cycle’, ‘regulation of mitotic metaphase/anaphase transition’ and ‘regulation of mitotic 

sister chromatid separation’ are all enriched in model 2 genes at false discovery rate < 0.002. 

If we examine the separate trajectories toward myeloid, erythroid and platelet lineages, 

many G2/M phase marker genes23 show clear model 2 patterns, with highest chromatin 

accessibility after expression begins to drop (examples shown in Fig. 5d). The gene models 

fit by MultiVelo reveal many examples of priming (Fig. 5e). Several terminal cell-type-

specific markers show induction-only dynamics with an increase in chromatin accessibility 

followed by increasing gene expression (AZU1 in GMP, HBD in erythrocytes, HDC in 

granulocytes, LYZ in dendritic cell progenitors and PF4 in the megakaryocyte progenitors 

direction)40,42. In HSPCs, we again see some clear examples of long priming periods, such 

as in LYZ and PF4.

Plotting velocities allows us to examine local chromatin and RNA trends in more detail 

(Fig. 5f,g). Although the chromatin shows most potential (highest velocity) at the beginning 

for these genes, for RNA, stem cell populations such as HSCs, multipotent progenitors, 

megakaryocyte-erythrocyte progenitors and GMPs show increased potential during their 

differentiation process toward one lineage. More differentiated cell types lose the ability to 

maintain such potential and gradually approach equilibrium (zero velocity), even though 

expression is still increasing somewhat. Note that even though the overall expression 

elevates, and velocities stay positive, local acceleration can still switch signs.

We further assessed MultiVelo’s performance using an additional HSPC sample from a 

second time point (Extended Data Fig. 2d).

MultiVelo relates TFs, polymorphic sites and gene expression in developing human brain

We next applied MultiVelo to a recently published 10x Multiome dataset from developing 

human cortex43. As with the embryonic mouse brain dataset, MultiVelo inferred velocity 

vectors consistent with known patterns of brain cell development (Fig. 6a). MultiVelo 

correctly inferred a cycling population of cells near RG as the cell type earliest in 

latent time. In contrast, velocity vectors inferred without chromatin information predicted 

incongruous backflows in IPCs and upper layer excitatory neurons (Fig. 6b).

As with the mouse brain dataset, we identified clear examples of both model 1 and model 

2 genes (Fig. 6c and Extended Data Fig. 3a), though fewer genes are predicted to follow 

model 2 in the human dataset (Fig. 6d).

A key benefit of MultiVelo is its ability to place cells onto a latent time scale inferred from 

both chromatin and expression data. We reasoned that latent time can identify time lags 

between expression and accessibility of loci other than just those immediately near a gene. 

For example, latent time can be used to calculate the length of time between the expression 

of a TF and the accessibility of its binding sites (Fig. 6e and Extended Data Fig. 3b,c). To 

do this, we used chromVar44 to calculate, for each cell, the total accessibility of the peaks 

with binding sites for each TF, subsetting to only the TFs variably expressed in the dataset. 

We then used DTW35 to align the time series expression of each TF with the accessibility 

of its binding sites. This process revealed a consistent pattern, in which the time of the 

highest RNA expression of the TF preceded the time of corresponding high accessibility of 
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downstream targets. UMAP plots colored by TF expression and binding site accessibility 

visually confirmed this pattern. The median time lag across all expressed TFs was positive, 

indicating TF expression precedes binding site accessibility in most cases (Fig. 6f). We 

cannot conclusively determine the mechanisms underlying these time lags without additional 

data. However, post-transcriptional and post-translational regulation, factors that affect the 

activity of chromatin remodeling complexes, and intercellular signaling could all contribute 

to this phenomenon.

Latent time inferred by MultiVelo is also useful for relating the chromatin accessibility of 

disease-related variant loci to the expression of nearby genes. We collected a list of 6,968 

single-nucleotide polymorphisms (SNPs) and their linked genes implicated by genome-wide 

association studies of psychiatric diseases, including bipolar disorder and schizophrenia. 

We further subset these SNPs to those overlapping chromatin accessibility peaks linked 

to the genes fit by our model (a total of 757 SNPs). Many of these variants occur near 

neuronal TFs and other developmentally important genes. We then calculated the chromatin 

accessibility, per cell, of a 400-bp window centered on each SNP. Using MultiVelo’s latent 

time, we determined the time of maximum accessibility for each SNP and the time lag 

between SNP accessibility and the maximum expression of its linked gene (Fig. 6g). This 

analysis revealed three major groups of SNPs, distinguished by whether their maximum 

accessibility occurred early or late in latent time and before or after the expression of the 

linked gene. UMAP plots of the SNP accessibility and linked gene expression confirm 

that these groups of SNPs have qualitatively distinct profiles. These groupings are relevant 

for understanding the functions of the SNPs; for example, an SNP that is accessible only 

early in latent time likely plays a bigger role in developing cells than in fully differentiated 

cells. Similarly, a SNP whose accessibility precedes a gene’s expression is more likely to 

participate in regulating its expression than an SNP whose accessibility lags behind.

Discussion

In summary, MultiVelo models temporal chromatin accessibility and gene expression 

levels and quantifies the length of priming and decoupling intervals in which chromatin 

accessibility and gene expression are temporarily out of sync. Our model accurately fits 

single-cell multi-omic datasets from embryonic mouse brain, mouse dorsal skin, fetal 

human brain and human HSPCs. We find that incorporating chromatin accessibility data 

improves the overall accuracy of velocity estimates, with the largest differences in early 

stem cells undergoing rapid epigenomic changes. In our view, the most exciting new 

direction opened by MultiVelo is the ability to relate epigenomic and transcriptional changes 

during differentiation. For example, our model identifies two classes of genes that differ 

in the relative order of chromatin closing and transcriptional repression, and we find clear 

examples of both mechanisms across all of the tissues we investigated.

Our velocity estimates can be combined with methods such as trajectoryNet45, 

WaddingtonOT46 or VeloAE47 to predict global dynamics. An interesting direction for 

future work is extending the approach to incorporate additional steps of the gene expression 

process, such as TF binding and chromatin looping. We anticipate that MultiVelo will 
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provide insights into epigenomic regulation of gene expression across a range of biological 

settings, including normal cell differentiation, reprogramming and disease.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41587-022-01476-y.

Methods

Previous approaches: RNA velocity

In the original RNA velocity model, the proposed system of differential equations for RNA 

splicing is as follows:

du
dt = α(t) − β(t)u(t) (1)

ds
dt = β(t)u(t) − γ(t)s(t) (2)

where u is unspliced RNA, s is spliced RNA and α, β, γ are transcription, splicing and 

degradation rate, respectively. Assuming constant transcription and degradation rates, the 

rate equation parameters can be normalized by β and are reduced to

du
dt = α − u(t) (3)

ds
dt = u(t) − γ′s(t) (4)

In steady-state cell populations, the amount of spliced mRNA does not change: ds
dt = 0. 

Therefore, γ′ = u
s  and α = u. The ratio γ′ can be calculated using a simple linear regression 

that fits cells with expression values in upper and lower quantiles. RNA velocity is then 

defined as v = ds
dt .

Bergen et al.7 developed a dynamical RNA velocity model (scVelo) by extending the 

original equations to include time and cell state latent variables, capturing transient states 

between steady states:

du(t)
dt = α(k) − βu(t) (5)
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ds(t)
dt = βu(t) − γs(t) (6)

where k indicates one of the four transcription states: induction k = 1 , repression k = 0
and two associated steady states ( k = ss1 and k = ss0).

