
Systems biology

Online bias-aware disease module mining with
ROBUST-Web
Suryadipto Sarkar 1, Marta Lucchetta2, Andreas Maier 3, Mohamed M. Abdrabbou1,

Jan Baumbach 3, Markus List 4, Martin H. Schaefer 2, David B. Blumenthal 1,*
1Biomedical Network Science Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen 91301, Germany
2Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan 20139, Italy
3Institute for Computational Systems Biology, University of Hamburg, Hamburg 22607, Germany
4Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany

*Corresponding author. Biomedical Network Science Lab, Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Werner-von-Siemens-Str. 61, Erlangen 91301, Germany. E-mail: david.b.blumenthal@fau.de (D.B.B.)

Associate Editor: Lenore Cowen

Abstract
Summary: We present ROBUST-Web which implements our recently presented ROBUST disease module mining algorithm in a user-friendly
web application. ROBUST-Web features seamless downstream disease module exploration via integrated gene set enrichment analysis, tissue
expression annotation, and visualization of drug–protein and disease–gene links. Moreover, ROBUST-Web includes bias-aware edge costs for
the underlying Steiner tree model as a new algorithmic feature, which allow to correct for study bias in protein–protein interaction networks and
further improves the robustness of the computed modules.

Availability and implementation: Web application: https://robust-web.net. Source code of web application and Python package with new bias-
aware edge costs: https://github.com/bionetslab/robust-web, https://github.com/bionetslab/robust_bias_aware.

1 Introduction

Disease module mining methods (DMMMs), also known as
active module identification or de novo pathway enrichment
methods, discover candidate pathomechanisms in molecular
networks based on disease association data obtained from dif-
ferential gene expression analysis or genome-wide association
studies. Among the various recently proposed DMMMs,
state-of-the-art methods such as DIAMOnD (Ghiassian et al.
2015), DOMINO (Levi et al. 2021), and our recently
presented tool ROBUST (Bernett et al. 2022) rely on a pro-
tein–protein interaction (PPI) network and a set of disease-
associated seed genes or proteins as input. Here, we present
ROBUST-Web, extending ROBUST with two important
features:

• A user-friendly web application which allows to run
ROBUST in the browser and supports interactive down-
stream exploration of the computed modules.

• Bias-aware edge costs for the prize-collecting Steiner tree
(PCST) model underlying ROBUST, which mitigate a hub
node bias of many existing DMMMs (Lazareva et al.
2021b), including the original version of ROBUST.

A number of network analysis and visualization tools al-
ready exist: For instance, Cytoscape (Shannon et al. 2003)

and Gephi (Bastian et al. 2009) are widely used Java tools for
network visualization and exploration. They both require lo-
cal configuration and/or installation. For Cytoscape, a prelim-
inary version of ROBUST (Sadegh et al. 2021) is available as
a plugin. There are also some web-based DMMMs, e.g.
KeyPathwayMinerWeb (List et al. 2016), BiCoN (Lazareva
et al. 2021a), and the DOMINO web-server (Levi et al.
2022). However, unlike ROBUST-Web, none of these tools
offers features to link the computed modules to drugs and
diseases.

2 Web application

Figure 1 provides a schematic overview of ROBUST-Web.
ROBUST-Web’s most important features are summarized be-
low. Case studies into precocious puberty and COVID-19
which showcase the functionality provided by ROBUST-Web
are contained in the supplement.

Input. Only a list of seed genes or proteins is required.
Users who do not want to provide their own network can se-
lect among the STRING (Szklarczyk et al. 2019), APID
(Alonso-López et al. 2019), and BioGRID (Oughtred et al.
2019) networks, which are updated monthly via automated
downloads from NDEx (Pratt et al. 2015).

Expanded network view. The disease modules can be
enriched with drug–target and disease–gene links obtained
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from NeDRex (Sadegh et al. 2021). NeDRex contains drug–
target associations from DrugCentral (Avram et al. 2021) and
DrugBank (Wishart et al. 2018) and disease–gene links from
DisGeNET (Pi~nero et al. 2020) and OMIM (Amberger et al.
2019). A complete overview of all data sources used for the
expanded network view is provided in Supplementary Table S2.

Enrichment analysis and functional in silico validation of
the computed modules. Supported via queries to the APIs of
g: Profiler (Raudvere et al. 2019) and DIGEST (Adamowicz
et al. 2022).

Tissue expression. Tissue-specific expression levels for genes
contained in the computed modules can be visualized based on
data obtained from GTEx (GTEx Consortium 2013).

Drug repurposing. Promising drug repurposing candidates
targeting the module proteins can be ranked via TrustRank
(Gyöngyi et al. 2004), network proximity (Guney et al.
2016), closeness or degree centrality.

