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Abstract

Ample evidence indicates that the gut microbiome is a tumor-extrinsic factor associated with 

antitumor response to anti-programmed cell death protein-1 (PD-1) therapy, but inconsistencies 

exist between published microbial signatures associated with clinical outcomes. To resolve this, 

we evaluated a new melanoma cohort, along with four published datasets. Time-to-event analysis 

showed that baseline microbiota composition was optimally associated with clinical outcome 

at approximately 1 year after initiation of treatment. Meta-analysis and other bioinformatic 

analyses of the combined data show that bacteria associated with favorable response are 

confined within the Actinobacteria phylum and the Lachnospiraceae/Ruminococcaceae families 

of Firmicutes. Conversely, Gram-negative bacteria were associated with an inflammatory host 

intestinal gene signature, increased blood neutrophil-to-lymphocyte ratio, and unfavorable 

outcome. Two microbial signatures, enriched for Lachnospiraceae spp. and Streptococcaceae spp., 

were associated with favorable and unfavorable clinical response, respectively, and with distinct 

immune-related adverse effects. Despite between-cohort heterogeneity, optimized all-minus-one 

supervised learning algorithms trained on batch-corrected microbiome data consistently predicted 

outcomes to programmed cell death protein-1 therapy in all cohorts. Gut microbial communities 

(microbiotypes) with nonuniform geographical distribution were associated with favorable and 

unfavorable outcomes, contributing to discrepancies between cohorts. Our findings shed new light 

on the complex interaction between the gut microbiome and response to cancer immunotherapy, 

providing a roadmap for future studies.

The intestinal microbiome has emerged as a tumor-extrinsic predictive biomarker to immune 

checkpoint blockade (ICB)1–6. Additionally, there is evidence that the microbiome is 

associated with development of immune-related adverse events (irAEs) following ICB7–9. 

Administration of certain gut commensals promotes efficacy of anti-programmed cell 

death protein-1 (PD-1) therapy in mice, providing evidence that microbiota can drive 

immunotherapy outcomes4–6. In two proof-of-concept trials with a total of 26 patients, 

responder-derived fecal microbiota transplantation (FMT) overcame PD-1 resistance in a 

third of patients with melanoma, suggesting that microbiome modulation could improve 

responsiveness to anti-PD-1 ICB10,11. However, there is limited concordance among species 

identified across studies, which included small numbers of patients and used different 

analytical approaches, not always adjusted for multiple testing4,5,12,13. Three meta-analyses 
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including multiple tumors and treatments and applying uniform computational approaches 

have not explained discrepancies among published cohorts14–16. It also is unclear whether 

the microbiome exerts positive or negative effects on effectiveness of ICB therapy and at 

which time during therapy microbiome action is most important.

In this study, we evaluated a large cohort of microbiome samples of PD-1-treated 

patients with melanoma, integrating time-to-event outcomes with variables including 

medications, neutrophil-to-lymphocyte ratio (NLR) and irAEs. We identified distinct 

microbial signatures associated with specific irAE profiles and outcomes, and a systemic 

and enteric lipopolysaccharide (LPS)-dependent inflammatory status associated with 

unfavorable clinical response. We performed meta-analysis of microbial sequencing 

data from the new cohort and four published independent cohorts of PD-1-treated 

patients with melanoma4,5,12,13, using the same bioinformatic approach. Cross-cohort 

microbiome-trained machine learning consistently predicted outcomes of PD-1 therapy 

despite heterogeneity among cohorts. Distinct geographically distributed intestinal microbial 

signatures (microbiotypes) were differentially associated with PD-1 response, partly 

explaining discrepancies among cohorts.

Results

Patients and treatment.

Stool samples were collected from 94 PD-1-treated patients with melanoma (Supplementary 

Table 1). Samples were collected before treatment or within 4 months of starting anti-

PD-1 (63 patients, Pittsburgh early sample cohort (P-ESC)) or after more than 4 months 

(range, 4–41 months) from the start of anti-PD-1 (31 patients, Pittsburgh late sample 

cohort (P-LSC)). The P-ESC was considered representative of baseline microbiome data 

due to observations that the microbiome of patients treated with anti-PD-1, unlike anti-

CTLA-4 or chemotherapy, is stable early after therapy initiation17–19. Extended Data Fig. 

1a,b depicts Kaplan–Meier curves for progression-free survival (PFS) and overall survival 

(OS) of P-ESC patients. The association of select clinical characteristics upon OS and 

PFS was evaluated using Cox regression hazards model (Supplementary Table 2). Low 

body mass index and high NLR were negatively associated with OS, while use of proton 

pump inhibitors (PPIs) and high NLR were negatively associated with PFS. Data from the 

Pittsburgh melanoma cohort also were combined in a meta-analysis with four published 

cohorts of PD-1-treated patients with melanoma (Supplementary Table 3)4,5,12,13.

Fecal microbiome signatures associate with PD-1-response.

To estimate the time at which baseline intestinal microbiome composition was maximally 

associated with clinical outcomes, we computed permutational multivariate analysis of 

variance (PERMANOVA) P values and distances between centroids using taxonomic 

relative abundances comparing non-progressors (NPs) and progressors (Ps) at various 

time points after therapy initiation (Fig. 1a). Microbiota composition reflected maximal 

separation between Ps and NPs at 9–10 months (Fig. 1a,b; distance = 0.32, P = 0.006). 

The most differentially abundant species in NPs were Ruminococcus (Mediterraneibacter) 
torques, Blautia producta, Blautia wexlerae, Blautia hansenii, Eubacterium rectale, 
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Ruminococcus (Mediterraneibacter) gnavus and Anaerostipes hadrus. Ps exhibited increased 

abundance of Prevotella spp., Oscillibacter spp., Alistipes spp. and Sutterellaceae spp. (Fig. 

1c). To estimate PFS probability for each taxon, we categorized patients into high/low 

groups based on the optimal cutoff of fecal bacterial abundance identified using Evaluate 

Cutpoints and calculated Kaplan–Meier curves (Extended Data Fig. 1c).

Taxa associated with Ps or NPs in cohorts treated with either anti-PD-1 alone (49 patients) 

or anti-PD-1 in combination with pegylated interferon (peg-IFN; 14 patients) were largely 

concordant (Fig. 1c and Supplementary Figs. 1 and 2), suggesting that peg-IFN did not 

affect the associations and thus analysis of the combined results increased sample size and 

significance of the observed differences.

The microbiome of P-LSC patients (mostly long-term NPs) did not predict progression 

subsequent to stool collection (Extended Data Fig. 2a,b). The fecal microbiome of P-LSC 

patients was significantly distinct from Ps and similar to NPs in the P-ESC cohort (Fig. 

1c, Extended Data Fig. 2c,d and Supplementary Fig. 3). These data suggest that beneficial 

microbiome signatures are preserved in long-term NPs during therapy. Indeed, using the taxa 

identified by Cox regression as positively or negatively associated with PFS (Supplementary 

Tables 4 and 5) to manually train a model for prediction of clinical response, a similar area 

under curve (AUC; ~90%) was observed for both training early and independent late cohorts 

(Extended Data Fig. 2e).

Survival analyses identified taxa associated with response.

Favorable or unfavorable association of bacterial species with PFS was evaluated by 

determining fecal abundance cutoff points using Evaluate Cutpoints20 for all taxa and 

calculating Cox regression hazard ratios (HRs). False discovery rate (FDR) was accounted 

for by calculating Storey’s ‘q value’ twice, correcting for both the number of taxa and the 

cutoff points analyzed. This approach identified additional taxa (compared to the approach 

in Fig. 1) associated with either improved or decreased PFS (Extended Data Fig. 3a,b and 

Supplementary Tables 4 and 5). Members of the of the Bacteroides genus and Proteobacteria 

phylum appeared to be associated only with Ps, while members of Actinobacteria phylum 

and Lachnospiraceae family associated only with NPs. Because many of the species 

seemed to belong to the same genus, family, and so on, we performed statistical analysis 

of probabilities that a particular taxonomic level will have members behaving similarly 

(Extended Data Fig. 3b).

Systemic and gut inflammation associates with poor response.

Consistent with published studies in multiple settings21–24, PD-1-treated patients with 

melanoma with a high NLR had poorer survival (OS/PFS) than those with a low NLR. 

Further, fecal microbiome composition was different in patients with high NLR compared 

to low NLR; the species associated with the high NLR phenotype were enriched for Gram-

negative bacteria (Extended Data Fig. 4a,b).

To investigate mechanisms by which the microbiota influences clinical outcomes, 

we analyzed microbial gene signatures. Of approximately 39,000 genes, 1,200 were 

differentially abundant between Ps and NPs (FDR < 0.2 and fold change (FC) > 1.5; 
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Extended Data Fig. 5a,b). We identified that microbial signatures such as LPS synthesis in 

Ps and iron bioavailability in NPs may affect host response (Extended Data Fig. 5b–d).

