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SUMMARY

Cell populations in the tumor microenvironment (TME), including their abundance, composition, 

and spatial location, are critical determinants of patient response to therapy. Recent advances in 

spatial transcriptomics (ST) have enabled the comprehensive characterization of gene expression 

in the TME. However, popular ST platforms, such as Visium, only measure expression in low-

resolution spots and have large tissue areas that are not covered by any spots, which limits 

their usefulness in studying the detailed structure of TME. Here, we present TESLA, a machine 

learning framework for tissue annotation with pixel-level resolution in ST. TESLA integrates 

histological information with gene expression to annotate heterogeneous immune and tumor 

cells directly on the histology image. TESLA further detects unique TME features such as 

tertiary lymphoid structures, which represents a promising avenue for understanding the spatial 
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architecture of the TME. Although we mainly illustrated the applications in cancer, TESLA can 

also be applied to other diseases.

In brief

We present TESLA, a machine learning framework for tissue annotation with pixel-level 

resolution, which uses spatial transcriptomics. TESLA is able to enhance gene expression to a 

higher resolution using histology images, and by integrating morphology and molecular profiles, 

TESLA provides a comprehensive characterization of the tumor microenvironment in various 

tumor types.

Graphical Abstract

INTRODUCTION

The tumor microenvironment (TME) contains networks of cells and structures that surround 

tumor cells.1 Tumor-TME crosstalk regulates the initiation, progression, and metastasis of 

tumors.2 A comprehensive analysis of the multiple exchanges between tumor cells and 

their TME is essential for understanding the underlying mechanisms of tumor growth and 

response to therapy. The TME has a great impact on the efficacy of anti-cancer therapies 

and clinical outcomes.3,4 For example, hypoxic avascular regions deeply embedded inside 

the tumors hinder the delivery of therapeutic agents,5 and hypoxic tolerant tumor cells are 

resistant to most anti-cancer treatments.6,7
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Tumor-infiltrating lymphocytes (TILs) consist of lymphocytic cell populations that have 

invaded the tumor tissue and have emerged as an important biomarker in predicting the 

efficacy and outcome of anti-cancer treatment.8,9 Recent studies suggest that not only the 

density of TILs, but also their spatial organization, such as the presence of tertiary lymphoid 

structures (TLSs), play key roles in determining tumor immune phenotypes and response to 

immunotherapy.10 TLSs are broadly found in the TME for various solid cancers. Similar to 

secondary lymphoid organs, mature TLSs are believed to be the site of immune response 

activation against tumors by recruiting and activating TILs, and they represent the key to 

understanding antitumor immune responses.

Spatial transcriptomics (ST) enables gene expression profiling while preserving location 

information in tissues, which innovates a promising avenue to understand the spatial context 

and the nature of cellular heterogeneity of the TME.11–13 In an ST experiment using spatial 

barcoding followed by next-generation sequencing-based technologies, such as ST14 and 

10x Genomics Visium, the expression levels for thousands of genes in a tissue section 

are simultaneously measured, complemented by a high-resolution histology image obtained 

from the same tissue section. With the power of ST, we aim to provide a detailed annotation 

of tumor structure and different lymphocytes by integrating gene expression and histology 

image information.

A major challenge that hinders gene expression and histology integration in spatial 

barcoding-based ST is the relatively low resolution of gene expression data compared with 

histology images, which prevents deciphering detailed TME structures, such as the TLS. 

Although methods such as BayesSpace15 can enhance the gene expression resolution, their 

enhancement is only for regions captured by spots, but they still leave a large portion of 

the tissue unmeasured for gene expression. For example, for 10x Visium, each spot is 55 

μm in diameter with a 100-μm center-to-center distance between spots. The lack of full 

tissue coverage by spots leaves approximately 54%–80% of the tissue unmeasured for gene 

expression (Note S1). A recently developed method, XFuse,16 uses a deep generative model 

to predict super-resolution gene expression at each pixel by leveraging the information 

in hematoxylin and eosin (H&E)-stained histology images. However, XFuse is extremely 

slow—it often takes more than 2 weeks to analyze a tissue section generated from 10x 

Visium. Additionally, it only shows high accuracy for ~100 highly expressed genes. For 

genes that have moderate to low expression, it is unclear whether they can faithfully recover 

the original pixel-level gene expression.

To overcome the above-mentioned challenge, we present tumor edge structure and 

lymphocyte multi-level annotation (TESLA), a machine learning framework that integrates 

gene expression and histology image information in ST to investigate the TME. By 

generating super-resolution gene expression images, TESLA can leverage histology 

information to annotate different tumor/TME cell types on the histology image with 

pixel-level resolution, detect TIL structure, such as TLS, by colocalization analysis of 

different lymphocytes and dendritic cells, and characterize high-resolution cellular and 

molecular spatial structures of tumors by separating the tumor edge and core and elucidating 

differential transcriptome programs between the edge and core. The detailed multi-level 

annotations performed by TESLA provide a comprehensive understanding of the TME.
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RESULTS

Overview of TESLA and evaluation

We describe the TESLA workflow using ST data from tumor as an example, though the 

method can be easily modified to analyze ST data from other tissue types. TESLA takes 

spatial gene expression and histology image as input. The first step is to enhance the 

relatively low-resolution gene expression to the same resolution as the histology image. 