This system of differential equations can be solved analytically as follows:

u(t) = u0e−βτ + α(k)

β 1 − e−βτ (7)

s(t) = s0e−γτ + α(k)

γ 1 − e−γτ + α(k) − βu0

γ − β e − γτ − e−βτ (8)

where u0 and s0 are initial values, and τ = t − t0
k  is the time interval from the start of the 

induction or repression state.

The analytical solution converges to the steady-state values as τ ∞:

(u∞
(k), s∞

(k)) = (α(k)

β , α(k)

γ ) . (9)

Because the equations involve the latent time variable τ, scVelo uses an expectation-

maximization algorithm to iteratively estimate latent time and the parameters of the ODE 

θ = α k , β, γ , as well as state starting time t0
k . Cells are assigned to latent times by 

approximately inverting the ODE solution.

Differential equation model of gene expression incorporating chromatin accessibility

To incorporate chromatin accessibility measurements into a differential equation model 

of gene expression, we assume that the rate of transcription for a gene is influenced by 

the accessibility of its promoter and enhancers. For simplicity, we model a single value 

c, which is the sum of accessibility at the promoter and linked peaks for a gene. Unlike 

gene expression, which can theoretically grow without bound, it is possible in principle 

for chromatin to be fully open or fully closed at a particular locus. Thus, we normalize 

chromatin accessibility to [0, 1] and assume that c approaches 1 with rate of change 

proportional to the current accessibility level c (proportionality constant αco > 0) during the 

opening phase and approaches 0 with rate of change proportional to c (proportionality 

constant αcc > 0) during the closing phase. Our biological motivation for this mathematical 

formulation can be summarized as follows: impulses of remodeling signals cause chromatin 

to begin opening or closing rapidly at first. However, biochemical constraints such as the 

structures of histone complexes and their intermolecular interactions gradually slow the rate 

of opening or closing so that c asymptotically approaches full accessibility or inaccessibility 

(Extended Data Fig. 4a). Empirically, we find that the observed c t  values in single-cell 

multi-omic dataset show this qualitative behavior (Extended Data Fig. 4b). We define a new 

system of differential equations to reflect these modeling assumptions:
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dc(t)
dt = − αccc(t) or dc(t)

dt = αco − αcoc(t) . (10)

If we assume that the chromatin opening and closing kinetics are mirror images of each 

other, only a single chromatin rate parameter αc > 0 is required, and the system of equations 

simplifies to:

dc(t)
dt = kcαc − αcc(t) (11)

du(t)
dt = α(k)c(t) − βu(t) (12)

ds(t)
dt = βu(t) − γs(t), (13)

where

kc = 1, if chromatin is opening
0, if chromatin is closing .

Note that we write the ODEs in terms of a single chromatin rate αc purely for notational 

simplicity. In the MultiVelo package and in all of our experiments in the paper, we fit 

separate chromatin opening and closing rates.

As with the RNA velocity model, we define chromatin velocity as dc
dt . The parameter 

kc allows for different dynamics during chromatin opening k = 1  and chromatin closing 

k = 0 , analogous to how the transcription rate αk in the dynamical RNA velocity model 

varies between transcriptional induction and repression phases (k = 1 and k = 0). The system 

of differential equations can be solved analytically to obtain:

c(t) = kc − kc − c0 e−αcτ = c0e−αcτ + kc 1 − e−αcτ (14)

u(t) = u0e−βτ + α(k)kc

β 1 − e−βτ + kc − c0 α(k)

β − αc
e−βτ − e−αcτ (15)

s(t) = s0e−γτ + α(k)kc

γ (1 − e−γτ

+ β
γ − β (α(k)kc

β − u0 − (kc − c0 a(k)

β − αc
)(e−γτ − e−βτ ,

+ β
γ − αc

kc − c0)α(k)

β − αc
e−γτ − e−αcτ

(16)
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where c0, u0 and s0 are the initial values of one of the four states, and τ = t − t0 is the time 

interval from the start of that state. Note that the analytical solution is the same even if we 

assume different opening and closing rates, if we simply use

αc =
αco, if kc = 1
αcc, if kc = 0 .

Note that we write the ODEs in terms of a single chromatin rate αc purely for notational 

simplicity. In the MultiVelo package and in all of our experiments in the paper, we fit 

separate chromatin opening and closing rates.

Similar to RNA velocity, the origin of the trajectory is (0, 0, 0) (whether observed or not), 

and initial values of the next state can be obtained by solving the expected values at the 

switch interval using equations for the previous state. The range of chromatin values is 

restricted to [0,1] to span from fully closed to fully open chromatin accessibility. As such, 

the hypothetical steady states for chromatin accessibility c∞
kc , as time approaches infinity on 

each interval, is simply 0 for closing state and 1 for opening state. The steady-state values 

for each state become

(c∞
kc , u∞

(k), s∞
(k)) = (kc, α(k)kc

β , α(k)kc

γ ) . (17)

Because the model includes separate latent variables for chromatin state kc and RNA state 

k, there are multiple potential orders of chromatin remodeling states and transcription states. 

We label these possible orders as model 0 (M0), model 1 (M1) and model 2 (M2):

M0 : kc = 1, k = 0 kc = 0, k = 0 kc = 0, k = 1 kc = 0, k = 0
M1: kc = 1, k = 0 kc = 1, k = 1 kc = 0, k = 1 kc = 0, k = 0
M2: kc = 1, k = 0 kc = 1, k = 1 kc = 1, k = 0 kc = 0, k = 0

We reason that it is biologically implausible for chromatin to be closed when transcription 

initiates, because it is difficult or impossible for a gene with inaccessible chromatin to be 

transcribed16. Thus, we implement the capability to fit model 0 if desired, but fit only model 

1 and model 2 by default. Model 1 and model 2 are both biologically plausible, and these 

different orders have biologically meaningful interpretations. We refer to model 1 as delayed 

transcriptional repression and model 2 as delayed chromatin repression. Within each model, 

a trajectory is defined by a set of eight core parameters θ, including three phase switching 

time points (transcriptional initiation time ti, chromatin closing time tc and transcriptional 

repression time tr) and five rate parameters (chromatin opening rate αco, chromatin closing 

rate αcc, transcription rate α, splicing rate β and RNA degradation rate γ). There is also a 

fourth possible switch time to at which chromatin opening begins, but by excluding model 0, 

we can assume that to = 0 for all genes.
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Model likelihood

We can formulate a probabilistic model to calculate the likelihood of the observed data 

for a gene under particular ODE parameters θ. To do this, we simply assume that the 

observations are independent and identically distributed and that the residuals are also 

normally distributed with mean given by the deterministic ODE solution and diagonal 

covariance. Because we scale the c, u and s values, we can further assume that the variance is 

the same in all directions. That is, if we define the ODE prediction as f ti, θ = x̂i = ĉi, ûi, ŝi , 

then the distribution of the observed data xi = ci, ui, si  for each gene is

xi N f ti, θ , σ2I . (18)

The negative log likelihood of all n observations is then

−logℒ(θ) = 3
2log 2πσ2 + 1

2nσ2 ∑
i = 1

n
xi − f ti, θ 2 . (19)

We can infer the ODE parameters θ by maximum likelihood estimation, which is equivalent 

to minimizing the mean-squared error (MSE). The maximum likelihood estimate of σ2 is 

the sample variance of the residuals along each coordinate. We can then rank genes by their 

likelihood to identify the genes best fit by the ODE model. We can also determine which 

model best explains the c, u, s values observed for a particular gene by comparing the MSE 

under model 1 and model 2.