To evaluate the impact of intestinal microbiome upon host tissues, we performed 

noninvasive transcriptomic analyses of shed intestinal luminal cells (exfoliome) on the fecal 

samples used for microbiome analysis25,26. We identified ~2,000 host genes expressed at 

>10 reads per sample in 26 samples that were further compared between Ps and NPs. Genes 

encoding pro-inflammatory cytokines (IL1B and CXCL8), transcription factors (NFKBIZ, 

NFKBIA, TNFAIP3 and LITAF) and superoxide dismutase (SOD2) were increased in 

Ps, while NPs exhibited increased expression of genes encoding mucosal and endotoxin 

protective membrane mucins (MUC13 and MUC20) and apolipoproteins (APOA1, APOA4 
and APOB; Fig. 2a). Ingenuity pathway analysis of upstream regulators of differentially 

expressed host genes identified LPS as a major contributor of a pro-inflammatory gene 

signature in Ps (Fig. 2b). Gene-set enrichment analysis (GSEA) predicted that the most 

abundant exfoliated cell type in stool samples from both Ps and NPs was intestinal epithelial 

cells (enterocytes and goblet cells). Fecal samples of Ps also had increased inflammatory 

cells (dendritic cells, monocytes, macrophages and neutrophils; Fig. 2c).

To investigate regulatory relationships between host and microbe, we created a statistical 

model of robust interactions, called the transkingdom network11,27,28, among NLR, PFS, 

host gene expression and microbial taxa and genes, consisting of 684 nodes and 10,040 

edges (Fig. 2d). First, the transkingdom network had significantly more edges between 

phenotypes and the other omics types than randomly generated ones (Fig. 2e). Second, 

microbes had the strongest connectivity to phenotypes compared to host and microbial genes 

(Fig. 2e). Taken together, network interrogation revealed that microbes (taxa and genes) and 

host genes were strongly connected with phenotypes, with higher connectivity for microbial 

components than for human genes. Unfavorable microbes had a greater influence upon PFS 

and NLR as illustrated by higher bipartite betweenness centrality (Bi-BC) scores (Fig. 2f; 

Mann–Whitney U, P = 0.013) between all microbes and human phenotypes (that is, PFS and 

NLR). Average node degree did not differ significantly between favorable and unfavorable 

microbes (Fig. 2g).

Collectively, our findings hint that an unfavorable gut microbiome enriched in Gram-

negative bacteria may promote an LPS-dominated inflammatory signature in the gut, 

resulting in systemic inflammation manifested by elevated NLR and poor response to anti-

PD-1.

Gut microbial signatures are associated with distinct immune-related adverse events.

IrAEs represent toxicities secondary to anti-PD-1 therapy that result from off-tumor immune 

activation. We analyzed whether occurrence of irAEs linked to anti-PD-1 was associated 

with microbiome composition in P-ESC patients. As in previous reports29–31, landmark 

analysis (landmark time point for OS set at 10 months after therapy initiation) identified 

that any-grade irAEs were associated with improved PFS (Supplementary Table 6 and 

Supplementary Fig. 4a).
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IrAE occurrence at any time was associated with distinct fecal microbiota composition 

(Fig. 3a). Two taxa groups with opposing effects upon anti-PD-1 response (enriched for 

either Lachnospiraceae spp. or Streptococcus spp.) were associated with irAEs (Fig. 3b and 

Extended Data Fig. 6). To exclude immortal time bias (artefactual association of favorable 

taxa with irAEs due to increased PFS and thus higher probability to develop irAEs in 

patients with higher abundance of said taxa), we reanalyzed the association of microbial taxa 

with irAEs using the landmark time point and confirmed the association between irAEs and 

several Lachnospiraceae spp. (Supplementary Fig. 4b,c).

Patients developed distinct irAE profiles depending upon the abundance of Streptococcus 
spp. in pretreatment microbiome samples (Fig. 3c and Extended Data Fig. 6). All eight 

patients with the highest cumulative abundance of seven Streptococcus spp. developed irAEs 

(Fig. 3c). Analysis of the association of different bacteria with individual irAEs linked 

specific bacteria to the occurrence of different irAEs (Supplementary Fig. 5). Patients with 

high Streptococcus spp. abundance had significantly shorter PFS compared to those with 

low Streptococcus spp. abundance (Fig. 3d; HR = 3.62, P = 0.0073). High Streptococcus 
spp. abundance was correlated with PPI use during therapy (Fig. 3e; χ2 P = 0.0008), which 

in turn was associated with worse PFS (Supplementary Fig. 6a; P = 0.0483). PPI use 

also correlated with the presence of intestinal bacteria associated with oralization, such as 

Streptococcus spp. and Veillonella spp. (Supplementary Fig. 6b).

Collectively, our findings identified two microbial signatures associated with distinct irAE 

profiles in PD-1-treated melanoma. As previously reported, they also link PPI use with fecal 

microbiota oralization32 and adverse outcomes in response to anti-PD-1 therapy33.

Meta-analysis of gut microbiome in PD-1-treated patients.

We performed meta-analysis of the microbiome datasets of PD-1-treated patients with 

melanoma from four published cohorts and the Pittsburgh cohort (Supplementary Table 

3)4,5,12,13. The combined dataset comprised 155 shotgun and 150 16S amplicon sequenced 

samples. The definition of patients who were responders (Rs) and nonresponders (NRs) 

was maintained as reported in each study. Meta-analysis of α-diversity as measured by 

inverse Simpson, Shannon and observed taxa methods did not show significant differences 

between Rs and NRs for both shotgun (five cohorts) and 16S amplicon (four cohorts) 

sequenced samples (Extended Data Fig. 7a). The high I2 statistic (heterogeneity P value < 

0.05) indicated the studies were heterogenous.

Reanalysis of the shotgun datasets using the same bioinformatics pipeline11,34,35 mostly 

reproduced reported taxonomic differences between Rs and NRs with minimal overlap 

between datasets (Supplementary Fig. 7a–d). Inter-study heterogeneity was reduced by 

batch correction using an empirical Bayesian framework implemented in the ComBat R 

package36,37, and pooled batch-effect-corrected metagenomic data showed a significant 

difference between microbiota of Rs and NRs (Extended Data Fig. 7b,c; P = 0.002). The top 

taxa associated with Rs belonged to the Actinobacteria phylum and Lachnospiraceae family 

(Extended Data Fig. 7d). Conversely, the top taxa associated with NRs belonged to either 

Bacteroidetes or Proteobacteria (Extended Data Fig. 7d).
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To dissect the contribution of taxonomic levels to PD-1 response, we performed supervised 

comparisons of batch-corrected pooled microbiota data by linear discriminant effect size 

(LEfSe) analysis38. Again, organisms within the Firmicutes and Actinobacteria phyla 

were enriched in Rs. Organisms selectively enriched in NRs primarily belonged to the 

Prevotellaceae, Rikenellaceae, Porphyromonadaceae and Bacteroidaceae families within the 

Bacteroidetes phylum (Fig. 4a and Supplementary Table 7). To confirm these associations 

in non-batch-corrected data, we performed two types of meta-analysis by combining study-

level analyses between select bacteria in Rs and NRs from the five cohorts (Fisher’s method, 

Fig. 4b; random-effects model, Extended Data Fig. 8a,b). These meta-analyses identified 

many of the previously described taxa as associated with response to PD-1 therapy. Taxa 

belonging to a few genera of the Lachnospiraceae family and Actinobacteria phylum 

including the Bifidobacterium genus were predominant in Rs, while multiple Prevotella 
spp. within Bacteroidetes were enriched in NRs.

To validate the predictive power of gut microbiota composition upon PFS, we analyzed 

an independent PD-1-treated melanoma cohort (Houston) with available time-to-event 

information4. Similarly to the Pittsburgh cohort, baseline fecal microbiota composition 

showed maximal separation of Ps from NPs at 13 months (Supplementary Fig. 8a,b). At 

this time point, we observed microbial signatures that resembled other datasets, including 

increased abundance of Bacteroides massilliensis in Ps and Faecalibacterium spp. and 

Eubacterium spp. in NPs (Supplementary Fig. 8c).

We performed continuous variable Cox regression analyses separately for Pittsburgh and 

Houston cohorts. Significant taxa from the Pittsburgh cohort showing a correlation between 

last known taxon (LKT) abundance and PFS are listed in Supplementary Table 8, and two 

representative scattergrams are depicted in Supplementary Fig. 9a. To overcome sample size 

limitations, we used GSEA39 to check whether significantly enriched organisms at different 

FDR cutoffs (‘LKT sets’) in one cohort (Pittsburgh) were enriched in an independent cohort 

(Houston). Only LKTs associated with shorter PFS from one cohort were enriched in the 

independent cohort, suggesting that unfavorable microbes are more reproducibly identified 

across cohorts (Supplementary Fig. 9b,c).

Gene signature of favorable and unfavorable intestinal taxa.

Differentially present microbial genes mostly reflect taxonomic differences, resulting in 

identification of taxa-specific genes (passenger genes) rather than genes that may impact 

host response (driver genes). Notably, we identified similar gene signatures associated with 

host response across different taxa, suggesting that unknown variance in complex microbial 

communities precluded robust signature identification. We observed that subspecies within 

taxonomically identified species were differentially associated with clinical outcomes. 