Next, the gene expression image and histology image are stacked together and used as input 

for a neural network to annotate tissue regions. Both steps are evaluated for their accuracy.

Enhancement of gene expression resolution—The most important step in TESLA 

is to enhance gene expression resolution by leveraging the information provided by the 

companion high-resolution histology image generated from the same tissue section (Figure 

1A). This is based on the intuition that tissue regions that share similar histological features 

are also likely to share the similar gene expression, implying that histology similarity 

can help impute gene expression. To impute super-resolution gene expression and fill in 

the tissue gaps, TESLA will first generate superpixels from the histology image. At each 

superpixel, TESLA will identify its nearest neighboring spots based on physical location 

and histology similarity. TESLA will then impute the superpixel’s gene expression through 

weighted aggregation of spot-level gene expression values from these neighboring spots. By 

the end of this imputation, TESLA will return a super-resolution gene expression image for 

each gene.

Multi-level tissue annotation—With the super-resolution gene expression images 

generated for tumor, immune, and stromal cells, TESLA can annotate the tumor region 

and tumor-immune interface at multiple levels. To infer tumor cell distribution, TESLA 

first combines tumor-related marker genes into a meta gene, which captures the shared 

expression patterns of the markers (Figure 1B). After stacking the meta gene images 

and the histology image as input, TESLA then employs a convolutional neural network 

(CNN) approach to segment the tissue region in an unsupervised manner, which enables the 

annotation of the tumor region directly on the histology image with pixel-level resolution. 

Because the tumor cells and microenvironment at the invasive edge of the tumor are known 

to be different from that of the tumor core,2 TESLA also draws the leading edge along the 

tumor boundary and outlines the tumor edge and tumor core (Figure 1C).

To characterize spatial cellular and molecular heterogeneity between the tumor edge 

and core and better understand tumor-TME dynamics, TESLA first performs differential 

gene expression analysis between the edge and core, which enables the identification 

of differentially expressed genes (DEGs) that are specific to the tumor edge or core 

regions. With the region-specific DEGs, TESLA can also compare cell compositions 

and transcriptome programs between the edge and the core and further profile spatial 

heterogeneity of the TME. In addition to tumor region annotation, TESLA can also annotate 

a target cell type’s distribution on the histology image by using cell-type-specific marker 

genes, e.g., lymphoid cell lineage markers, as input (Figure 1B). Based on the colocalization 
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of specific cell populations, TESLA can further detect multicellular structures such as TLS 

(Figure 1D).

Evaluation strategy—To showcase the strength and properties of TESLA, we applied it 

to eight publicly available ST datasets15,17–22 (Table S1). First, we systematically compared 

our method with BayesSpace for gene expression enhancement. We next show that the 

super-resolution gene expression from TESLA correlates well with protein expression 

obtained from immunofluorescence staining. We further show that the cell-type distribution 

predicted by TESLA agrees well with independent cell-type deconvolution results by 

robust cell-type decomposition (RCTD),23 and the predicted TLSs are in agreement with 

independent annotation by a pathologist.

Imputation of super-resolution gene expression by integrating histology image information

Evaluation of gene expression imputation accuracy by hold-off experiments
—TESLA’s multi-level cellular and molecular annotation of ST data relies on the super-

resolution gene expression images. We conducted hold-off experiments on five public 

datasets15,17,18,21,22 to show that TESLA can faithfully recover the missing expression 

patterns for genes with spatial variability. For each dataset, we first selected spatially 

variable genes (SVGs) using our previously developed method, SpaGCN.24 Next, we 

masked each measured spot and used the remaining spots to impute the SVGs’ expression 

for the masked spot. We repeated this masking for all of the spots and examined whether 

TESLA can faithfully impute the missing gene expression at the masked spots. Figure 2A 

shows the correlation between the observed and imputed SVGs’ expression of the masked 

spots. The median correlation among the SVGs is 0.60 for the invasive ductal carcinoma 

(IDC) dataset,15 0.71 for the cutaneous squamous cell carcinoma (CSCC) dataset,17 0.69 

for the cutaneous malignant melanoma dataset,18 0.70 for the mouse posterior brain tissue 

dataset, and 0.54 for the mouse kidney dataset. These high correlations indicate that TESLA 

can recover the underlying expression pattern for unmeasured spots. Because the distances 

between superpixels and their nearest neighboring spots in real ST data are smaller than the 

distances between the masked spots and their neighboring spots in the hold-off experiments, 

we expect TESLA to perform better in real data analysis.