Parameter estimation and latent time inference by expectation maximization

Both the cell times t and the ODE parameters are unknown, so we perform expectation-

maximization to simultaneously infer them. The E-step involves determining the expected 

value of latent time for each cell given the current best estimate of the ODE parameters. 

Because inverting the three-dimensional ODEs analytically is not straightforward, we 

perform this time estimation by finding the time whose ODE prediction is nearest each data 

point, selecting the time from a vector of uniformly spaced time points (Implementation 

details section). In the M-step, we find the ODE parameters that maximize the data 

likelihood (equivalent to minimizing MSE) given the current time estimates for each cell. 

We use the Nelder-Mead48 simplex algorithm to minimize MSE in each iteration.

Model predetermination and distinguishing genes with partial and complete dynamics

A gene does not have to complete a full trajectory within the measured cell population. In 

fact, for differentiating cells, we found that it is not uncommon for a gene to possess only 

an induction or repression phase, especially for differentially expressed cell-type marker 

genes. The three types of gene expression patterns (induction only, repression only and 

complete trajectory) can be directly inferred before fitting a model, thus avoiding ambiguous 

assignments near RNA phase transition points.

We used a combination of two methods for this purpose. The first method directly results 

from the assumptions of RNA velocity6: given a steady-state fit, cells in the induction phase 
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reside above the fit steady-state line while cells in the repression phase reside below the 

steady-state line. Thus, the ratio of sum of squared distances of cells on either side of the 

steady-state line is an indicator that can be used to determine the direction of the trajectory.

The second method incorporates low-dimensional coordinates (for example, from principal-

component analysis or UMAP) as global information. We use UMAP coordinates by default, 

because these are often precomputed for visualization. Assuming that a gene possesses a 

complete trajectory, then at lower quantiles of its unspliced-spliced phase portrait, these 

cells are expected to have a bimodal pairwise distance pattern in the low-dimensional 

representation. Such a bimodal pattern indicates dissimilar populations, as some of these 

cells are in the early phase of induction, whereas the others have reached the late phase of 

repression. In contrast, for partial trajectories, cells at lower quantiles of the RNA phase 

portrait will have similar low-dimensional coordinates. Similarly, the unimodal or bimodal 

pattern can also be derived from the assumption that noise is normally distributed along 

the trajectory given by the ODE solution. We thus used a Gaussian mixture model to test 

if the distribution of pairwise distances among cells in a gene’s lower quantile region is 

unimodal or bimodal, designating the trajectory being partial or complete, respectively. To 

be classified as a complete trajectory, the distance of the means between two Gaussians 

under bimodal distribution must exceed the globally measured variation (one standard 

deviation by default) of all pairwise distances on the low-dimensional coordinates for cells 

that express that gene, and the weight of the second, usually smaller Gaussian must pass 

a certain threshold (0.2 by default). The final assignment of partial or complete trajectory 

utilizes a combination of both methods (steady-state line ratio and bimodality), with the first 

method given priority (Extended Data Fig. 4g).

Additionally, whether a gene is better explained by model 1 or model 2 can be determined 

without actually fitting parameters under both models. To see how, note that the chromatin 

closing phase precedes transcriptional repression in model 1 but succeeds transcriptional 

repression in model 2. This implies that the highest chromatin accessibility values occur 

during the transcriptional induction phase for model 1 genes but during the repression phase 

for model 2 genes. Thus, the ratio of top chromatin values across the steady-state line can 

be used to determine whether each gene is best described by model 1 or model 2 before 

actually fitting the parameters. We implement this model predetermination as a default to 

speed up computation, but users can alternatively opt to fit both models and compare their 

losses instead (Extended Data Fig. 4h).

Parameter initialization

Parameters specifically related to RNA (α, β, γ and the RNA switch time interval) are 

initialized based on steady-state model as in scVelo. The rescaling factor for chromatin 

accessibility is initialized to 1, as the maximum observed accessibility is likely some value 

between 0 and 1. Other parameters can be found in the Implementation details section 

below.

We also initialize a scale factor for u. Here, we show that its value is closely related to the 

roundness of the unspliced-spliced portrait under steady-state assumptions. First, u and s
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are both normalized to the range [0, 1]. Next, points of steady-state rate are found on the 

induction phase:

α − βu1

βu1 − γs1
= γ

α − u1

u1 − γs1
= γ

α − u1 = γu1 − γ2s1,

(20)

u1 = α + γ2s1
γ + 1

u1 = a + a2s1
a + 1

where a is an unknown scalar and equals to the expected maximum of rescaled u. Similarly, 

on the repression phase,

−βu2

βu2 − γs2
= γ

−u2

u2 − γs2
= γ

−u2 = γu2 − γ2s2 .

(21)

u2 = γ2s2
γ + 1

u2 = a2s2
a + 1

Then, if we assume u1 = u2 = 1
2  of maximum unspliced count, meaning the line connecting 

u1 and u2 is parallel to the s axis and at the same time crosses the middle point of u (due to 

symmetry), then

a + a2s1 = a2s2

S2 − S1 = 1
a

. (22)

The rescale factor for u is therefore s2 − s1 around middle of u when s is normalized to range 

of [0, 1]. u/ 1/a = a × u and s are then used to initialize other parameters. Note that value of 

a is then further optimized during fitting (Extended Data Fig. 4i).

Implementation details

Estimating latent time.—A key implementation detail is how to estimate each cell’s 

latent time given the ODE solution from the current parameters. Inverting the ODE solution 

is analytically challenging due to the complexity arising from a system of three ODEs. Thus, 

rather than pursuing an exact or approximate analytical solution to calculate time, we simply 
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maintain a set of anchor points uniformly spaced in time. For each cell, we then identify the 

nearest anchor point and assign the cell’s time to the time of the anchor point. In more detail, 

we calculate the c, u, s  values of the ODE solution at a specified number of uniformly 

distributed time points. Then we calculate pairwise distances from the observed cells to 

these anchor points. The shortest distance represents the residuals to the inferred trajectory, 

and the time of the anchor point is assigned to the cell. We found that 500–1,000 points are 

sufficient to capture the full trajectory dynamics. We restrict the time range to span from 0 to 

20 h, consistent with scVelo’s default setting.

Parameter initialization.—After determining trajectory direction and model to fit, 

expression values are shifted so that the minimum value starts from zero, and then they 

are scaled but not centered. RNA rate parameters are initialized based on the steady-state 

model: α is initialized as the mean of top-percentile u values to represent a gene’s overall 

transcription potential7. The splicing rate β is initialized to 1, consistent with the steady-state 

model heuristic, and the degradation rate γ is obtained through linear regression of the 

top-percentile u, s  values6. Chromatin rate αc is initialized as −log 1 − cℎigℎ /tcc, where cℎigℎ is 

the mean accessibility of those cells with accessibility above average of all cells for that 

gene and tcc is the chromatin closing switch time in the current grid search iteration. We 

initialize the RNA switch-off time using the explicit time-inversion procedure described in 

scVelo’s method. To initialize the RNA switch-on time and chromatin switch-off time, we 

search over a grid of times 2 hours apart. The best initial switch time combinations are 

chosen based on MSE loss.