Because functional diversity in taxonomically similar bacteria largely depends on the 

presence or absence of a discrete number of genes linked to those functions, we sought 

to eliminate the confounding effect of taxonomically shared genes and to identify genes 

potentially involved in regulating the phenotype. We performed reference-independent 

binning analysis of assembled contigs from the five melanoma patient cohorts similar to 

the MetaBAT approach40,41. We found 13,237 clusters that belonged to 730 taxonomic 
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known units and identified 39,480 genes. This approach permitted subspecies-level gene 

comparison. Nonparametric statistical comparisons are presented as species–gene networks 

of favorable and unfavorable taxa (Fig. 4c,d), along with ‘degree’ statistics (number of 

species shared by a gene; Supplementary Fig. 10). Within favorable taxa, we identified 

increased abundance of genes related to polysaccharide deacetylation known to play a role in 

immune evasion42, as well as iron transport and iron-induced production of reactive oxygen 

species ROS, which affect mucosal healing43. We also observed increased abundance of 

genes encoding flavin and riboflavin metabolism, byproducts of which can be presented 

by MR1 and recognized by mucosal-associated invariant T cells11,44, which we showed 

are activated in PD-1-responsive patients after FMT11. Conversely, within unfavorable taxa, 

genes encoding enzymes related to LPS synthesis and mucus degradation such as alpha-l-

fucosidase45 and alpha-galactosidase46 were increased.

Gut microbiome composition predicts clinical response.

To evaluate whether a machine learning model trained on metagenomic datasets could 

predict PD-1 response, we used three machine learning models: random forest (RF), 

generalized linear model (GLM) and polynomial support-vector machine (poly-SVM). 

Analysis of single datasets using 70:30 train–test splitting showed variable results with 

no cohort giving AUC > 0.79, and cross-training–testing with the different cohorts also 

gave variable results with AUC values ranging from 0.21 to 0.79 (Supplementary Fig. 11a). 

Meta-analysis of all results confirmed that prediction of the combination was not significant 

and that models failed to predict clinical response, most likely because of the small size of 

most cohorts (Supplementary Fig. 11b).

Using leave-one-out cross-validation of batch-corrected pooled data with an extra training 

step (Methods), we found AUC values between 0.54 and 1.00 with significant (P < 0.05) 

accuracy of prediction of clinical responses in 12 of 15 combinations; meta-analysis 

confirmed that each learning method significantly (P < 0.01) predicted clinical response 

when trained with microbiota data of unrelated cohorts (Fig. 5a,b).

To explore the commonality of important taxa across cohorts, we created a network of 

taxa from the top 20 most important (for distinguishing R from NR samples) clusters from 

the best RF models of the five cohorts (Supplementary Fig. 12). A few taxa previously 

identified as favorably or unfavorably associated with PD-1 response contributed to the 

machine learning model across more than one cohort. Interestingly, the most involved taxa 

were Bacteroides, Prevotella and Alistipes genera. These findings suggest that associations 

between outcomes and microbial signatures are more robust and universal for unfavorable 

taxa than favorable taxa, which tend to be more cohort specific.

Identification of favorable and unfavorable microbiotypes.

The human gut microbiome includes multiple discrete ecologically balanced communities—

hereafter referred to as ‘enteric microbiotypes’—that are resilient although still modifiable 

by diet, drugs and lifestyle47–52. While much work has linked individual taxa to outcome, 

little is known about the relationship between enteric microbiotypes and response to anti-

PD-1.
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We observed that favorable and unfavorable bacteria identified in the five melanoma 

cohorts segregated in distinct clusters (Supplementary Fig. 13). To define these clusters, 

we uniformly analyzed 16S rRNA gene amplicon data from the American Gut Project 

(AGP) and PD-1-treated patients with melanoma available from four independent melanoma 

cohorts (Fig. 6a)53. We defined 27 distinct microbiotypes (Fig. 6a). Some were distinct 

(for example, clusters 9 and 19), while others (for example, clusters 13 and 27) had 

overlapping features with neighboring clusters (Supplementary Fig. 14a)54. Concordant with 

reported enterotypes in the human microbiome47,51,55, we identified microbiotype-defining 

taxa including Prevotella spp., Akkermansia spp. and Bifidobacterium spp. (Extended Data 

Fig. 9). Mapping 16S amplicon data from patients with melanoma to the AGP map, we 

observed differential distribution of four cohorts (Fig. 6b and Extended Data Fig. 10a). 

We also observed that Rs and NRs had a nonhomogenous distribution (Fig. 6c). By 

calculating the odds ratio (OR) of Rs to NRs in each cluster, Rs and NRs segregated 

into compositionally distinct favorable and unfavorable ‘superclusters’ with differential 

probabilities of response (Fig. 6d). We defined four superclusters that broadly grouped 

microbiotypes with similar correlation between microbial composition and clinical response: 

two enriched in favorable taxa and two enriched in unfavorable taxa (Fig. 6e). We also 

calculated probabilities of nonrandom distribution of clusters with ORs in similar directions 

within the same supercluster (Fig. 6e). We used analysis of variance (ANOVA; Fig. 6f) 

and linear discriminant analyses (Fig. 6g and Supplementary Table 9) to evaluate the most 

differentially abundant taxa within each supercluster.

Given differences in microbial taxa abundances in cohorts from different US cities and 

the known contribution of host location to microbiota variation4,5,12,13,56, we sought to 

define the effect of geography upon enteric microbiotype distribution. Using geolocation 

data from the AGP cohort, we mapped every sample and calculated the proportional 

distribution of each cluster at the county level (Extended Data Fig. 10b,c). Like a report 

on districts in southern China56, we observed preponderances of distinct clusters at the US 

state level (four representative microbiotypes with uneven geographical distribution shown 

in Extended Data Fig. 10d), suggesting a possible explanation of inter-study differences. We 

confirmed uneven distribution of microbiotypes and superclusters within the four cohorts 

analyzed (Supplementary Fig. 14b). In particular, favorable supercluster 2, characterized 

by abundance of Oscillospiraceae (Ruminococcaceae), was present in the Houston and 

New York cohorts, in which members of this family and Faecalibacterium prausnitzii in 

particular were associated with anti-PD-1 benefit, whereas it was almost absent in the 

Pittsburgh and Chicago cohorts. Favorable supercluster 1, characterized by members of 

the Lachnospiraceae and Bifidobacteriaceae families, was abundant in the Pittsburgh and 

Chicago cohorts, in which Lachnospiraceae and Bifidobacteriaceae spp., respectively, were 

associated with clinical response.

Discussion

Several studies demonstrated that gut microbiota composition correlates with response to 

ICB therapy, and FMT from Rs to NRs followed by anti-PD-1 can restore the ability of some 

patients to control tumors. However, the field has been hampered by lack of concordance 

of results among different studies. In addition, it is not clear whether the microbiome is 
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important for initial response to ICB therapies or during the entire treatment. We show 

that baseline microbiota composition reaches the most significant association with clinical 

response (PFS) in the P-ESC cohort at 9–10 months and, similarly, in an independent 

Houston cohort at 13 months. The implications of these findings are several fold. Unlike 

previous studies that used multiple different clinical outcomes, these results provide a 

scientific rationale for selecting the clinical time point most significantly associated with 

baseline gut microbiome composition. They suggest that early response is dominated 

by host-intrinsic and tumor-intrinsic factors, while the microbiota influence on response 

becomes a dominant factor around 1 year after initiation of treatment. Afterwards, the 

association declines, possibly because of resurgence of new tumor-intrinsic factors (for 

example, appearance of non-immunogenic clones) or loss of beneficial microbiota in some 

patients. In this regard, fecal microbiomes of Rs collected around the start of therapy and 

at much later time points were similar to each other but different from microbiomes of 

NRs. Collectively, these observations, together with the ability of FMT to overcome primary 

PD-1-resistance11, suggests that favorable microbiota may need to be maintained to prevent 

disease progression.

We analyzed the role in regulation of therapy not only of individual species and strains but 

also larger taxonomical branches. Due to the heterogeneity of biologic properties underlying 

taxonomic diversity of commensal bacteria, response of the host to bacterial signals shared 

at the family level or higher may be involved in modulation of ICB efficacy. Indeed, our 

data in the Pittsburgh cohort showed a favorable microbiota signature that included multiple 

members of the Actinobacteria phylum and Lachnospiraceae family of Firmicutes phylum, 

while an unfavorable signature comprised members of Bacteroidetes and Proteobacteria 

phyla. Importantly, meta-analysis with four other published datasets largely confirmed these 

findings.

Although machine learning trained by individual cohorts failed to predict response across 

the other cohorts, likely because of cohort heterogeneity and small size, a leave-one-out 

model using batch-corrected data and training optimization consistently predicted the 

response in all cohorts. Cross-validation identified unfavorable bacteria of the Bacteroidetes 

phylum as predictive for most cohorts, while favorable bacteria of the Clostridium phylum 

were predictive only for subsets of cohorts.