Benchmark evaluation and comparison with BayesSpace—To showcase the 

strength of TESLA’s imputed super-resolution gene expression, we compared the 

performance of TESLA with BayesSpace,15 a recently developed tool that can also 

enhance the gene expression resolution for ST data. TESLA features two benefits relative 

to BayesSpace: (1) TESLA can incorporate high-resolution histology image information 

and offers more flexibility for resolution enhancement by adjusting the superpixel size, 

whereas BayesSpace can only enhance the gene expression resolution by splitting a spot 

into fixed number of subspots, and (2) TESLA can fill in gene expression for unmeasured 

tissue regions between spots, whereas BayesSpace leaves unmeasured tissue areas blank. 

For 10x Visium, each spot is 55 μm in diameter with a 100-μm center-to-center distance 

between spots, and this leaves a large portion of the tissue unmeasured for gene expression. 

We compare the super-resolution gene expression from TESLA and BayesSpace in the 

following three aspects using real data.
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First, a good gene expression enhancement method should increase the expression resolution 

while retaining the original expression pattern at the spot level, as this will ensure no 

artificial patterns are introduced in the enhanced gene expression. To show that TESLA 

outperforms BayesSpace in retaining the original gene expression patterns, we considered 

the top 2,000 highly variable genes selected by BayesSpace and obtained the spot-level gene 

expression from the enhanced expression generated from both TESLA and BayesSpace. 

For TESLA, we obtained the spot-level gene expression from the super-resolution gene 

expression image by extracting expression from circles that exactly overlap measured 

spots. For BayseSpace, we summed up the expression from all sub-spots within a spot 

to get the spot-level expression. As shown in Figure 2B, TESLA’s super-resolution gene-

expression-derived spot-level expression yields significantly higher correlations with the 

original spot-level gene expression than BayesSpace across all five datasets. Although 

BayesSpace requires that the sum of principal components of the subspots equals the 

principal component of the original spot, it cannot guarantee that the expression pattern 

is not distorted in the original gene expression space (Figure S1).

Second, an accurate gene expression enhancement method should be able to recover 

gene expression pattern at a higher resolution compared with the original. To show that 

TESLA has better ability to recover high-resolution gene expression than BayesSpace, we 

benchmarked these two methods using a 10x Xenium dataset from human breast cancer 

tissue,25 which has a single-cell resolution. We made pseudo-Visium data from the Xenium 

data by extracting square regions with sizes equal 40 μm × 40 μm, which have the same area 

as the 55-μm circle spots in Visium. As shown in Figure 2C, the center-to-center distances 

between pseudo-spots are 100 μm, leaving the same tissue gaps as Visium. The number of 

cells in these pseudo-spots is between 5 and 10, which is also similar to Visium (Figure 

S2). After the pseudo-Visium data were generated, we then performed gene expression 

enhancement using TESLA and BayesSpace. To evaluate gene expression imputation 

accuracy, we calculated Pearson correlations between the enhanced gene expression and the 

ground truth gene expression for all 313 genes measured in Xenium at different resolutions, 

i.e., 50, 32, and 16 μm. As shown in the Figure 2D, TESLA has higher correlations with 

the ground truth than BayesSpace across all resolutions. We also show that TESLA’s gene 

expression enhancement will not detect the tumor boundary (Note S2).

Third, an ideal super-resolution gene expression imputation approach should yield 

gene expression that is similar to the corresponding protein expression obtained from 

immunofluorescence staining.15 To check this ability, we evaluated the super-resolution 

gene expression from TESLA and BayesSpace with the immunofluorescence staining for 

the same geneprotein pair obtained from the same tissue section in the IDC dataset, 

which includes immunofluorescence staining for CD3ε, a T cell co-receptor, which is 

involved in activating both the cytotoxic T cell and T helper cells. Because protein and 

RNA expression measure different modalities, rather than directly calculating a correlation 

coefficient, we compared the similarity of these two modalities using the structural similarity 

index (SSIM),26 a commonly used metric for measuring the similarity between two images, 

for evaluation. SSIM ranges from −1 to 1 with a value of 1 indicating two identical images, 

0 indicating no structural similarity, and −1 indicating strong dissimilarity. Compared with 

the CD3ε immunofluorescence staining image (Figure 2E), the super-resolution CD3E gene 
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image from TESLA is visually similar (SSIM 0.33; Figure 2F). In contrast, the SSIM is 

only 0.08 for BayesSpace (Figure 2G), presumably because of its inability to fill in gene 

expression in the unmeasured tissue area.

In addition to BayesSpace, we also compared TESLA with XFuse (Note S3). In summary, 

compared with other existing methods, the enhanced gene expression from TESLA can 

better recover the high-resolution expression pattern while retaining the original expression 

pattern untwisted. The super-resolution gene expression image from TESLA also shows a 

high similarity with the correspondent protein immunofluorescence staining.