Estimating ODE parameters.—To fit and optimize parameters, we minimize the 

negative log likelihood (equivalent to MSE loss) using the Nelder-Mead downhill simplex 

method48, implemented in the scipy minimize function. The Nelder-Mead algorithm 

performs a series of transformations on the model parameters, including reflection, shrinking 

and expansion to improve the fitting results. When fitting induction-only trajectories, only 

the first two phases (chromatin priming phase and coupled induction phase) are aligned 

to observations. When fitting repression-only trajectories, only the latter two phases are 

fit. To improve convergence speed, we minimize with respect to subsets of parameters at 

any time, holding the others fixed. This is similar to a block coordinate descent strategy. 

Within each iteration, we first update parameters exclusive to c, then parameters related 

to u and finally parameters affecting s. We found that five to ten iterations are sufficient 

for convergence in most cases. To ensure that the switch times occur in the proper order 

(for example, transcriptional induction precedes transcriptional repression), we opted to 

use switch intervals rather than switch time points as actual parameters. Thus, a model is 

guaranteed to be valid if all parameters are positive, with no other constraints needed.

Assigning cells to anchor points.—The trajectory constructed using a set of rate 

parameters is represented by a set of uniformly distributed anchor time points. By using 

the uniform distribution, we assume cells have equal prior probability to be measured 

at any given time point. The local sparsity of cells is determined by model parameters. 

We used KD-tree49 from scipy to search for the closest anchor to each observation 

and its corresponding distance. Using anchor points also allows the model to mimic 
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the expected local sparsity of cells along the fit trajectories by encouraging anchors to 

concentrate near where cells concentrate in order to reduce small distance offsets caused 

by discrete representation of the trajectory. The main fitting steps are implemented in 

multivelo.recover_dynamics_chrom function.

Latent time normalization.—After fitting the models, because genes with partial fit 

trajectories result in a shorter total observed time range, violating the assumption that all 

genes share one time scale, the rate parameter set and the switch times are scaled down and 

up, respectively, so that time ranges from 0 to 20 hours. (Note that multiplying the time and 

dividing the rates by the same constant will result in identical trajectories.) This ensures that 

the time parameters from all genes are comparable. Switch times are shifted backward in 

time if the observable start of the trajectory happens later than 0 hour.

Other details.—The optimized rate parameters and time assignments are plugged back 

into the system of ODEs to obtain velocities for chromatin accessibility, unspliced RNA 

and spliced RNA for each cell. Our multi-omic velocity method is implemented in python. 

Many internal functions in our method have been accelerated with Numba. Distances, time 

assignments and velocity vectors are smoothed among nearest neighbors to mitigate the 

effect of measurement stochasticity.

Because multi-omic velocity is an upstream extension of the original RNA velocity model, 

it can be easily reduced to the RNA-only model by setting chromatin to be fully open 

(constant of 1) throughout the entire trajectory. Fitting this RNA-only model is then very 

similar to running the multi-omic model, but there will be no notion of the model 1 and 

model 2 distinction.

Likelihood ratio test for identifying genes with significant decoupling

We derived a likelihood ratio test (LRT) to determine whether a given gene has a statistically 

significant decoupling interval. Whether adding the decoupling phase significantly improves 

the likelihood of fit can be examined with a LRT. In this case, the reduced model has one 

fewer parameter (the length of the decoupling interval) compared to the full model. We use 

the following test statistic:

λLR = − 2n( ℓ (θ0) − ℓ (θ )), (23)

where n is the number of cells, ℓ denotes the sample-size normalized log likelihood (Model 

likelihood section), θ0 is the null/reduced parameter set without the decoupling interval and 

θ̂ contains the alternative/full model parameter set. By Wilks’ theorem50, the distribution of 

this test statistic can be asymptotically approximated by a χ2 distribution with degrees of 

freedom equal to the difference in the number of free parameters between models (one in 

this case):

λLR
D X1

2 (24)
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Because the decoupling interval primarily affects the fit of the chromatin data, which 

contributes only a small fraction of the overall likelihood, we used only the likelihood of 

chromatin fit to compute the test statistics. A significantly low P  value indicates that the 

decoupling phase helps the model fit the chromatin significantly more accurately and that 

the null hypothesis of no decoupling interval can be rejected. This test is implemented in the 

multivelo.LRT_decoupling function.

Multi-omic stochastic velocity model

Building on the idea of the stochastic model in the scVelo paper, we developed a stochastic 

multi-omic velocity model and a parameter estimation strategy based on the steady-state 

assumption. A key idea of our stochastic model is that chromatin ‘breathes’ by rapidly 

switching between binary open and closed states51; at any instant of time, chromatin is either 

open or closed, but over a finite time interval, the chromatin accessibility can be interpreted 

as a probability between 0 and 1. Thus, we can model the instantaneous chromatin state 

using a Markov process with transition parameters for moving from a closed to an open state 

and vice versa. We further assume that the transcription rate at any moment in time t is the 

product of a rate constant α and the current chromatin accessibility ct. Thus, transcription 

happens only during ‘bursts’ of chromatin accessibility, consistent with some experimental 

evidence that enhancers play a key role in transcriptional bursting52.

More formally, we model the changes in chromatin accessibility over time as a transition 

graph between two states S = closed, open  with transition probabilities p = αcc, αco

(Supplementary Fig. 2a). The stationary distribution and the expected value of the Markov 

chain are then given by

P ct = αcc

αcc + αco

αco

αcc + αco
(25)

E ct = αco

αcc + αco
. (26)

We can further write a system of stochastic ODEs describing the probability of c, u and s
increasing or decreasing during an infinitesimal time step dt:

P ct + dt = ct + 1 = αco ct = 0 dt
P ct + dt = ct − 1 = αcc ct = 1 dt
P ct + dt = ct = ( 1 − αco ct = 0 + 1 − αcc ct = 1 )dt .
P ut + dt = ut + 1, st + dt = st = αctdt
P ut + dt = ut − 1, st + dt = st + 1 = βutdt
P ut + dt = ut, st + dt = st − 1 = γstdt

(27)

Although this system cannot be readily solved analytically, we can derive moments in closed 

form. Following a similar argument to the one given in the scVelo paper, we obtain the 

following equations:
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d ut
2

dt = α ct + 2α ctut + β ut − 2β ut
2 (28)

d st
2

dt = β ut + 2β utst + γ st − 2γ st
2 . , (29)

where the  operator denotes expectation. Bergen et al. showed that if we further assume 

that the system is at steady state, we can use these moment equations to estimate the ratio 

between transcription and degradation rates7. The resulting parameter estimates depend on a 

covariance between u and s (second moment), which confers additional robustness compared 

to the deterministic steady-state parameter estimates. Comparing our stochastic model with 

scVelo’s, the moments now additionally depend on the chromatin state ct. Thus, to perform 

parameter estimation, we assign cells into open or closed chromatin states for each gene 

and use the open cells to estimate parameters. In practice, we assign cells with chromatin 

accessibility one standard deviation above the mean to the open state. These cells are then 

used to estimate the transcription/degradation ratio by linear regression as in scVelo. This 

strategy will result in a shift in the steady-state location, particularly for genes with long 

decoupling intervals.