Implementation. The backend of ROBUST-Web is written
in Python and uses the pcst_fast package (Hegde et al.
2014) for Steiner tree computation. The web framework uses
Flask as API manager, redis for data structures and cache
management, Celery for task queueing, and SQLite for storing
the results of user queries. The front-end is written in native
HTML, JavaScript, and JQuery, and uses CSS and Bootstrap
for styling. Visualization and all functions to support explor-
ative downstream analysis of the computed modules are pro-
vided by the Drugst. One plugin (https://drugst.one).
ROBUST-Web has been successfully tested on the combina-
tions of browsers and operating systems shown in Table 1.

Scalability of web application. To benchmark the scalabil-
ity of the ROBUST-Web backend, we started with 743 genes
related to diabetes mellitus, which we obtained from Feng
et al. (2022) (we used this gene set because it is large enough
to allow subsampling as detailed below). From this gene set,
we randomly 10 seed sets of size k for each
k 2 f5;10;20; 40;80;100;200; 300;400;500g. We then ran
ROBUST-Web (bait-usage-based edge costs, BioGRID PPI
network) on all of these seed sets and recorded the execution
times of the backend. Figure 2A shows the results: Execution
times of ROBUST-Web’s backend stabilize when we use more
than 200 seeds and disease modules with around 1000 nodes
and 1500 edges can be computed and stored in the database
in <30 s. Since visualizations of large networks are difficult to
interpret, the Drugst.One frontend does not layout disease
modules with more than 100 nodes or edges (to visually ex-
plore such large disease modules with ROBUST-Web, users
can generate views of connected components or 1-hop neigh-
borhoods of selected nodes). To test the scalability of the fron-
tend, we hence subsampled 10 seed sets of size k for each
k 2 f2;3; . . . ; 10g, ran ROBUST-Web as for the backend scal-
ability tests, and then measured Drugst.One’s visualization
times. The results are shown in Fig. 2B. The Drugst.One plu-
gin takes <0.5 s to layout an output network with 80 nodes
and 100 edges.

3 Bias-aware edge costs

The ROBUST algorithm is based on a PCST model which,
given a graph G ¼ ðV;E; c;pÞ with non-negative edge costs c
and node prizes p, asks to compute a tree T ¼ ðVT ;ETÞ � G
minimizing

P
uv2ET

cðuvÞ þ
P

u2VnVT
pðuÞ. For the original

version, we used uniform edge costs cðuvÞ ¼ 1, for all edges
uv. However, uniform edge costs make high-degree nodes
(hubs) very attractive as connectors, which is problematic be-
cause hub proteins in PPI networks have been shown to often
emerge due to study bias (Schaefer et al. 2015). Moreover,
existing DMMMs have been shown to inherit this bias
by mainly learning from the node degrees instead of the

Figure 1 Overview of ROBUST-Web. (A) The ROBUST algorithm is

implemented in a Python package. It includes study bias data obtained

from IntaAt (see Section 3 for details) and computes a disease module,

given a user-provided seed set and PPI network. (B) The web framework

calls the Python package and stores the discovered disease module in a

database for later retrieval via a stable URL. (C) For result exploration,

ROBUST-Web uses the Drugst.One plugin which provides features for

tissue expression, drug repurposing, enrichment analysis, and in silico

validation. Figure generated with BioRender.com.

Table 1. Combinations of browsers and operating systems on which

ROBUST-Web has been tested.

Operating system Chrome Firefox Edge Opera Safari

macOS � � � � �
Windows � � � � �

Linux � � � � �
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biological knowledge encoded in the edges of PPI networks
(Lazareva et al. 2021b). To mitigate this problem, we here
propose optional bias-aware edge costs

cðuvÞ ¼ c �max f ðuÞ; f ðvÞ
� �

þ ð1� cÞ

�
P

u0v02E maxff ðu0Þ; f ðv0Þg
jEj ;

where f ðuÞ � 1 is a score that grows with increasing evidence
that PPIs involving protein u are over-represented due to
study bias (details below) and c 2 ½0; 1� is a hyper-parameter.
If set to c ¼ 1, we fully leverage the information contained in
f, while setting c ¼ 0 leads to constant edge costs cðuvÞ ¼ C
with C ¼

P
u0v02E maxff ðu0Þ; f ðv0Þg=jEj. Since the optimiza-

tion problems solved by the ROBUST algorithm are equiva-
lent for all positive constant edge costs, setting c ¼ 0 hence
renders the bias-aware costs equivalent to the uniform costs
cðuvÞ ¼ 1 used in the original version. We provide three
options for the study bias score f:

• Study-attention-based edge costs: Define f ðuÞ as the num-
ber of studies where a protein interaction has been tested
that involves u (counting both studies where u has been
tested as bait protein and studies where u has been tested
as prey protein).