Characterization of the high-resolution cellular and molecular spatial structure of the 
tumor

The tumor edge is considered the tumor invasion front because of its strong invasive ability, 

and it has been reported that the tumor edge has a unique microenvironment and distinct 

morphological, structural, and molecular features from that of the tumor core, such as 

the level of immune cell infiltration and compositions, vascular density, hypoxia status, 

metabolic rate, etc.27,28 The super-resolution gene expression images generated by TESLA 

enables the detection and precise annotation of the tumor edge, which enables further 

exploration of the structural, cellular, and molecular differences in tumor and TME cells 

between the primary tumor core and edge.

Application to CSCC—To show that such analyses can advance our understanding of 

intra-tumor heterogeneity, we first analyzed the CSCC dataset of the skin.17 As reported 

in the original study, the tumors include basal, cycling, and differentiating keratinocyte 

cell populations that are similar to normal skin, and a tumor-specific keratinocyte (TSK) 

population. Therefore, we identified the tumor region using nine TSK marker genes 

suggested in the original study (NT5E, PTHLH, INHBA, LAMC2, MMP10, FEZ1, CD151, 

IL24, and SLITRK6), plus three commonly used marker genes (TOP2A, KIF1C, and 

BUB1B). Utilizing these genes (Figure S3), TESLA derived a meta gene, which captured 

all their patterns and further detected the tumor region by joint segmentation of the meta 

gene and histology images. Figure 3A shows that the tumor region detected by TESLA 

agrees well with the dark region in the histology image except for the upper right and bottom 

right regions. Further examination of the histology image of the upper right region by a 

pathologist (E.B.L.) revealed that this region consists of dead cells with hypereosinophilic 

cytoplasm and pkynotic nuclei (yellow box). This is further confirmed by the relatively 

low total unique molecular identifier (UMI) counts compared with other regions (Figure 

S4). The region on the right represents non-neoplastic skin adjacent to the squamous cell 

carcinoma (blue box). This example shows that by combining gene expression and histology 

images together, TESLA can accurately annotate live tumor region from non-viable or 

non-neoplastic tissue without the reliance on a pathologist’s manual annotation.

The leading edge drawn by TESLA also agrees well with the manual annotation provided 

by a pathologist (Figure 3B). After detecting the tumor boundary, TESLA further separated 

the tumor into core and edge (Figure 3C). The tumor edge is defined as the area that is 

within 200 μm interface of the tumor and adjacent non-malignant tissue, and the tumor core 
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is defined as the proximal tumor area within the tumor edge.27 DEG analysis between the 

tumor core and edge identified genes that are highly enriched in the core (3,665 genes) or 

edge (106 genes). For example, in Figures 3D and S5, oncogenes such as IGFBP2, CCNB1, 

KRT15, and HRAS are highly expressed in the core region, whereas tumor-edge-enriched 

genes included CXCL12, IL2RB, LAIR1, and LILRB2, which are immune related, implying 

a distinct microenvironment from that of the tumor core. We further performed gene set 

enrichment analysis for the 106 tumor-edge-enriched genes and the top 300 tumor-core-

enriched genes with the highest fold changes, by computing overlaps with curated gene 

sets in the Molecular Signature Database29 (Table S2). Our analysis suggested significant 

enrichment of the metabolism of lipids under hypoxic conditions and mitotic phase in cell 

cycle in the tumor core. The high proliferation rate of cancer cells in the tumor core leads to 

hypoxia and nutrient deprivation, which affect the lipid metabolism of cells.30,31 Pathways 

that are highly activated in the tumor edge included innate immune system, adaptive immune 

system, interferon-γ response, inflammatory response, and cytokine signaling. These highly 

activated immune systems in the tumor edge are possibly due to a higher level of immune 

cell density and tumor-immune interactions in the edge. Together, TESLA’s unique feature 

to characterize and profile tumor edge and core may provide great insights into better 

understanding of the TME and the mechanisms of immune suppression and evasion.

Application to melanoma—To show the generalizability of TESLA in characterizing 

the cellular and molecular spatial structure of tumors, we next analyzed the cutaneous 

malignant melanoma dataset.18 Using a list of genes for clinical melanoma diagnosis32 

(MITF, CSPG4, MAGEA1, MLANA, TYR, and SOX10; Figure S6), TESLA identified 

the melanoma region, which strongly recapitulate the pathologist’s manual annotation in 

Figure 3E. Following similar steps as described previously, we further separated the tumor 

region into tumor core and edge (Figure 3F) and detected 3,510 genes enriched in the 

tumor core and 155 genes enriched in the tumor edge. Some hypoxia-related genes33,34 

(e.g., HSPB1, MIF, and TPI1) were detected to be highly expressed in the tumor core, 

whereas most genes highly expressed in the tumor edge are immune related (Figures 3G 

and S7). Next, we performed gene set enrichment analysis for the 155 edge enriched 

genes and the top 300 core-enriched genes with the highest fold changes (Table S3). 