When we compare the hypothetical steady-state locations proposed in the 

MultiVelo dynamical model, (c∞
kc , u∞

k , s∞
k ) = kc, α k kc/β, α k kc/γ , and RNA velocity 

(u∞
k , s∞

k ) = α k /β, α k /γ , one can also see that they are directly affected by kc, an indicator 

for open chromatin state. In addition, depending on whether a gene is model 1 or model 

2, the steady-state location shifts earlier or later in time compared to the RNA-only model. 

Supplementary Fig. 2b shows examples of how the steady state changes in practice when 

we use the multi-omic stochastic model. The steady-state methods are implemented in the 

function multivelo.velocity_chrom.

Post-fitting analyses

Bergen et al.7 have developed great downstream analyses methods for RNA velocity in 

the scVelo toolkit. Because our method is a direct extension of the dynamical model to 

multi-omic data, many of scVelo’s methods can be applied with only a change of arguments. 

Our main method replaces the scVelo functions tl.recover_dynamics and tl.velocity. In this 

paper, scVelo’s tl.velocity_graph with total-normalized spliced velocity vectors computed 

from our multi-omic method was used to obtain a transition matrix between cells based 

on cosine similarity between a cell’s velocity vector and expression differences. We used 

pl.velocity_embedding_stream to embed and plot velocity streams onto UMAP coordinates. 

Computation of global latent time among cells and genes is implemented in tl.latent_time.

We performed DTW using the dtw R package53,54. First, the accessibilities or expressions 

of cells were aggregated to 20 equal-sized bins based on either their gene time (for Wnt3 in 

the skin dataset) or latent time (for human brain motifs) and then maximum-normalized to 

the same range of [0, 1]. For motifs, a rolling mean of three bins was applied to the RNA 

and motif counts to smooth the curves. Next, we added a zero to each end of the time series 
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to ensure that the starting and ending values of each time series matched. Then we used 

DTW to find the best alignment (local for Wnt3 or global for motifs) between the two time 

series with Euclidean distance penalty. We then calculated time lags by simply subtracting 

the times of the aligned points. When many-to-one mappings occurred in global alignments, 

we averaged the time lags across all points mapped to the same time. For SNP time analysis, 

both the SNP accessibilities and log RNA expressions were aggregated to 100 equal-sized 

bins. We then calculated the time lag as the time difference between the time bins with 

highest values in the two modalities.

Generation of simulated data

We first simulated genes independently to assess MultiVelo’s ability to recover the 

underlying parameters and model 1 versus model 2 distinctions (Extended Data Fig. 5). 

In this analysis, 1,000 genes were simulated with various rate parameters, switch times, time 

sequences and models (1 and 2). αcc = αco, α, β and γ values were generated from multivariate 

log-normal distributions with mean [−2, 2, 0, 0] and variance [0.5, 1, 0.3, 0.3], with a small 

covariance of 0.01 between αc, α and β. Four switch intervals were random chosen from 

[1,4], [1,9], [1,9] and [1,9] and scaled to give a time range from 0 to 20 hours. The model 

(model 1 versus model 2) was sampled uniformly at random. Cell times were sampled 

from a Poisson distribution. Noise was added to each cell with diagonal covariances of 

[max(c)2/90, max(u)2/90, max(s)2/90]. The accuracy of loss-based and predetermined model 

decisions were separately computed.

We next performed a simulation to test MultiVelo’s ability to recover latent time under 

varying noise levels and differing numbers of complete, induction and repression genes 

(Supplementary Fig. 3). In this analysis, 2,000 cells were simulated with times equally 

spaced between 0 and 20. The four rate parameters (αc, α, β and γ) were sampled from 

log-normal distributions with mean [−2.5, 2, −0.5, 0] and variance of [0.3, 1, 0.3, 0.3]. 

We chose these mean and variance values to mimic the data distribution observed in the 

10x mouse brain dataset. Each of the 500 genes was then randomly assigned to complete, 

induction only or repression only based on the specified sampling ratio among the three 

types. The noise was added to each cell so that the variance-mean ratio of each modality 

was matched between simulation and the mouse brain. Here, the variance was obtained 

using the signed distances to trajectory anchors, and mean expressions of cells above 0.05 

× max(modality) were computed. The variance of chromatin-wise noise, which serves as an 

indicator of ATAC-seq stochasticity and sparsity, was scaled by a factor of 0.2 or 5. After 

constructing the cell–gene matrix, UMAP was computed for each setting without further 

preprocessing steps, as the simulated dataset is designed to resemble the real data after 

normalization and smoothing.

Working with unpaired RNA and ATAC datasets

To test whether the model can work for scRNA and snATAC datasets derived from separate 

cells, we used the anchors algorithm from the Seurat package42. We treated the RNA and 

ATAC measurements in the 10x mouse brain dataset as separately sequenced modalities. 

Although the RNA, unspliced and spliced matrices stayed unaltered, the gene-aggregated 

ATAC matrix was imputed and paired to the RNA cells by the anchor transfer method 
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implemented in the FindTransferAnchors and TransferData functions. This new ATAC-

seq matrix was then input into MultiVelo. We found that this procedure gave the most 

similar and clean three-dimensional phase portraits to the ones from the true cell pairs 

(Supplementary Fig. 1). Transferring RNA into ATAC space instead gave worse results (not 

shown).

Development environment and runtime

The Python package was developed on Arch Linux with Intel Core i7–9750H (12 

threads) and 32 GB memory. We summarized the runtime and memory usage statistics 

in Supplementary Table 1. The main dynamics recovery function finished running in parallel 

in 40 min, 69 min, 124 min and 40 min for the four biological datasets tested (mouse brain, 

mouse skin, human HSPC and human brain). The maximum python memory usage statistics 

when running the multivelo. recover_dynamics_chrom function were 857 MiB, 1,602 MiB, 

2,921 MiB and 1,100 MiB. The memory increments when running the main function were 

481.5 MiB, 1,136.5 MiB, 2,293.2 MiB and 660.6 MiB. The memory usage usually goes up 

with the number of threads requested. Downsampling the cells or lowering the number of 

anchors can further reduce runtime and memory.

Preprocessing of data, weighted nearest neighbors (WNNs) and smoothing

10x embryonic E18 mouse brain.—Filtered expression matrix for ATAC-seq, feature 

linkage file, as well as position-sorted RNA alignment (BAM) file of E18 mouse embryonic 

brain data of around 5,000 cells were downloaded from 10x Genomics website (CellRanger 

ARC 1.0.0). Total, unspliced and spliced RNA reads were separately quantified using the 

Velocyto run10x command. The resulting loom file was read into python as an AnnData 

object and preprocessed with scanpy and scVelo to perform filtering, normalization and 

nearest neighbor assignment. Next, clusters were computed using the Leiden55 algorithm. 

Cell types were manually annotated based on expression of known marker genes56–59. 

We then excluded interneurons, Cajal-Retzius and microglia cell populations for our 

downstream analyses, because these cell types are not actively differentiating. We then 

reprocessed the raw counts of subset clusters, which consists of more than 3,000 remaining 

cells, with scVelo. The unspliced and spliced reads were neighborhood smoothed (averaged) 

by scVelo’s pp.moments method with 30 principal components among 50 neighbors. The 

downloaded feature linkage file contains correlation information for gene-peak pairs of 

genomic features across cells. We first collected all distal putative enhancer peaks (not in 

promoter or gene body regions) with ≥0.5 correlation with either promoter accessibility 

or gene expression that were annotated to the same gene or within 10 kilobase pairs 

of that gene. We then aggregated these enhancer peaks with 10x annotated promoter 

peaks for the corresponding genes, as a single chromatin accessibility modality to boost 

chromatin signal. These aggregated accessibility values were then normalized using the 

term frequency-inverse document frequency (TF-IDF) method28. (Note that during fitting, 

chromatin values are normalized to [0, 1], so using other total-count based normalization 

will produce identical results.)