Our data suggest that both systemic and enteric inflammatory status may be associated 

with poor PD-1 response. Patients with a high NLR, a biomarker of systemic inflammation 

predicting poor PD-1 response in multiple cancers including melanoma21–24, have shorter 

PFS than patients with a low NLR, associated with enrichment of LPS-producing Gram-

negative bacteria in their microbiome. Analysis of the fecal exfoliome25 and network 

analysis integrating host and microbial data linked the presence of unfavorable taxa 

in NRs with an LPS-dependent inflammatory signature encompassing cytokines either 

directly or indirectly implicated in immune suppression, including CXCL8/interleukin 

(IL)-8, IL-1β and tumor necrosis factor. Using a new binning approach to focus on 

candidate bacterial driver genes, we observed enrichment of bacterial genes encoding 

key enzymes: polysaccharide deacetylase (associated with reduction of polysaccharide 

immunogenicity42) in Rs; and alpha-l-fucosidase45 and alpha-galactosidase46 (associated 
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with mucus degradation) and glycosyltransferases (associated with LPS synthesis57) in 

NRs. One may speculate that mucus degradation allows localization of bacteria next to 

the intestinal epithelium, where bacterial products including LPS may promote chronic 

inflammation and immunosuppression.

As also previously proposed on the basis of predictive taxa in a meta-analysis of PD-1-

treated cohorts16, multiple lines of evidence in the present studies—Gram-negative bacteria 

and LPS association with systemic and intestinal inflammation in NRs, transkingdom 

analysis, shared taxa associated with PD-1 response in different cohorts and machine 

learning prediction—converge upon the observation that unfavorable taxa are more 

consistently distributed across patients and cohorts than favorable taxa. While these data 

provide a possible explanation for the discordant results of previous studies, they also 

suggest a dominant effect of unfavorable taxa on PD-1 response, possibly through induction 

of an immunosuppressive inflammatory status. Identification of favorable taxa may be more 

difficult because of uneven distribution across patients, shared functions of different taxa, 

unique mechanisms mediated by each taxon or an indirect effect through ecological control 

of unfavorable taxa abundance.

We observed an association between irAEs and improved PFS using a landmark analysis, 

in agreement with previous studies58–60, and uncovered that baseline gut microbiome 

composition segregated PD-1-treated patients who developed irAEs from those who did 

not. Two distinct microbial signatures were associated with the insurgence of irAEs. While 

favorable bacteria of the Lachnospiraceae family enhance the immunostimulatory effects of 

anti-PD-1 both against cancer and self-antigens, others dominated by Streptococcus spp. 

may induce organ pathology without enhancing cancer immunity. Altogether, our findings 

help reconcile discordant published results linking irAEs and PD-1 response and will need to 

be confirmed in larger patient cohorts with sufficient representation of each type of irAE.

Multiple factors affect the composition of the human gut microbiome, including geography, 

diet, infection and drug usage56,61–64. Human intestinal microbiota variation encompasses 

discrete microbial clusters or enterotypes, although their distribution may be continuous and 

their composition can be variable within the same individual47,50,51. Complexity of highly 

dimensional gut microbiota may be better comprehended by organization into discrete 

classes of ecologically balanced communities or enteric microbiotypes that consider their 

functional and ecological context47,55. Enteric microbiotypes are distinctive of different 

geographical areas, as the human gut microbiome is affected by ethnicity and geographical 

origin48,49,52. To investigate whether certain microbiotypes are preferentially associated 

with clinical outcomes of PD-1-treated patients with melanoma, we clustered 16S rRNA 

gene amplicon data available from AGP and data from four independent melanoma 

cohorts. We observed that microbiotypes were unequally geographically distributed in the 

United States and differentially represented in the five analyzed cohorts. Four distinct 

superclusters (two favorable and two unfavorable) comprised distinct microbiotypes, with 

similar association between microbiome composition and clinical outcome. Altogether, 

evaluation of gut microbial signatures through the lens of microbiotypes, which exhibit 

geographical distribution and association with clinical outcome, explains some of the 

inconsistencies of previous data while still supporting their relevance.
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In summary, our findings identified microbial signatures associated with clinical outcomes 

and irAEs in one new melanoma cohort and four previously published cohorts. We provide 

new data supporting the role of the gut microbiome in promoting chronic inflammation 

and immunosuppression. The findings suggest that distinct geographically distributed 

microbiotypes may be preferentially associated with clinical outcome in patients with 

melanoma treated with anti-PD-1. Our work provides a roadmap for future studies to 

confirm the relevance of our findings in large prospective cohorts of patients treated 

with ICB and supports additional preclinical studies to further our understanding of the 

mechanisms by which the gut microbiome regulates antitumor immunity10,11.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41591-022-01698-2.

Methods

Patient characteristics.

Patient enrollment.—Patients with unresectable stage III or IV melanoma treated at 

the University of Pittsburgh’s Hillman Cancer Center (HCC) who were receiving frontline 

anti-PD-1 therapy for treatment of advanced disease were eligible. Patients were treated 

with single-agent anti-PD-1 immunotherapy (nivolumab, pembrolizumab or investigational 

anti-PD-1) or pembrolizumab in combination with peg-IFN in the context of a separate 

clinical trial, the results of which have been previously published (HCC 13–105, IRB 

approval no. CR19090075–002)66. Of the 94 studied patients, 78 patients (83%) were 

treated with anti-PD-1 in the frontline setting, and 16 patients (17%) received other prior 

therapy (Supplementary Table 1). Stool samples were banked under University of Pittsburgh 

Institutional Review Board-approved banking protocols (HCC 96–099 and 20–019, IRB 

approval nos. MOD19080226–004 and STUDY20010266, respectively). Radiographic 

response to therapy while receiving PD-1 inhibitor treatment was determined by the 

investigators providing the clinical treatment and assessed using response evaluation criteria 

in solid tumors (RECIST v1.1)67. Clinical response to therapy was assessed at each visit. 

Progression was defined based on first documented clinical and/or radiographic progression 

and confirmed in all instances.

Clinico-demographic variables.—Body mass index, NLR and lactate dehydrogenase 

were based on values obtained immediately before therapy or on the day of anti-PD-1 

initiation. PPI exposure was defined as exposure to omeprazole, esomeprazole, lansoprazole, 

dexlansoprazole, pantoprazole or rabeprazole taken by patients for at least 30 d preceding 

the date of stool sample collection.

Survival endpoints.—PFS was defined as the time from the start of therapy to first 

confirmed clinical and/or radiographic progression. OS was defined as the time from the 

start of therapy to date of death. Patients were censored as of the date of last contact.
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Immune-related adverse events.—irAEs were defined as any clinical and/or laboratory 

event that occurred following initiation of anti-PD-1 therapy that was definitely linked to 

administration of anti-PD-1 therapy based on investigator assessment. Adverse events were 

considered irAEs based on mechanism of action and a prespecified list of terms developed 

by study investigators and grouped under the following broader terms: pneumonitis, 

colitis, hepatitis, nephritis, arthritis, thyroid (including hyperthyroidism, hypothyroidism 

and thyroiditis), adrenal (adrenal insufficiency), dermatologic (skin and subcutaneous 

disorders including rash, pemphigoid and vitiligo) and neurologic (Guillain-Barré syndrome, 

encephalitis and myasthenic syndrome). Infusion reactions without immunologic etiology 

were not included in this analysis.

DNA/RNA extraction, sequencing and analysis.

Stool samples were collected from patients using Alpco EasySampler Stool Collection 

Kit (https://www.alpco.com/store/easysamplerr-stool-collection-kit.html) using a patient-

specific and time-point-specific printed barcoded FedEx label. Samples were shipped 

overnight using a well-insulated FedEx container containing a Thermo pack to maintain 

a temperature below −15 °C to the HCC processing laboratory for initial processing. 

Immediately upon receipt, study staff opened the packages to check for stool sample 

adequacy and to ensure the paperwork (time and date of collection) had been completed. 

Samples were then stored in a −80 °C freezer. If after 2 weeks an expected stool sample 

had not arrived at the HCC laboratory, the participant was notified and a follow-up phone 

call was made to ensure a sample was collected. Subsequently, samples were shipped 

using a cold-chain approach to the Laboratory of Integrative Cancer Immunology at the 

National Cancer Institute (NCI), National Institutes of Health (NIH). Total metagenomic 

DNA was extracted from stool samples using the PowerSoil DNA Isolation Kit (MO BIO 

Laboratories) and Epmotion 5075 liquid handling robot (Eppendorf). The DNA library 

was prepared using the Nextera DNA Flex Library Prep Kit, quantified using Qubit, and 

sequenced on the NovaSeq System (Illumina) using the 2 × 150 base-pair (bp) paired-end 

protocol.