Interestingly, for the top 300 core-enriched genes, we observed a significant upregulation 

of the signaling by Rho GTPases, receptor tyrosine kinase, and Wnt and that MET activates 

RAS signaling, which are known to be involved in melanoma progression through regulating 

cell proliferation and invasion.35,36 In addition, we observed increased signaling by MET, 

which has emerged as a paradigm of tumor resistance to modern targeted therapies, and 

the assessment of its expression in patients’ samples may be a valuable biomarker of tumor 

progression and response to targeted therapy.37 The enriched genes in the tumor edge 

are largely related to inflammatory response, such as PDCD1, IL10RA, PAX5, CCL19, 

TNFSF4, IFI27, IL32, and IL4R. Consistently, pathway enrichment analysis revealed 

increased expression of interferon gamma response, cytokine signaling and cytokine-

cytokine receptor interaction, and increased signaling by Interleukins, suggesting activated 

anti-tumor immune response. Interestingly, we also observed up-regulated expression of 

genes defining epithelial-mesenchymal transition (EMT). EMT is a process through which 

epithelial tumor cells acquire mesenchymal phenotypic properties, and it contributes to 
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both metastatic dissemination and therapy resistance in cancer.38 The cell-type distributions 

inferred by cell-type deconvolution analysis with RCTD also showed significant difference 

between the tumor edge and core (Figure S8), with the tumor edge enriched for T cells, 

whereas the core enriched for malignant cells.

We also demonstrate that all these findings, based on the super-resolution annotation, 

cannot be achieved with the original spot-level data (Note S4). The failure of detecting 

tumor-edge-enriched genes at the spot level is possibly due to two reasons. First, the number 

of observations is much smaller when considering a spot as the analysis unit, and the 

reduced sample size in DEG analysis will lead to less power. Second, the spot-level data 

do not have a single-cell resolution. The number of cells within a spot depends on their 

type and state and local morphology in the corresponding tissue. Indeed, the diameter size 

of each spot is 100 μm in ST, which is much larger than a single cell. Based on a recently 

published study that utilized the ST platform, it is estimated that the number of cells per 

spot is ~40.39 Because each spot may contain many cells, the mixture of cells from different 

cell types will dilute the differential expression signal, especially when the immune cells 

are rare in the tumor edge. Numerous studies have shown that the tumor-immune interface 

plays an important role in understanding the TME with primary relevance to the success 

of immunotherapy.40 Therefore, we believe that until the sequencing-based ST technologies 

reach a single-cell resolution, gene expression resolution enhancement will be needed when 

the goal is to detect gene expression changes that occur only in a small region of the tissue.

Identification of lymphoid cell types and TLS

Application to CSCC—Next, we show that TESLA can profile the spatial distribution 

of different immune cell subsets based on super-resolution expression images of lineage-

specific genes. We first analyzed the CSCC data.17 Using canonical cell-type marker genes 

(Figure S9), we detected the locations for B cells, CD4+ T cells, dendritic cells, and 

CXCL13, a marker of TLS that is known to be also constitutively expressed in secondary 

lymphoid tissue. As shown in Figure 4A, TESLA’s cell-type distribution has much higher 

resolution than results obtained from spot-level gene expression by SpaGCN,24 a clustering 

method developed for ST data (Figure 4B). For ST and Visium data, each spot may contain 

multiple cells. By leveraging high-resolution histology image data, TESLA’s cell-type 

annotation achieves pixel-level resolution, which better describes the underlying cell type 

distributions. By colocalizing B cells, CD4+ T cells, dendritic cells, and CLCX13 near the 

tumor region, TESLA further detected TLSs (Figure 4C). Examination of the histology 

image by a pathologist (E.B.L.) indicates that the blue-boxed region contains aggregates 

of lymphocytes consistent with a TLS on the edge of the tumor. We also observed the 

colocalization of lymphocytes in the yellow-boxed region, which are not forming tight, 

aggregated groups compared with the blue-boxed region. We suspect that these lymphocytes 

are collecting in this region but are not forming a TLS because of geospace’s constraint of 

the tissue or perhaps because this region represents the edge of a TLS, which is not present 

due to the relative thinness of the histology image. TLS is an ectopic lymphoid formation 

within nonlymphoid tissue. TLS can additionally foster tumor antigen presentation and T 

cell activation and the presence of TLS has been associated with improved response to 

cancer immunotherapy and prolonged patient survival.41–43 Similar analysis was performed 
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on the cutaneous malignant melanoma data18 using canonical cell-type marker genes (Figure 

S10).