Due to the increased sparsity of ATAC-seq data, the neighborhood graph and clustering 

results based solely on peaks is often noisy and unreliable. Seurat group recently 
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developed a method to compute neighborhood assignments for simultaneously measured 

multi-modality data in the Seurat V4 toolkit, which they called weighted nearest neighbor, 

or WNN60. The WNN method learns weights of each cell in either modality based on its 

predictive power by neighboring cells in each of the modalities, so that both RNA and ATAC 

information can be incorporated when assigning neighbors. We used 50 WNNs obtained 

from Seurat for each cell to smooth the aggregated and normalized chromatin peak values. 

Our WNN analysis followed the recommended steps in Seurat V4 vignette for 10x RNA 

+ ATAC. We thus obtained three matrices containing chromatin accessibility, unspliced and 

spliced counts. Shared cell barcodes and genes were filtered among matrices and resulted in 

3,365 cells and 936 highly variable genes, and these matrices were then used for dynamical 

modeling.

SHARE-seq mouse skin (hair follicle) data.—The quantified ATAC-seq expression 

matrix, raw ATAC-seq fragments file and cell annotations of SHARE-seq mouse skin 

dataset9 were downloaded from the Gene Expression Omnibus (GEO). The RNA alignment 

BAM file as well as UMAP coordinates for TAC, IRS, medulla and hair shaft cuticle/cortex 

cell populations used in the SHARE-seq manuscript were obtained directly from the authors. 

We run Velocyto to quantify unspliced and spliced counts, and the RNA AnnData object 

was further preprocessed with scanpy/scVelo for the four cell types of interest. In R, 

the chromatin fragment file was used to construct a gene activity matrix by aggregating 

peaks onto gene coordinates using the GeneActivity function in Signac61. Domain of 

regulatory chromatin (DORC) is defined as chromatin regions that contain clusters of 

peaks that are highly correlated with gene expressions in SHARE-seq’s analysis. A list 

of computed DORCs coordinates was downloaded from its supplementary material section. 

These coordinates were output to the bed format, and we extracted fragments together 

with their corresponding cell barcodes that overlap with these DORCs regions. A peak 

expression matrix for DORCs was constructed with LIGER’s62 makeFeatureMatrix method. 

The gene activity and DORCs counts were then merged in python to form a single chromatin 

modality. Similar to brain data, this matrix underwent TF-IDF normalization and WNN 

smoothing. A total of 6,436 cells and 962 genes participated in the downstream analyses. 

When computing the Spearman correlation with pseudotime based methods, only genes with 

likelihood higher than 0.07 were kept, resulting in 140 velocity genes. This filtering step 

ensures a fair comparison with scVelo by using a small set of high-quality genes.

Human HSPCs.—Purified human CD34+ cells were purchased from the Fred Hutch 

Hematology Core B. Freshly thawed cells from a single donor were either immediately 

prepared for single-cell processing or maintained at 37°C with 5% CO2 in Stemspan II 

medium supplemented with 100 ng ml−1 stem cell factor, 100 ng ml−1 thrombopoietin, 

100 ng ml−1 Flt3 ligand (all from Stemcell Technologies) and 100 ng ml−1 insulin-like 

growth factor binding protein 2 (R&D Systems) for seven days. HSPCs were prepared 

according to the manufacturer’s ‘10x Genomics Nuclei Isolation Single Cell multi-ome 

ATAC + Gene Expression Sequencing’ demonstrated protocol. Briefly, cells were washed 

in PBS supplemented with 0.04% BSA and filtered with a Flowmi Cell Strainer (Bel-Art) 

(day 0) or sorted using the Sony SH800 cell sorter (Sony Biotechnologies) (day 7). Nuclei 
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were isolated following the ‘Low Cell Input Nuclei Isolation’ sub-protocol and immediately 

processed using the Chromium Next GEM Single Cell Multiome + Gene Expression kit.

10x filtered expression matrices, Velocyto computed unspliced and spliced counts and 

feature linkage and peak annotation files from CellRanger ARC 2.0.0 were read into 

python to construct RNA and ATAC AnnData objects. Filtering, normalization and variable-

gene selection were performed following scVelo’s online tutorial. Because HSPCs are 

rapidly proliferating, we noticed systematic differences in cell cycle stage across the set 

of cells. The cell cycle scores for both G2M and S phases, computed using scVelo’s 

tl.score_genes_cell_cycle function were then regressed out of the RNA expression matrices 

with scanpy’s pp.regress_out function (Extended Data Fig. 2b). Note that the regression 

did not change unspliced and spliced counts. Then gene expression scaling was performed. 

ATAC peaks were aggregated and normalized using the same procedure as described for 

the 10x mouse brain. Joint filtering between RNA and ATAC resulted in 11,605 cells and 

1,000 genes. RNA expression was smoothed by scVelo’s pp.moments with 30 principal 

components and 50 neighbors. Leiden found 11 clusters. Cell types were assigned based on 

canonical HSPC markers63–67. The chromatin accessibility matrix was WNN smoothed with 

50 neighbors computed using Seurat. Then the RNA and ATAC objects were input to our 

dynamical function with default parameters. We relaxed the likelihood threshold for velocity 

genes (used for computing the velocity graph) to 0.02 compared to the default of 0.05 due to 

noisiness of this dataset.

To find complete genes in each of the lineages from HSC toward GMPs (myeloid), 

erythrocytes and platelets, we subset cells of each specific lineage and select known 

complete genes as those genes that have higher unspliced and spliced expressions in 

the progenitor populations leading to each of the terminal cell types. We then ran the 

model predetermination algorithm based on peak chromatin accessibility as described in 

the previous section. The genes predicted as model 1 and model 2 for each lineage are 

then merged with duplicates removed, and we performed gene ontology enrichment analysis 

(GOrilla68) using all sequenced genes as the background set.

Preprocessed bulk chromatin immunoprecipitation with sequencing (ChIP-seq) peaks 

of H3K4me3, H3K4me1 and H3K27ac for CD34+ HSPCs were downloaded from 

GEO:GSE7067769. Peaks were mapped to genes with Homer70. Known complete genes in 

the myeloid and erythroid lineages were grouped together, and predicted model 1 and model 

2 genes were extracted. Scores of peaks associated with the same genes were aggregated. 

Wilcoxon rank-sum test was used to compute significance.

The day 0 Multiome HSPC sample was integrated with the day 7 sample (Fig. 5) using the 

Seurat42 anchors workflow (FindIntegrationAnchors and IntegrateData) to remove technical 

differences due to batch effects. Each of the full RNA expression matrices, unspliced and 

spliced matrices, as well as gene-aggregated ATAC-seq matrix, were integrated and imputed 

independently between the two samples. A total of 2,000 RNA genes and 5,000 ATAC genes 

were used for integration with the day 7 sample as the reference dataset. The two raw ATAC-

seq peak matrices were integrated using the IntegrateEmbeddings method in Signac61, and 

together with the integrated full RNA matrix, the WNNs were found. These outputs were 
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then read into python and processed using the standard MultiVelo procedure. The UMAP 

resulting from the Seurat anchors RNA integration was used for plotting (Extended Data 

Fig. 2d). Seurat cluster results were used for cell types.