All code used for shotgun sequencing analysis can be found within the in-house JAMS_BW 

package, version 1.5.7, publicly available on GitHub (https://github.com/johnmcculloch/

JAMS_BW). Quality trimming and adapter clipping of raw reads for each metagenomic 

sample was carried out using Trimmomatic (v0.36)68. Reads were then aligned against the 

human genome with Bowtie2 (v2.3.2)69, and unaligned (non-host) reads were assembled 

using MEGAHIT (v1.2.9)70,71. Assembly contigs smaller than 500 bp were discarded. For 

the 94 samples, mean sequencing depth (already discounting host reads) was 10.14 Gbp ± 

4.95 Gbp, yielding a mean assembly rate of 81.94% ± 5.24%.

Taxonomic classification of contigs was achieved by k-mer analysis using Kraken 2 

software72, with a custom 96-Gb Kraken 2 database built using draft and complete genomes 

of all bacteria, archaea, fungi, viruses and protozoa available in the NCBI GenBank in 

April 2020, in addition to human and mouse genomes, built in April 2020 using the 

JAMSbuildk2db tool of the JAMS package. Functional annotation of contigs was done 

ab initio with Prokka (v1.14.6)73. To evaluate sequencing depth of each contig, reads used 
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for assembly were then aligned back to the assembly contigs. Unassembled reads for each 

sample were classified individually using Kraken 2 on the same database. Taxonomy was 

expressed as the LKT, or the taxonomically lowest unambiguous classification determined 

for each query sequence, using Kraken’s confidence scoring threshold of 5 × 10−6 (using the 

--confidence parameter). Relative abundance for each LKT within each sample was obtained 

by dividing the number of base pairs covering all contigs and unassembled reads pertaining 

to that LKT by the total number of non-host base pairs sequenced for that sample. Relative 

abundances were expressed in ppm.

For comparisons between samples, ordination plots were made with the t-SNE algorithm 

using the uwot package in R (https://github.com/jlmelville/uwot) and the ggplot2 library. 

PERMANOVA values were obtained using the adonis function of the vegan package, with 

default (999) permutations and pairwise distances calculated using Bray–Curtis distance. 

Heat maps were drawn using the ComplexHeatmap package in R74. For each feature, 

P values were calculated using the Mann–Whitney–Wilcoxon U test on ppm relative 

abundances for that feature in samples within each group. The log2FC values shown on the 

heat maps were obtained by calculating the fold change between the geometric mean ppm 

relative abundance for samples within each group, using the gtools::foldchange2logratio 

function to obtain log2FC value.

Transkingdom network analysis of multi-omics data.

Network reconstruction.—To create a statistical model of robust interactions among the 

different players, we created a transkingdom network11,27,28. Microbial (taxa and genes) and 

host (genes and phenotypes) nodes significantly different between NPs and Ps were first 

selected. Next, the Spearman rank correlation was calculated between all pairs of nodes. 

To keep robust relationships independent of a particular group, within-omics interactions 

were selected if they had the same sign of correlation in: (1) early Ps, (2) early NPs, 

(3) late NPs, and if they satisfied principles of causality (that is, satisfied fold-change 

relationship between the two partners in NPs versus Ps). For between-omics interactions, 

an additional criterion was applied to check that the sign of correlation calculated using all 

samples matched that of the within-group correlations. The combined P value (CP) for meta-

analysis of within-group correlations was calculated based on Fisher’s z-transformation of 

correlations (metacor in R package ‘meta’ v4.9–7). For within-omics edges, the cutoffs were 

as follows: for phenotypes, CP < 5%, FDR < 10%; for host genes, within-group P values < 

35%, CP < 10%, FDR < 15%; for LKTs, within-group P values < 30%, CP < 10%, FDR < 

15%; for microbial genes, within-group P values < 3%, CP < 1%, FDR < 5%. Connections 

of microbes (taxa/microbial genes) and host genes with phenotypes had FDRs < 5% and 

25%, respectively. Connections of taxa and microbial genes with host genes had FDRs < 

15% and 5%, respectively, whereas taxa and microbial gene connections had within-group 

P values < 0.25% and FDR < 1%. The resulting transkingdom network was visualized with 

Cytoscape (2.6.3)75. Degree and Bi-BC scores were calculated using R 3.6 and compared 

between favorable and unfavorable LKTs (two-tailed Mann–Whitney U test, P value < 5%). 

To check whether observed interactions were by chance, we created 103 random networks 

keeping the same number of total nodes and edges. Next, we assessed connectivity between 

phenotypes and each type of omics data (taxa, microbial and human genes) by calculating 
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the number of observed edges between two groups of nodes in the transkingdom network 

normalized by the number of all possible edges in a bipartite graph of the two groups of 

nodes. P values were calculated by one-sample Wilcoxon signed-rank test.

Determining cutoff points for markers with continuous values.

Analysis was performed using Evaluate Cutpoints software, as described previously20. 

Briefly, the ‘coxph’ function from the ‘survival’ package was used to fit a Cox proportional 

hazard model to the binary outcome (OS, dead/alive; PFS, progressed/not) and continuous 

(overall or PFS time and biomarker value) covariates. Cutoff points were then computed 

with the ‘cutp’ function (survMisc v0.5.5 package), and samples were categorized into high 

and low groups based on biomarker values. A Kaplan–Meier plot was generated using a 

combination of survival v3.2–11, ggplot2 v3.3.5 and plotly packages. Finally, univariate and 

multivariate Cox regression analyses for categories were performed using the coxph function 

from survival package, and HRs, confidence intervals and P values were calculated.

In silico validation of significant microbes in an independent cohort.

Of the 93 bacteria significant from the Pittsburgh cohort (Supplementary Tables 4 and 5), 

applying the same fecal abundance threshold (cutpoint) from the Pittsburgh cohort to the 

Houston cohort showed only 11 unfavorable (HR > 1) bacteria (mostly Prevotella spp.) with 

concordant Cox regression HR direction and P value < 10%. However, significance was lost 

when corrected for multiple testing (bacteria). To avoid the use of cohort-specific optimal 

cutpoints, continuous variable Cox regression analyses for log (microbial abundance) versus 

PFS were performed separately for the full Pittsburgh and Houston cohorts (survival v3.2–

11; survminer v0.4.9; R v4.0.5). Due to the low sample size for the Houston cohort, 

checking for common (multiple-testing corrected) significant microbes from the two cohorts 

would result in more false negatives. Therefore, we applied GSEA as a threshold-free 

enrichment analysis to check whether significant bugs from the Pittsburgh cohort were 

enriched in the Houston cohort. Briefly, ‘LKT sets’ from Pittsburgh were defined at different 

Storey FDR (qvalue v2.22.0) cutoffs, and LKTs from Houston were ranked as per their beta 

(ln(HR)) from continuous variable Cox regression. GSEA checks whether microbes from an 

LKT set from one cohort are overrepresented at the ‘top’ (or ‘bottom’) of the ranked list 

in the second cohort more than expected by chance. Enrichment plots were generated using 

standalone GSEA (v4.1.0), fgsea (v1.16.0) and ggplot2 (v3.3.5).

Landmark analyses to determine the effect of immune-related adverse events on 
progression-free survival.

To account for lead-time bias inherent to the time-dependent nature of irAEs, we performed 

landmark analysis for PFS using only patients who survived for at least 10 months after 

initiation of therapy. An irAE was considered present if it developed before the landmark 

date or absent if it had not developed before the landmark date and/or occurred after the 

landmark date76.

The time point of 10 months was chosen based on our observations regarding the time when 

favorable and unfavorable microbiota maximally segregated between anti-PD-1-treated 

patients with melanoma (Fig. 1a,b). This 10-month time point also maximized the number 
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of patients who developed irAEs while minimizing the number of patients who progressed 

before the landmark. A similar method has been adopted in multiple prior analyses of 

anti-PD-1-treated patients with melanoma, wherein conditional landmark analyses were 

performed to remove guarantee-time bias77.

Machine learning methods.

Machine learning analyses were performed on taxonomic counts that were batch corrected 

by study using ComBat (v. 3.20.0)78. For comparison, several machine learning methods 

were tested—RF79, SVM80 and GLM81 using an inverse link function.

Each study was balanced by randomly removing either R or NR samples to obtain equal 

numbers of Rs and NRs. To reduce the number of features involved in training for the 

all-versus-all analysis, k-means clustering with k = 150 was applied to the taxonomic count 

table to create 150 clusters. Organisms belonging to each cluster were recorded to allow 

interpretation of clusters. Machine learning models were produced for each study with the 

R package caret v6.0.90 (https://CRAN.R-project.org/package=caret) using a training set of 

70% of samples, with the remaining 30% used to evaluate model performance. To help 

improve results of the models given the random effects of picking train–test sets as well 

as random factors involved in various machine learning methods, the model chosen for 

further use was the best performing model from 100 bootstrap replicates of 70/30 train–test 

sets. The code used to create these results is available at https://github.com/trinchierilab/

microbiotapd1melanoma2021.

Separately, we implemented a new modification of the traditional leave-one-out cross-

validation approach where we tried to overcome limitations of the small training size of 

the cohorts. Models were trained on batch-corrected taxon count data from four of the five 

cohorts and tested on the remaining cohort. However, for selection of the model from the 

test dataset, we additionally repeatedly separated the training dataset into 70:30 train–test 

splits and performed training/testing using RF, GLM and poly-SVM 100 times. Afterwards, 

the best model was selected and used to test on the initially left-out dataset. That procedure 

was repeated for all cohorts. Statistical significance of the consistency of predictions across 

different cohorts and different machine learning methods was performed using a random-

effects model in forest plots.

A manual predictive model was trained on the organisms associated with increased and 

decreased PFS in the Pittsburgh cohort (Supplementary Tables 4 and 5). For each sample, 

a positive score was given to each organism associated with increased PFS surpassing its 

cutpoint and a negative score to each organism associated with decreased PFS surpassing its 

cutpoint. As there were more organisms associated with decreased PFS than increased PFS, 

positive score was set to 2.5 and negative score to −1.