We further validated the cell-type distribution by TESLA in Figures 4A and 4D by 

performing cell-type deconvolution analysis using RCTD with annotated single-cell RNA-

seq data from Ji et al.17 and Tirosh et al.19 as the references for the CSCC data and 

the melanoma data, respectively. The deconvolution results revealed similar distribution 

and density for B and T cells as predicted by TESLA (Figures S11 and S12). These 

results also demonstrate that by utilizing known marker information, TESLA can infer cell 

subtypes without the reliance on single-cell reference, which is advantageous compared with 

reference-based deconvolution methods.23

Figure 4E shows TLS density predicted by TESLA. Aggregations of lymphocytes are 

observed at the bottom and the right side of the melanoma region, indicating strong immune 

activity in the yellow and blue boxes, where we observed colocalization of B cells, CD4+ 

T cells, and dendritic cells with a high expression of CXCL13 (Figure 4D). Because the top-

region in the green box is not adjacent to the tumor region but to aggregated lymphocytes, 

it is annotated as a lymph node instead of a TLS. These results highlight the importance 

of maintaining the spatial relationships of gene expression in heterogeneous tissue as the 

gene signature of TLS versus normal reactive lymph nodes are highly similar, reflecting the 

formation of lymph-node-like architecture of TLS’s associated with tumors. By identifying 

the neoplastic tissue core and edge (Figure 3F), together with the TLS signature (Figure 

4E), TESLA can segment tumor-associated TLS versus adjacent non-neoplastic lymph 

node, which would have been lost in dissociated or homogenized tissue analyses, such as 

single-cell transcriptomics. The presence of TLS was further validated by the co-location of 

follicular helper T cells and B cells (Figure S13).

Application to renal cell carcinoma—In addition to the CSCC and cutaneous 

malignant melanoma data, we also analyzed a dataset44 that has manual annotation 

and immunostaining-validated TLS information. This dataset was obtained from human 

clear cell renal cell carcinoma (ccRCC) primary tumors, where the TLSs were manually 

annotated by pathologists and further validated by triple immunofluorescence labeling 

(CD20/CD3/PD-1) on an immediately adjacent slide for frozen samples and CD3/CD20 

labeling by immunohistochemistry for formalin-fixed paraffin-embedded (FFPE) samples. 

We performed TLS detection using TESLA on a tissue section in this dataset. As shown in 

Figure 4F, the TLS scores agree well with the two validated TLS regions. We then treated 

the TLS score, ranging from 0 to 1, as the probability of being a TLS and calculated the 

pixelwise area under the ROC curve (AUC) score using pathologist’s annotation provided 

in the original study as ground truth. TESLA achieved an AUC of 0.905, which further 

demonstrates TESLA’s ability to correctly locate the TLSs.

Inferring cancer subtypes in breast cancer

Next, we show that the integration of gene expression and histology information can help 

infer cancer subtypes. We first analyzed a HER2+, ER+, and PR− breast cancer dataset 

generated by 10x Genomics.20 Figure 5A summarized the cancer subtypes distribution, 
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which is concordant with the diagnosis. We next analyzed an annotated HER2+ human 

breast cancer dataset from Andersson et al.45 We selected three patients H, G, and B and 

analyzed one tissue section from each patient. All three patients are HER2 positive and ER 

negative, and only patient B is PgR positive, whereas the other two are PgR negative. Based 

on the expression of basal markers, such as KRT5, KRT7, KRT14, and KRT18, and breast 

cancer markers previously reported, e.g., ERBB2, GATA3, PIP, and SCGB2A2 (Figure 

S14), TESLA detected the tumor region, demonstrating concordance with manual annotation 

from the original study (Figure 5B).

Based on specific marker gene expression, we detected the HER2+, ER+, and PgR+ regions 

within the tumor for each tissue section. Figures 5B–5D summarized the cancer subtypes 

distribution and the percentages of area for HER2, ER, and PgR for the three tissue sections. 

We observed high expression of ERBB2, which encodes HER2, in the tumors of all 3 

patients, presented in 76%, 94%, and 76% of tumor cells, respectively, for patients H, G, and 

B, confirming the diagnosis of HER2+ cancers. In addition, we detected the expression of 

ER and PgR in patient B (Figure 5D), and low-level expression (0%–3%) of ER and PgR 

in the tumors of patients H and G, indicating the high degree of intratumoral heterogeneity 

in these tumors, owing to the super-resolution gene expression images generated by TESLA. 

For patient B, although it is diagnosed to be ER− and PR+, we detected 33.6% of the tumor 

cells to be ER+ and only 20.0% of the tumor cells to be PR+. We contacted the authors 

of the original paper and they claimed that the cancer subtype classifications were based 

on immunohistochemistry (IHC) (and PAM50) on a separate piece of the tumor. The low 

proportion of PR+ tumor cells and relatively high proportion of ER+ tumor cells may be due 

to the difference in hormone receptors between the piece used for the Visium experiment 

and the piece used for IHC. These results demonstrate the power of TESLA in quantitative 

evaluation of tumor subtypes and the additional information it provides that is beyond the 

simple positive or negative annotation of a tumor.