Human cerebral cortex.—We obtained the multi-omic RNA, unspliced, spliced and 

ATAC-seq peak files from the authors. The ATAC peak matrix contains consensus peaks of 

nonoverlapping uniform 500 bp length. After initial clustering, we observed a severe batch 

effect in one of the three samples. We thus decided to remove this third sample and perform 

all downstream analyses with the two remaining samples (dc2r2_r1 and dc2r2_r2). We 

renamed the clusters from the original paper as follows based on marker gene expression: 

RG → RG/Astro, nIPC/GluN1 → nIPC/ExN, GluN3 → ExM, GluN2 → ExUp, GluN4 

and GluN5 → ExDp57. Peaks were annotated to genes with Homer70. We considered peaks 

within 10,000 bp of transcription start sites as promoter peaks. A list of peak-gene links and 

correlations were downloaded from the supplementary material and aggregated to promoter 

peaks if the correlation exceeded 0.4. After filtering the RNA and ATAC matrices, 4,693 

cells and 919 genes were left and input to model fitting.

TF motif profiles were computed with chromVAR44 on the JASPAR2020 database71 using 

all consensus peaks. The background-corrected deviation z-scores were used as normalized 

motif accessibilities, and the values were smoothed with WNN. Then TF genes appearing in 

the variable-gene list (after internal filtering by the dynamical function) were extracted for 

time-lag analysis, which resulted in 30 known motifs.

All mental or behavioral disorder-associated SNPs (EFO_0000677) were downloaded from 

the Ensembl GWAS Catalog. The list contains 6,968 SNPs, and filtering for overlap with 

consensus peaks linked to the top genes resulted in 757 SNPs. Each SNP’s accessibility was 

quantified as the count of all ATAC fragments that overlap a 400-bp bin centered on the SNP 

location. The accessibility matrix was normalized by library size and smoothed by WNN 

neighbors.

Downstream target genes for EGR1, EOMES, FOXP2 and PBX3 were found through a 

literature search. A number of these targets were confirmed by ChIP-seq experiments72–75. 

The time delay between expression of a TF and expression of its downstream targets was 

quantified with DTW.
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Extended Data

Extended Data Fig. 1 |. Additional figures for mouse brain dataset.
a, Canonical marker gene expression for embryonic mouse brain cell types. b, Comparison 

of Cdh13 fits from scVelo and MultiVelo. An elevating transcription rate due to opening 

of chromatin produces a more linear fit and better captures the observed phase portrait. 

c, Scatterplot of gene likelihood against log total spliced count. Gene likelihood is not 

significantly affected by model assignment or trajectory type. Likelihood does increase with 

spliced count, as this usually indicates higher quality or highly variable genes. d, Switch 

times can be used to rank genes by the length of priming and decoupling intervals. Each 

range is scaled to 1 with outliers n = 1  removed. Top two rows: Histogram of priming 

intervals. Pbx3 and Celsr1 possess short and long priming phases, respectively. Bottom two 
rows: Histogram of decoupled intervals. While Rspo3 has a short decoupling phase with few 

cells within, Tgfbr1’s decoupling phase extends from RNA induction to RNA repression, 

and up to the end of the trajectory.
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Extended Data Fig. 2 |. Additional figures for HSPC dataset.
a, Canonical marker gene expression for HSPCs. b, Cell cycle (S phase and G2M phase) 

scores and total unspliced ratio (U/(U+S)) plotted on UMAP coordinates. These factors 

were regressed out of the total RNA expression (but not the unspliced and spliced counts) 

during the preprocessing step as they do not appear to be cell-type or lineage specific. c, 

Box plots of histone modification levels from bulk ChIP-seq of FACS-purified HSCs (center 

line, median; box, Q1 and Q3; whiskers, 1.5x IQR; points, outliers). Each point in the box 

plot represents the sum of histone modification signal at chromatin accessibility peaks linked 
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to a Model 1 or Model 2 gene. P-values are from a one-sided Wilcoxon rank-sum test. d, 

Velocity stream plot from MultiVelo analysis of Day 0 and Day 7 HSPC samples (Top). The 

majority of arrows go from Day 0 stem cells toward more differentiated Day 7 cells. UMAP 

coordinates colored by cell-type labels (Middle). UMAP coordinates colored by expression 

of CD133 (PROM1), an HSPC marker (Bottom).

Extended Data Fig. 3 |. Additional figures for human brain dataset.
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a, Validation of the direction of MEF2C. Left: UMAP with cell types. Top: scVelo’s 

MEF2C fit produces inconsistency between gene time and global latent time. Bottom: 

MultiVelo’s results show consistent progression from nIPC to deeper layer (ExDp). b, 

DTW and UMAP results for EOMES and FOXP2 transcription factors. c, Additional motif 

DTW alignment results showing time lags between TF gene expression and corresponding 

motif accessibility. d, The accessibility of TF motifs binned across latent time. The 

latent time scale was split into 20 equalsized bins, and the average motif accessibility 

of cells in each bin was computed and plotted. The motif sequence logos (downloaded 

from jaspar2020.genereg. net) are shown next to the TF names. e, Time-lag analysis of 

transcription factors and the expression of their validated downstream target genes. Top: 

UMAP plots colored by TF and target gene expression. Bottom: Line plots of TF and 

target gene expression, with correspondences from DTW alignment shown as dotted lines. 

Magenta: TFs. Cyan: target genes.

Extended Data Fig. 4 |. Chromatin dynamics, Model 0, the necessity of chromatin preprocessing, 
and pre-fitting illustrations.
a, Chromatin dynamics illustration: chromatin opening and closing are modeled as 

asymptotically approaching fully opened (1) or fully closed (0) starting from any initial 
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value. b, Chromatin accessibility change as a function latent time inferred by scVelo using 

only the RNA portion of the 10X multiome mouse brain dataset (colored by mouse brain 

cell types). Black lines connect the mean accessibilities within 20 equal-sized windows. The 

shapes of the ATAC trends are qualitatively very similar to the ODE model we propose. c, 

Simulation of Model 0 samples. The long delay between chromatin closing and transcription 

initiation is unlikely to happen in real biological systems. In the rare cases when high 

chromatin accessibility but low expression or high expression but low accessibility pattern 

is observed, it is likely due to technical issues such as dropout or background noise. d, The 

need for normalization as a preprocessing step for ATAC-seq. e, The need for smoothing 

as a preprocessing step for ATAC-seq. f, Chromatin accessibility results after peak-to-gene 

aggregation, TF-IDF normalization, and WNN smoothing. It is the same as Fig. S2E. g, 

Illustration of bi-modal expression pattern for complete genes. Cells at the lower quantile 

can be far apart in low-dimensional embedded expression space. h, Simplified illustration 

of model predetermination reasoning. The highest chromatin accessibility region appears in 

different RNA phases in M1 and M2 genes. i, Illustration of the internal unspliced modality 

rescaling factor initialization.
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Extended Data Fig. 5 |. Simulation study to assess parameter estimation and model 
determination.
A total of 1000 genes were simulated with various parameters for both model 1 and model 