Transcriptomic analyses of exfoliated intestinal cells.

Fecal RNA was isolated with Epmotion 5730 using MO BIO’s PowerFecal kit (Qiagen). 

Although the fecal environment is capable of quickly degrading host RNA, the very large 

number of cells shed into the lumen makes RNA identification possible. In addition, shed 

cells most likely die very fast in the intestinal lumen and thus would have minimal time to 
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change RNA expression levels. Sequencing libraries were prepared using Illumina TruSeq 

Stranded Total RNA sequencing kit, following depletion of bacterial ribosomal RNA with 

the RiboZero (Illumina) kit. Libraries were quantified using Qubit and sequenced using 

Nextseq 500. Sequencing reads, after adapter trimming with Trimmomatic (0.33)68 and 

basic quality control, were analyzed using the RSEM package. Resultant count files were 

further analyzed with R 4.04. Briefly, genes with counts that had less than five reads, genes 

encoding ribosomes, and ribosomal and mitochondrial genes were removed, and counts 

were log transformed and quantile normalized. P values were calculated using the Mann–

Whitney U test and visualized using ggplot2 in R. Significant genes were uploaded to 

Ingenuity Pathway Studio, and upstream regulator analysis output was used to construct a 

network using Cytoscape (3.8.0)75.

For cell prediction analysis, the resultant datasets were individually analyzed using GSEA 

and compared to a gmx file containing gene signatures of all cell types that we derived in-

house from the Immgen database (https://www.immgen.org/). GSEA analysis was done in R 

using the fgsea package v1.19.4. Normalized enrichment scores were used to calculate ratios 

between Rs and NRs, and normalized size was used to represent abundance of different cell 

types in the data. For difference between NPs and Ps, we used ranked values of NP/P ratios. 

For prediction of cell abundance, we used ranked values of individual samples. Resultant 

values of leading-edge GSEA analysis were used to calculate ratios of differences between 

Rs and NRs and presented as average values of leading-edge analysis for all samples to 

visualize abundance of the predicted cell type, analogous to a standard MA plot.

Meta-analysis methodologies.

Data were analyzed using two meta-analysis methods: Fisher’s method for combining P 
values, and a random-effects model. The random-effects model meta-analysis was calculated 

using meta package in R with default parameters. Taxa with heterogeneity P values > 

0.1 were considered. Fisher’s combined P value was calculated as follows. The results of 

individual analysis of all datasets were compared. Taxa that agreed in directionality of NP 

versus P differences in more than four of five datasets were considered. When taxa in one of 

five datasets failed to agree in directionality, its P values were assigned as 0.999 and ratio as 

one. χ2 values and the combined P value were calculated. Data were visualized using heat 

maps or volcano plots (R 4.04).

Reference-independent binning analysis of metagenomic data.

Sequencing reads were quality trimmed using Trimmomatic (0.33)68, host RNA was 

removed using Bowtie2 (v2.3.2)69. Reads for all samples from all five cohorts were 

combined into one large file and larger sequence contigs were assembled using MEGAHIT 

(1.2.9)70,71. Reads longer than 1,000 bp were used in the analysis. Contigs were indexed 

using bwa package v0.7.17, and reads from individual samples were aligned to contigs. The 

resultant dataset was used to calculate clusters using Phenograph R package v0.99.1 and 

t-SNE plots. To reduce cluster overlap, contigs were subdivided into taxonomic units using 

Kraken package before application of Phenograph clustering tool. Clusters were merged 

into single fasta files and analyzed again using Kraken. Resultant clusters were considered 

independent functional taxonomical units (FTUs). To perform comparison between FTUs 
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within specific taxa, for every FTU we created a taxa–gene dataset where existence of the 

gene was remarked by number ‘1’ and absence by ‘0’. Favorable and unfavorable taxa were 

identified using statistical tools described above, and the top 30% and bottom 30% of taxa 

were used for statistical comparisons. Taking advantage of the presence of genes associated 

with clinical response in only a fraction of subspecies of certain taxonomic species but 

shared among more than one different species, we attempted to identify bacterial genes 

potentially encoding products directly or indirectly affecting clinical response. Data were 

visualized using Cytoscape (v.3.8.0)75.

Clustering of enteric microbiotypes from metagenomic data.

Stool AGP data were used for analysis. Only read 1 was used in the analysis. Data were 

pooled together with 16S data from the abovementioned cohorts. All sequences from AGP 

and patient samples were corrected for possible expansion at room temperature of certain 

species (‘bloom’) using the ‘Deblur’ technique (v.1.1.0), which has been shown with AGP 

samples to yield results consistent with studies of carefully preserved samples65. Quality-

trimmed data were combined into one file, and unique sequences with more than ten reads 

were identified and used as a reference. Unique reads were indexed with bwa, and sequences 

from individual samples were mapped back to those reads. Data, like the analysis above, 

were clustered using Phenograph R package v0.99.1; the most abundant sequence of the 

cluster was classified using RDP algorithm in Mothur v1.45.2, and these data were assigned 

to the whole cluster. The resultant dataset was filtered to include at least 5,000 reads 

per sample and clustered using Phenograph R package and t-SNE into bins (or tentative 

microbiotypes). To determine favorable or unfavorable status of the microbiotype, every 

OR was calculated for every cluster. A random-effects model for uniformity of clusters 

was calculated with the R package meta (v5.1–1) using number of Rs and NRs as mean 

and n, and standard deviation values were calculated from the Poisson distribution model. 

Once favorable and unfavorable clusters were defined, we used linear discriminant analyses 

(LEfSe package v1.1.2) or ANOVA analysis to identify taxonomic composition of those 

groups.
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Extended Data

Extended Data Fig. 1 |. Kaplan-Meier plots of progression-free survival and overall survival 
in the Pittsburgh early sample cohort and progression-free survival after dichotomization for 
abundance of select bacterial species.
a and b. Kaplan-Meier plots of probability of progression-free survival (PFS) (a) and overall 

survival (OS) (b) of PD-1-treated Pittsburgh early cohort melanoma patients. Vertical ticks 

show censored data. Central line is median OS or PFS probability, shaded area shows 95% 

confidence interval. c. Optimal cutpoints of bacterial abundance determined using Evaluate 
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Cutpoints. Different plots show the effect on PFS of abundance (high vs. low) of the top 

four most significantly increased (left) and decreased (right) individual bacterial species in 

non-progressors at 10 months, determined using Mann-Whitney U test (Fig. 1c). Number 

of people at risk in in either group (high vs. low abundance) is shown below each panel. 

Vertical ticks show censored data. Hazard Ratio (HR) and score (logrank) test two-tailed 

p-value from Cox proportional hazards regression analysis.

Extended Data Fig. 2 |. Microbiota composition of non-progressing patients in the Pittsburgh 
cohort whose stool samples were collected 4–41 months after initiation of therapy is not 
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predictive of late therapy failure but is enriched for similar bacterial taxa as observed in the 
initial microbiome of patients who did not progress at 10 months.
a. Plot of time of stool sample acquisition from 31 patients whose samples were collected 

after >4 months from therapy initiation. b. Progressor (P) and non-progressor (NP) groups 

identified at serial timepoints after late stool collection (top panel) were used to calculate 

the significance (two-tailed p-value) of compositional differences of the late-collected 

fecal microbiome using PERMANOVA (bottom panel). Fecal microbiota composition was 

determined using metagenomic sequencing. Progression during continued therapy was 

evaluated using RECIST v1.1 every 3 months or by clinical observation during follow-up 

visits. Number of patients on follow-up at each timepoint in relation to response status 

is shown in top panel. c. t-distributed uniform manifold approximation and projection 

(t-UMAP) plot depicts fecal microbiota compositional differences between early-collected 

patients who progressed (red) or did not progress (blue) in the first 10 months after initiation 

of therapy and late-collected long-term responders (green). Distance between centroids 

calculated as described in Fig. 1a, and significance (two-tailed p-value) of the differences 

by PERMANOVA are shown in lower table. d. Heatmap shows differentially abundant taxa 

(p < 0.05 and FC > 2) between the late Pittsburgh cohort compared with Ps (top) and NPs 

(bottom) at 10 months from the early Pittsburgh cohort. Columns denote patients grouped 

by each cohort before clustering; rows denote bacterial taxa enriched (black) or depleted 

(red) in early-sampled P versus late-sampled long-term NP clustered based on microbiota 

composition. Two-tailed p-values were calculated using two-tailed Mann-Whitney U test. 

e. ROC curve for manual model trained on the organisms associated with increased and 

decreased PFS in the Pittsburgh cohort from Supplementary Tables 4 and 5. Note that the 

model predicts late Pittsburgh samples well even though they were not included in the data 

used in training.
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Extended Data Fig. 3 |. Entire time-to-event progression data analysis by Cox regression method 
of baseline fecal microbiome composition identifies additional favorable and unfavorable taxa 
linked with response to anti-PD-1 immunotherapy.
a. Volcano plot depicting bacteria identified by effect on progression-free survival (PFS) 

in the Pittsburgh early sample cohort using Cox regression analysis in Evaluate Cutpoints 
software. Taxa with q < 0.05 are shown as red dots. b. Cladogram visualization (favorable 

taxa – blue; unfavorable taxa – red) of bacterial taxa at different phylogenetic levels 

identified using approach described in (a).
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Extended Data Fig. 4 |. Differential abundance analysis reveals relationship of baseline gut 
microbial taxa with high vs. low neutrophil-lymphocyte ratio in Pittsburgh early sample cohort.
a. t-distributed uniform manifold approximation and projection (t-UMAP) plots depicting 

fecal microbiota compositional differences between patient groups with high (≥3.82; orange) 

and low (<3.82; green) pre-treatment neutrophil-lymphocyte ratio (NLR). Optimal cutoff for 