DISCUSSION

In this paper, we presented TESLA, a machine learning framework for multi-level tissue 

annotation on the histology image with pixel-level resolution in ST. By integrating 

information from high-resolution histology images, TESLA can impute gene expression 

at superpixels and fill in the missing gene expression in tissue gaps. The increased 

gene expression resolution makes it possible to treat gene expression data as images, 

which enables the integration with histological features for joint tissue segmentation and 

annotation of different cell types directly on the histology image with pixel-level resolution. 

Additionally, TESLA can detect unique structures of tumor-immune microenvironments, 

such as TLSs, and separate a tumor into core and edge to examine their cellular 

compositions, expression features, and molecular processes. Principally, TESLA can 

distinguish lymphoid aggregates, immature and mature TLSs, if appropriate marker genes 

are provided by the users, but this will also depend on the quality of the ST data, such as 

sequence coverage, the average number of genes detected in each spot, and dropout rate. 

TESLA has been evaluated on seven cancer datasets, including CSCC of the skin, cutaneous 

malignant melanoma, four breast cancer datasets, and ccRCC. We further conducted a 

benchmark evaluation based on data generated from 10x Xenium and showed that TESLA 

Hu et al. Page 11

Cell Syst. Author manuscript; available in PMC 2023 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



has higher correlations with the ground truth than BayesSpace. Although our results 

consistently showed that TESLA can generate high-quality, super-resolution gene expression 

images, neither TESLA nor BayesSpace can infer single-cell-level gene expression with 

high accuracy.

H&E-stained histology images are routinely used in clinics for disease diagnosis. Utilizing 

manual annotation of histology images provided by pathologists, supervised methods have 

been developed to computationally annotate tissues; for example, Saltz et al.46 developed 

a deep learning model focusing on detecting TIL using histology images in The Cancer 

Genome Atlas Program. However, these supervised methods require large, well-labeled 

training data in which expert pathologists are demanded to review a large set of images 

and mark detailed regions of lymphocytes and necrosis. Although pathologists’ annotation 

is highly effective for disease diagnosis, it is qualitative and prone to both inter- and intra- 

observer variability, particularly when quantifying or characterizing feature-rich phenomena 

such as tumor-associated lymphocytic infiltrates. Additionally, existing supervised methods 

only utilize histology information, which limit their usefulness in studying detailed 

structures in TME, as histology alone cannot reveal the subtypes of lymphocytes, but they 

can be distinguished using gene expression.

The cell-type annotation in TESLA shares similarity with traditional clustering-based 

cell-type annotation, but TESLA has several advantages. First, TESLA’s annotation 

has much higher resolution than annotation obtained from spot-level gene expression 

clustering. Second, in traditional clustering, each spot is assigned to a single cell type. 

However, for spatial barcoding-based ST data, e.g., ST and 10x Visium, each spot may 

contain multiple cells. Although deconvolution-based methods, such as RCTD,23 can 

infer cell-type proportions within each spot, they cannot tell the cell identity for each 

cell within the spot. By contrast, through leveraging high-resolution histology image 

information, TESLA’s annotation can provide cell-type enrichment information with pixel-

level resolution. Additionally, deconvolution-based methods require an annotated single-cell 

reference,23,47–49 which would limit their applications when single-cell references are not 

available.

In this paper, we only showed examples of combining histology and gene expression 

for cell-type annotation, but it is also possible to incorporate immunofluorescence 

images for cell-type-specific proteins to infer targeted cell types using TESLA. Although 

immunofluorescence images can be used directly to infer cell identity for each cell, 

artifacts in the images may render the results less reliable. When analyzing the 

CD3ε immunofluorescence data, we noticed that the light in the original CD3ε 
immunofluorescence image is not flat across the tissue area, which leads to brighter staining 

in the upper part and darker staining in the lower part of the tissue (Figure 2E). This uneven 

illumination results in an inaccurate estimation of CD3E abundance. By combining the gene 

image for CD3E and the CD3E immunofluorescence image into a 2-channel image as input, 

TESLA inferred the distribution of T cells. As shown in Figure S15, the upper edge now 

has a lower degree of T cell enrichment, suggesting that combining gene expression and 

immunofluorescence images can correct immunofluorescence image artifacts.
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Although we illustrated the application of TESLA in cancer, the framework is generic and 

can be applied to other medical conditions as long as high-resolution histology images are 

available. For example, when applied to mouse posterior brain, TESLA is able to separate 

the “granular cell layer of thecerebellum” and the “molecular layer of the cerebellum” (Note 

S5), a task that is difficult to achieve in the absence of super-resolution gene expression data. 

As shown in Figure 2B, TESLA achieved high accuracy when imputing super-resolution 

gene expression for non-cancer tissues (e.g., mouse posterior brain and mouse kidney). 