2. a, C-U view of noiseless simulations of 2000 time-points in the 0–20 hr range. b, U-S 

view of noiseless simulations from A. c, 3D view of noiseless simulations from A. d, Noise 

added to simulated points to mimic real data. e, f, Model 1 and Model 2 fits for the same 

simulated gene (S17). The likelihood is higher under Model 1, consistent with the ground 

truth. e, Left: 3D view of the fit Model 1 trajectory colored by states, along with predicted 

switch time points. Middle: simulation with ground-truth switch times. Right: U-S view 
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of fitted trajectory colored by log(c). f, Similar to e, but the fit shown is for Model 2 (the 

incorrect model). g, h, Model fits for simulated gene S41, similar to e and f, but this time, 

Model 2 is the ground truth model. MultiVelo correctly identifies the sample to be Model 

2 with accurate switch time estimations. The model assignments of 985/1000 samples were 

correctly predicted based on likelihood.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SHARE-seq9 mouse skin dataset can be found at the GEO (GSE140203).
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ChIP-seq peaks for bulk CD34+ HSPC69 were downloaded from the GEO (GSE70677).
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Fig. 1 |. Schematic of MultiVelo approach.
a, System of three ODEs summarizes the temporal relationship among c, u and s values 

during the gene expression process. b, Two different models (abbreviated as M1 and 

M2) describe two potential orderings of chromatin and RNA state changes. Chromatin 

accessibility starts to drop before transcriptional repression begins in M1, and the reverse 

happens in M2. c, Priming occurs when chromatin opens before transcription initiates. d, 

Decoupling occurs when chromatin closing and transcription repression begin at different 

times (example shown for model 1). e, Phase portraits predicted by the ODE model, showing 
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the four possible states each gene can occupy. Gene expression and chromatin accessibility 

are coupled in the orange and blue states and decoupled in the red and green states. f,g, 

Simulated c, u, s  values for a model 1 (f) and a model 2 (g) gene.
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Fig. 2 |. MultiVelo reveals two distinct mechanisms of gene regulation.
a, UMAP coordinates with stream plot of velocity vectors (left) and latent time (right) from 

MultiVelo. OPC, oligodendrocyte progenitor cells; Astro, astrocytes; V-SVZ, ventricular–

subventricular zone. b, Stream plot of velocity vectors estimated from RNA only by scVelo. 

c, Cell cycle score indicating active dividing and cycling population (arrow). d, Chromatin 

values better separate differentiating cells when chromatin opening precedes transcription. 

e, RNA phase portraits (u versus s) colored by c values show clear differences between 

model 1 (left) and model 2 (right) genes. f, Additional phase portraits for the genes shown 
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in panel e. g, Heatmaps of model 1 and model 2 gene expressions as a function of latent 

time. Color represents smoothed spliced counts. Model 2 genes tend to achieve highest 

expression earlier in latent time than model 1 genes. h, Relative proportion of each type of 

kinetics across all fit genes n = 865 . Note that genes with partial kinetics (induction only 

or repression only) cannot be identified as model 1 or model 2. i, MultiVelo predicts 3D 

velocity vectors, which can be visualized as three-dimensional arrow plots.
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Fig. 3 |. MultiVelo captures epigenomic priming and decoupling in embryonic mouse brain.
a, Three-dimensional phase portraits overlaid with MultiVelo fits (solid lines) and inferred 

states (colors). Each point represents the c, u, s  values observed for one gene in one cell. b, 

UMAP plots colored by c (left), u (middle) and state assignments (right) for genes predicted 

by MultiVelo to have notable priming or decoupling intervals. Regions with priming or 

decoupling are circled. c, Observed values for c (left), u (middle) and s (right) plotted as 

a function of latent time and colored by state assignment. Vertical lines indicate inferred 

switch times. d, UMAP plots colored by the number of genes in each cell assigned to each 
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of the four states. e, Box plots summarizing the lengths of each of the four states across all 

fit genes (center line, median; box, Q1 and Q3; whiskers, 1.5× IQR; points, outliers). f, Box 

plot summarizing the ratio between chromatin closing rate αcc and opening rate αco across all 

fit genes.
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Fig. 4 |. MultiVelo quantifies epigenomic priming in mouse skin.
a, UMAP coordinates with stream plot of velocity vectors (left) and latent time (right) from 

MultiVelo. b, Velocity stream plot from RNA-only model (scVelo). c, Relative proportion 

of each type of kinetics across all fit genes n = 960 . d, UMAP coordinates colored by 

c (left), u (middle) and s (right) values for Wnt3. e, Examples of genes showing priming 

or decoupling. Observed c (left), u (middle) and s (right) values plotted as a function of 

latent time and colored by state assignment. Vertical lines indicate inferred switch times. f, 
Dynamic time warping alignment of c and s values (top) and u and s values (middle) for 
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Wnt3. Dotted gray lines indicate corresponding time points after alignment. Bottom panel 

shows instantaneous time lags computed by subtracting times of aligned time points from 

the previous two panels. Norm values, normalized values.
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Fig. 5 |. MultiVelo identifies priming in HSPCs.
a, UMAP coordinates with stream plot of velocity vectors inferred by MultiVelo (left) 

and an RNA-only model (scVelo; right). Cell types were annotated based on marker gene 

expression (Extended Data Fig. 2a). Prog., progenitors; MK, megakaryocyte. b, Relative 

proportion of each type of kinetics across all fit genes n = 936 . c, Box plots summarizing 

the lengths of each of the four states across all fit genes (see Fig. 3e). d, Several G2/M cell 

cycle phase markers show model 2 expression pattern toward different lineages. e, Examples 

of genes showing priming or decoupling. Observed c, u and s values plotted as a function 
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of latent time and colored by cell type. f, Corresponding velocity vectors of the same genes 

as in panel e. Cell velocities and times have been smoothed by RNA neighbors. Note that 

all velocity values are non-negative, and the lowest velocities are not necessarily at 0. dc/dt, 

chromatin velocity; du/dt, unspliced velocity; ds/dt, spliced velocity. g, RNA phase portraits 

of the same genes as in panels e and f.
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Fig. 6 |. MultiVelo infers epigenome and transcriptome dynamics in fetal human brain.
a, UMAP coordinates with stream plot of velocity vectors (left) and latent time (right) 

from MultiVelo. nIPC/ExN, intermediate progenitor cells/newborn excitatory neurons; 

ExUp, upper-layer neurons; SP, subplate; ExM, maturing neurons; RG/Astro, radial glia/

astrocytes; ExDp, deep-layer neurons; Cyc., cycling progenitors; mGPC/OPC, multipotent 

glial progenitor cells/oligodendrocyte progenitor cells. b, Velocity streamplot from RNA-

only model (scVelo). c, RNA phase portraits (u versus s) colored by c values show clear 

differences between model 1 (ROBO2) and model 2 (MEF2C) genes. Arrows indicate where 
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chromatin closing begins. d, Relative proportion of each type of kinetics across all fit genes 

n = 747 . e, Dynamic time warping alignment of TF gene expression and the accessibility 

of predicted binding sites for four TFs. Dotted gray lines indicate corresponding time points 

after alignment. Inset UMAPs colored by TF expression and motif accessibility are shown 

for two of the TFs, EGR1 and PBX3. f, Quantiles (q) of TF motif time lags inferred 

by DTW across all expressed TFs. The median time lag across TFs is positive at most 

times, indicating that TF expression generally precedes motif accessibility. g, Classification 

of SNPs according to the relationship between maximum accessibility time and time of 

maximum linked gene expression. The contour lines indicate density, and three main groups 

of SNPs are visible. Inset UMAP plots are shown for one example SNP from each group.
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