NLR (3.82) was determined by time serial PERMANOVA as shown in Fig. 1a. Two-tailed 

p-value was calculated using PERMANOVA. b. Heatmap of differentially abundant taxa 

(p < 0.05 and FC > 2) in high-pre-treatment NLR (orange) and low-NLR (green) patients, 
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using optimal cutoff (3.82). Columns denote patients grouped by NLR status and clustered 

within each group; rows denote bacterial taxa enriched (red) in patients with high NLR 

clustered based on microbiota composition; no bacterial taxa significantly enriched in the 

low-NLR patients were identified. Statistical significance was calculated using two tailed 

Mann-Whitney U test. Bar plot to left of heatmap indicates extent of association between 

corresponding taxa and PFS probability [scaled hazard ratio (HR)] with Storey’s q-values 

<0.1 displayed within cells. Proportion of Gram-negative bacteria among those associated 

with high NLR was 58%, significantly higher than the average proportion of Gram-negative 

in patients’ fecal microbiome (28%, Chi-squared p = 0.0004).
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Extended Data Fig. 5 |. Gut microbial gene differences discriminate between non-progressors 
and progressors during anti-PD-1 therapy in the Pittsburgh early sample cohort.
a. t-distributed uniform manifold approximation and projection (t-UMAP) plot depicting 

genetic differences of gut microbiomes between non-progressors (NPs; blue) and 

progressors (Ps; red) at time of maximal difference from start of therapy (10 months). 

Filled circles represent centroids, with connecting lines corresponding to samples from each 

group. Two-tailed p-value was calculated using PERMANOVA. b. Metagenomic shotgun 

sequencing of fecal microbiota samples identifies differentially abundant genes in Ps vs. NPs 
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at 10 months from start of therapy. Heatmap shows differentially abundant genes identified 

by metagenomic shotgun sequencing (FDR < 0.2 and FC > 1.5). Columns denote patients 

grouped by progression status and clustered within P/NP groups; rows denote bacterial 

genes significantly upregulated (red) or downregulated (blue) in Ps versus NPs. c and d. 

Select genes involved in representative microbial processes of lipopolysaccharide (LPS) 

processing (c) and iron metabolism (d).

Extended Data Fig. 6 |. Metagenomic sequencing identifies distinct taxa associated with various 
immune-related adverse events in PD-1-treated melanoma patients in Pittsburgh early cohort.
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Heatmap depicts metagenomic compositional differences between patients with a given 

immune-related adverse event (irAE) as compared to patients with other irAEs using scaled 

fold differences (high – red; low – blue) in abundances of specific bacteria. Values in 

individual cells represent unadjusted p-values calculated using two-tailed Mann-Whitney U 

test, with p-values <0.1 displayed within cells. Bar plot to left of heatmap indicates extent 

of association between corresponding taxa and progression-free survival probability [scaled 

hazard ratio (HR)], with Storey q-values <0.1 displayed within cells (from Supplementary 

Tables 4 and 5).
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Extended Data Fig. 7 |. Reanalysis of four previously published individual cohorts using the same 
bioinformatic pipeline.
a. Analysis of α-diversity from five PD-1-treated melanoma patient cohorts (n = 185), 

including the Pittsburgh early sample cohort (n = 63), using either shotgun metagenomic 

(5 cohorts, red) or 16S rRNA gene amplicon (4 cohorts, black) sequencing. Details of each 

individual cohort are summarized in Supplementary Table 3. Forest plots depict α-diversity-

based association tests including inverse Simpson, Shannon, and observed operational 

taxonomic units. Within each fixed-effect plot, names of each cohort are shown on a separate 
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line, while log odds ratio of α-diversity (squares, size proportional to sample size used in 

meta-analysis) and associated 95% confidence intervals (bars) are shown, along with the 

dotted vertical line of no effect. The p-values reported for each cohort are two-tailed p 

values computed from the z statistic. To control for unobserved heterogeneity, we separately 

evaluated α-diversity using a random effects model on both pooled shotgun and 16S 

sequencing data from the 5 cohorts and performed I2 test for heterogeneity as shown. 

The p-value reported for heterogeneity is a one-tailed Cochran’s Q-test. b. t-distributed 

uniform manifold approximation and projection (t-UMAP) plot before (left) and after (right) 

correction for study-related batch effect using ComBat R package for all cohorts together 

including Pittsburgh cohort. P-values were calculated using PERMANOVA. c. t-UMAP 

plot of batch-corrected pooled metagenomic sequencing data from five separate cohorts of 

melanoma patients treated with anti-PD-1 therapy depicting fecal microbiota compositional 

differences with two-tailed p-value calculated using PERMANOVA between responders 

(Rs) and non-responders (NRs). d. Heatmap of differentially (p-values were calculated 

using non-parametric two-tailed Mann-Whitney U test) abundant gut microbiome taxa (p 

< 0.05, FC > 2) evaluated with shotgun sequencing in five melanoma patient cohorts, 

including Pittsburgh early sample cohort. Study-related batch effect was removed using 

ComBat R package. Response to therapy in published cohorts was determined as described 

in each study (Supplementary Table 3). Response to therapy in the Pittsburgh early sample 

cohort was defined as non-progression at 10 months after initiation of treatment. Columns 

represent patients grouped by clinical response and clustered within R/NR groups; rows 

depict bacterial taxa enriched (black) or depleted (red) in Rs versus NRs clustered based on 

gut microbiota composition.
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Extended Data Fig. 8 |. Meta-analysis of all cohorts using random effects model identifies 
organisms differentially enriched in melanoma patients treated with anti-PD-1 therapy in 
separate cohorts by response status.
a. Random effect model meta-analysis of differentially abundant bacteria between 

responders (Rs) and non-responders (NRs) from five cohorts (n = 185) including Pittsburgh 

early sample cohort (n = 63) using shotgun metagenomic sequencing. All significant 

bacterial taxa enriched in Rs and NRs are shown. b. Forest plots depict association of 

representative bacterial species with response to anti-PD-1 therapy. Within each plot, names 

of various cohorts are shown on separate lines, while Hedge’s g (squares, standardized 
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mean differences, size proportional to sample size) and associated 95% confidence 

intervals (bars) are shown, along with the dotted vertical line of no effect. To control for 

unobserved heterogeneity, we separately evaluated Hedge’s g using random effect model 

on metagenomic data and performed I2 test for heterogeneity as shown. P-values were 

calculated using random effect model.

Extended Data Fig. 9 |. Expression levels of selected taxa in different American Gut Project 
enteric microbiotypes.
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t-distributed stochastic neighbor embedding (t-SNE) plots depicting American Gut Project 

(AGP) dataset with visualization of abundances of select taxa (blue – low; red – high).

Extended Data Fig. 10 |. Geographic differences determine sampling variability between cohorts.
a. t-distributed stochastic neighbor embedding (t-SNE) plots depicting mapping of 

individual melanoma patient cohorts to American Gut Project (AGP) dataset revealed 

distinct compositional differences between them. Each cohort is represented by a different 

color that is maintained in the overlay. Colors in the overlay are semi-translucent and were 
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stratified starting from the Pittsburgh to New York cohort. Gut microbiota compositions 

of the different cohorts were significantly different (PERMANOVA, two-tailed p < 0.001). 

b. and c. Heatmaps represent scaled abundances of each enteric microbiotypes across 28 

states from which AGP data were available on the left, with the four states from which anti-

PD-1-treated melanoma cohorts originated separately on the right using three individuals per 

county per cluster as a cutoff. Data were scaled by number of individuals per state and per 

cluster and are depicted in relation to the 28 states that met the cutoff and in relation to the 

four states from which the four studied cohorts originated. b. Heatmaps are (b) scaled only 

by number of samples from state (to reflect local abundance of microbiotypes) or (c) scaled 

by both number of samples per state and by number of samples per microbiotype (to reflect 

distribution of different microbiotypes across the US). d. Geographic representation in the 

US of four representative enteric microbiotypes, with most uneven distribution between four 

states (right panel in c).
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Fig. 1 |. Compositional differences in the fecal microbiome of anti-PD-1-treated patients with 
melanoma are associated with differential progression-free survival.
a–c, Valuation of the association of fecal microbiome composition (P-ESC) and response 

to anti-PD-1 therapy were assessed using shotgun metagenomic sequencing. Objective 

radiographic response to therapy was evaluated using RECIST v1.1 every 3 months, and 

progression was defined based on radiographic and/or clinical progression at each treatment 

visit (every 3–4 weeks). a, Top, number of patients on follow-up at each time point in 

relation to response status. Middle, distance in composition of the initial microbiome 
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between Ps and NPs identified at each treatment visit. Distances between centroids 

comparing Ps and NPs were calculated at each time point as the Euclidean distance between 

the two centroids in all principal-component dimensions of the Bray–Curtis distance in 

a principal-component analysis; dots indicate PFS at all time points, while the asterisk 

indicates RECIST v1.1 response (complete response (CR) or partial response (PR)) at 3 

months. Bottom, significance of the difference at each time point using PERMANOVA 1/p 

of Bray–Curtis distance. b, t-distributed uniform manifold approximation and projection 