• Bait-usage-based edge costs: Restrict to the number of
studies where u has been tested as a bait protein. Data on
study attention and bait usage are obtained from IntAct
(Orchard et al. 2014) and are updated each month in the
web app.

• As a third option, ROBUST can be run with custom study
bias scores f ðuÞ 2 R>0.

Effect of bias-aware edge costs on functional enrichment of
computed disease modules. We evaluated the effect of the
study-attention- and bait-usage-based edge costs by running
ROBUST with c 2 f0:0;0:1; . . . ;1:0g and the competitors
DIAMOnD and DOMINO, using the protocols suggested by
Lazareva et al. (2021b). More specifically, we used five

publicly available PPI networks—namely APID, BioGRID,
HPRD (Keshava Prasad et al. 2009), IID (Kotlyar et al.
2019), and STRING—along with gene expression data with
case/control annotations for Huntington’s disease (HD),
Chron’s disease (CD), ulcerative colitis (UC), lung cancer
(LC), and amyotrophic lateral sclerosis (ALS). From the gene
expression data, we computed condition-specific seed sets by
comparing gene expression values for cases and controls via
the two-sided Mann–Whitney U-test and then marking differ-
entially expressed genes (Bonferroni-adjusted P < 0:001) as
seeds. Then, we ran all DMMMs on all combinations of seed
sets and networks, and quantified functional relevance via (i)
gene set enrichment P-values of the obtained modules against
hand-selected condition-specific KEGG (Kanehisa et al. 2016)
terms (see Supplementary Table S1) and (ii) overlap coeffi-
cients with disease genes obtained from DisGeNET. Note that
ROBUST and DOMINO, but not DIAMOnD, sometimes re-
turn several disconnected modules. To allow for a uniform
evaluation protocol, we computed the evaluation metrics
based on their unions. By design, our protocol is hence
slightly biased in favor of DIAMOnD. In addition, we carried
out case studies into COVID-19 and precocious puberty both
with uniform and with bait-usage-based edge costs (see
Sections 1 and 2 in the supplement). The results can be sum-
marized as follows:

• Increasing c indeed decreases the node degrees in the com-
puted modules at the price of reduced functional enrich-
ment (Supplementary Figs S9–S10).

• However, even with c ¼ 1, ROBUST still slightly outper-
forms the competitors DIAMOnD and DOMINO (Fig. 3).

• Bias-aware edge costs lead to more targeted results con-
taining fewer genes which are extremely richly annotated
with a plenitude of not necessarily use-case related terms
(Supplementary Fig. S7).

Effect of bias-aware edge costs on robustness to random
bias and scalability. The main motivation that led to the de-
velopment of the original ROBUST algorithm was that exist-
ing DMMMs often lack robustness w.r.t. random bias, i.e.
yield different disease modules when run several times on
equivalent input. To test how the new bias-aware edge costs
influence robustness, we used the same protocol as Bernett
et al. (2022): From IID, OMIM, and DisGeNET, we obtained
a human PPI network of experimentally confirmed interac-
tions and seed sets for 929 diseases. For each seed set, we ran
ROBUST 20 times with uniform, study-attention-based
(c ¼ 1), and bait-usage-based (c ¼ 1) edge costs. Before each
of the 20 runs, we shuffled the order in which edges of the PPI
network are loaded in the main memory. Then, for each of
the three ROBUST configurations, we computed a

robustness coefficient ¼ 20
2

� ��1X19

i¼1

X20

j¼iþ1

jMi \Mjj
jMi [Mjj

as the mean pairwise Jaccard index of the 20 disease modules
Mi obtained for the seed set on the 20 randomly re-ordered
PPI networks. The robustness coefficient assumes values be-
tween 0 and 1 with 1 indicating perfect robustness. In addi-
tion, we assessed how bias-aware edge costs affect the
runtime of the ROBUST algorithm, by running the three ver-
sions of ROBUST on the IID network and randomly sampled

Figure 2 Query times of ROBUST-Web backend (in seconds) (A) and

Drugst.One network layouting (in milliseconds) (B) for seed sets, output

nodes, and edges of varying sizes.

ROBUST-Web 3

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad345#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad345#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad345#supplementary-data


seed sets of sizes k 2 f25; 50; . . . ;400g (10 random seed sets
for each k). The results are shown in Fig. 4. In terms of run-
time, all tested versions of ROBUST performed similarly, but
the bias-aware edge costs further improved ROBUST’s ro-
bustness: With both the bait-usage-based and the study-
attention-based edge costs, ROBUST always computed
exactly the same modules when run on randomly shuffled
equivalent input.

Supplementary data

Supplementary data is available at Bioinformatics online.
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