(t-UMAP) plot depicting fecal microbiota compositional differences between NPs and Ps 

at time of maximal difference from start of therapy (10 months). Open circles represent 

centroids, with connecting lines corresponding to samples from each group. Two-tailed P 
value was calculated using PERMANOVA. c, Metagenomic shotgun sequencing of fecal 

microbiota samples identified differentially abundant taxa in Ps versus NPs at 10 months 

from start of therapy (because no events were observed in this cohort at 9–10 months 

after treatment, results at these two time points are identical). Statistical significance was 

calculated by two-tailed Mann–Whitney U test. Heat map shows differentially abundant 

taxa identified by metagenomic shotgun sequencing (FDR < 0.2 and FC > 2). Columns 

denote patients grouped by progression status and clustered within P/NP groups; rows 

denote bacterial taxa enriched (black) or depleted (red) in NPs versus Ps, clustered based on 

microbiota composition. RECIST v1.1 radiographic response categories: complete response 

(CR), partial response (PR), stable disease (SD), and progressive disease (PD).
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Fig. 2 |. Relationship between microbiota composition and associated host variables in relation to 
clinical response.
a, Differentially expressed human host genes identified in stool specimens of NPs (n = 18) 

compared to Ps (n = 8) at 10 months. Significance was calculated using two-tailed Mann–

Whitney U test. Genes with P < 0.5 and FC > 2 were considered. b, Ingenuity pathway 

analysis of upstream regulators of differentially expressed host genes in Ps. Regulators 

and their targets were plotted using Cytoscape 3.8.0, with edges showing connections 

between regulators and their targets. Newly predicted upstream regulators are in yellow, 
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while predicted upstream regulators that were included in the identified gene list are in 

orange. Genes in bold are discussed in the text. c, GSEA of predicted cell types based on 

host genes identified in a and differentially expressed in NPs compared to Ps. Significantly 

enriched (P < 0.05) cell types are depicted by red dots. d, Transkingdom network analysis. 

Data for microbial taxa (circles), microbial genes (diamonds) and human genes (squares) 

were analyzed to identify highly differentially abundant elements between Ps and NPs and 

integrated with phenotypes (brown hexagons denote clinical outcome (PFS) and baseline 

variables (NLR)) to form a transkingdom network. Favorable (blue) and unfavorable (red) 

nodes (taxa, microbial genes and host genes) were defined as in Fig. 1c and in Methods. 

Blue and orange edges indicate negative and positive correlations, respectively. e, Number 

of edges between phenotypes and each type of omics data (taxa, microbial genes and human 

genes) in the transkingdom (solid red line) and randomized networks (the light gray violin 

plot shows the distribution in 103 random networks, and the dashed black line indicates 

the average). Connectivity strength is the number of observed edges between two groups 

of nodes in the transkingdom network normalized by the number of all possible edges 

in a bipartite graph of the two groups of nodes. Two-tailed P values were calculated by 

one-sample Wilcoxon signed-rank test. f,g, LKT–phenotype Bi-BC (global property; f) and 

degree (local property; g) of nodes in the transkingdom network from d were calculated. 

Two-tailed P values were calculated by Mann–Whitney U test. DCs, dendritic cells; mLN, 

mesenteric lymph node; NK, natural killer.
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Fig. 3 |. Fecal microbial signatures are differentially associated with immune-related adverse 
events and progression-free survival in PD-1-treated patients with melanoma.
a, t-UMAP plot depicting compositional differences between patients with melanoma 

who developed any irAEs and those who did not at any time point from the start of 

anti-PD-1 therapy. Two-tailed P value was calculated using PERMANOVA. b, Heat map of 

differentially abundant taxa (P < 0.05 and FC > 2) in patients with no irAEs versus grade 1–

4 irAEs. irAE severity was graded with CTCAE v5.0. The column on the left shows HRs on 

a color scale and Storey’s q value numerically when less than 0.1 for each LKT. Columns in 
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the heat map depict patients grouped by reported or non-reported irAEs and clustered within 

corresponding groups based on gut microbiome composition. Rows depict bacterial taxa 

enriched (black) or depleted (red) in patients with melanoma with irAEs (grade 1–4) and 

clustered based on gut microbiota composition. Statistical significance was calculated by 

two-tailed Mann–Whitney U test. c, Percentages of PD-1-treated early-cohort patients with 

melanoma exhibiting all or specific types of irAEs segregated by relative abundance of the 

seven Streptococcus spp. identified in b (eight patients clustered in the high Streptococcus 
group; χ2, *P = 0.0018; ***P = 0.001) d, Kaplan–Meier plot of PFS probability based on 

the relative abundance of Streptococcus spp. among patients with irAEs (n = 39). Numbers 

of patients at risk at each time point are shown. HR and score (log rank) test two-tailed 

P value from Cox proportional hazards regression analysis. e, Proportion of patients with 

melanoma treated with PPIs among patients with high versus low relative abundance of 

Streptococcus spp.
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Fig. 4 |. Gut microbiome meta-analysis of five independent cohorts of patients with melanoma 
treated with anti-PD-1 identifies organisms and microbial genes differentially enriched in 
responders and nonresponders.
a, After removing study-related batch effects using the ComBat R package, the resultant 

batch-corrected dataset was further analyzed using LEfSe analysis and depicted in a 

cladogram. b, Fisher’s method meta-analysis of differentially abundant shotgun-sequenced 

gut microbiome taxa (P < 0.01) in Rs versus NRs from four publicly available melanoma 

patient cohorts, along with P-ESC. Response to therapy in each of the published cohorts 

was determined as described in each study (Supplementary Table 3). c,d, Visualization 
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(Cytoscape 3.8.0) of genes associated with clinical response and shared between favorable 

(c) or unfavorable (d) species (as identified by LEfSe from all five analyzed cohorts after 

removing study-related batch effects) but present only in a proportion of subspecies within 

each species. All species with identified genes are shown in red. Among identified genes, 

those mentioned in the main text are shown in blue, whereas unlabeled white circles show 

all other genes. The full list of genes enriched in Rs or NRs is reported in Supplementary 

Fig. 10.
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Fig. 5 |. Machine learning shows significant prediction of cohort response using models trained 
on other cohorts combined.
a, Receiver operating characteristic curves for models trained on the four cohorts and tested 

on the remaining cohort. Three machine learning (modified leave-one-out cross-validation 

(LOOCV)) methods were used: GLM, RF and poly-SVM. AUC and P values (P(accuracy) > 

no information rate) via the one-tailed binomial test) of the accuracy of models are given. b, 

Forest plots based on the results from a. Each machine learning method is represented by a 

separate forest plot, with cohorts shown on different lines. Hedge’s g (squares, standardized 

mean differences, size proportional to sample size) and associated 95% confidence intervals 

(bars) are shown along with the dashed vertical line of no effect. To control for unobserved 

heterogeneity, we separately evaluated Hedge’s g and P values using a random-effects model 

on metagenomic data and performed an I2 test for heterogeneity as shown.
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Fig. 6 |. Mapping of combined 16S rRNA gene amplicon sequencing data from PD-1-treated 
patients with melanoma to the American Gut Project dataset identifies favorable and 
unfavorable enteric microbiotypes.
a, t-distributed stochastic neighbor embedding (t-SNE) plot of ~7,000 stool samples from 

the AGP dataset. All the sequences from AGP and melanoma cohorts were corrected to 

eliminate contamination of room temperature growing bacteria (‘bloom’) using the ‘Deblur’ 

program65. Samples were clustered using the PhenoGraph R package, and compositionally 

distinct clusters were displayed using different colors. b, Mapping of samples from four 

independent PD-1-treated melanoma patient cohorts (Chicago (C), Houston (H)4, New York 
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(NY) and Pittsburgh (P)) with available 16S amplicon data onto an AGP t-SNE plot, with 

each cohort depicted in a different color. c, Mapping of samples from b onto an AGP 

t-SNE plot with Rs (blue) and NRs (red) depicted separately. d, Distinct favorable (blue) 

and unfavorable (red) enteric microbiotypes were estimated by calculating ORs of response 

to nonresponse in each cluster as defined by PhenoGraph in R. e, Manual segregation of 

favorable and unfavorable enteric superclusters from d onto an AGP t-SNE plot. Probability 

(P) of nonrandom distribution of neighboring clusters with the same OR of response within 

the four superclusters was estimated using a random-effects model. f, Heat map depicts 

abundances of all taxa from the AGP in favorable and unfavorable enteric superclusters. 

Dark red indicates most abundant; dark blue indicates least abundant. g, Visualization using 

LEfSe cladogram of differentially abundant taxa in the four superclusters calculated on 16S 

amplicon data from the combined cohorts.
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