We also demonstrate that TESLA is computationally fast and memory efficient compared 

with BayesSpace (Note S6). With the increasing popularity of ST in biomedical research, 

we expect TESLA will be an attractive tool for ST data analysis. Results from TESLA 

will enable researchers to increase gene expression resolution and annotate their tissues of 

interest with high confidence.

We are aware of the new ST technologies, e.g., 10x Xenium,25 NanoString CosMx,50 

MERSCOPE, and Stereo-seq51 etc. Although these platforms provide sub-cellular 

resolution, none of them are perfect. For example, Xenium, CosMx, and MERSCOPE are 

in situ hybridization based, and these platforms can only measure a few hundred genes. 

The lack of full transcriptome coverage will limit their applicability when the goal is to do 

biological discoveries. Stereo-seq, on the other hand, is next-generation sequencing based; 

thus, it measures gene expression for the entire transcriptome. However, Stereo-seq is not 

easily accessible by a typical research lab due to the lack of commercialization. In addition, 

the sequencing cost will be extremely high because the number of spots to be sequenced 

is much larger than Visium. Given these constraints, we think Stereo-seq is not a practical 

choice for most of the research labs. We believe that TESLA would offer a practical solution 

to existing Visium users, because Visium covers the entire transcriptome, has a reasonable 

cost, and is the most popular ST platform based on a recent survey.52

There are some specific issues in ST data that TESLA does not account for. Although it has 

shown promising performance, it might be overly simplistic for complex tissue types. We 

are currently exploring a more sophisticated approach to further improve the performance 

of TESLA. The main idea of this extension is to extract histology image features 

that account for both local and long-range dependencies of pixel intensities and use a 

weakly supervised machine learning method to impute super-resolution gene expression by 

imposing constraints provided by spot-level gene expression. Fully implementing and testing 

this idea would require a substantial amount of work. Given the promising performance of 

our current version of TESLA over existing methods, we believe that implementing and 

testing more sophisticated approaches is beyond the scope of the current study. Nevertheless, 

it is an exciting future direction that we will pursue.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Jian Hu (jian.hu@emory.edu).

Materials availability—This study did not generate new materials.
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Data and code availability—This paper analyzes existing, publicly available data. These 

accession numbers for the datasets are listed in the key resources table.

All original code has been deposited at GitHub (https://github.com/jianhuupenn/TESLA) 

and is publicly available as of the date of publication. This repository has been archived at 

Zenodo (https://doi.org/10.5281/zenodo.7703260).

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

METHOD DETAILS

Data preprocessing—TESLA takes spatial gene expression and histology image data 

as input. The spatial gene expression data contain an Nx G matrix of unique molecular 

identifier (UMI) counts with N spots and G genes, along with the (x, y) 2-dimensional 

spatial coordinates of each spot. The gene expression values in each spot are normalized 

such that the UMI count for each gene in a given spot is divided by the total UMI count 

across all genes in that spot, multiplied by 10,000, and then transformed to a natural log 

scale.

Super-resolution gene expression image generation—After preprocessing, 

TESLA extracts the measured tissue region from the histology image and generates a 

super-resolution gene expression image for each gene in the tissue using histological, 

spatial location, and the original spot-level gene expression data. The super-resolution 

gene expression generation step in TESLA is based on two assumptions: 1) spots that are 

physically close have similar gene expression, and 2) the expression patterns for spatially 

variable genes are correlated with histology image features. Therefore, this enhancement 

step works better for genes whose expression patterns have some spatial variability as 

compared to non-spatially variable genes. Below we describe each step in super-resolution 

gene expression generation in detail.

Superpixel generation: TESLA first detects the contour of the captured tissue area in the 

histology image. When the tissue region can be easily separated from the histology image 

background, TESLA uses the Canny-edge-detection algorithm implemented in the python 

package “opencv” to draw the contour. When the histology image contains contaminated 

stains or tissue fragments, the Canny-edge-detection algorithm may result in an inaccurate 

contour. In this case, TESLA detects the boundary of the measured spots and uses the 

enlarged boundary as the tissue contour. After contour detection, TESLA separates the tissue 

region inside the contour into equal-sized squares, referred to as superpixels. The size of 

the superpixels can be adjusted depending on the dataset and is usually much smaller than 

spots captured by next generation sequencing-based ST technologies. The default size of a 

superpixel is 50 × 50 pixels, but can be adjusted by user depending on the diameter size 

of each spot in the ST data. As a comparison, the diameter is ~350 pixels for a Spatial 

transcriptomics spot and ~200 pixels for a 10x Visium spot (Table S1).

Superpixel gene expression imputation: We aim to impute the gene expression at each 

superpixel using observed spot-level gene expression. The gene expression of a superpixel is 
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expected to be similar to that of its neighboring spots. Thus, to impute the gene expression 

ata given superpixel v, TESLA detects its top 10 nearest neighboring measured spots based 

on the Euclidean distance metric described in SpaGCN,24 which considers the similarity 

between the superpixel v and a measured spot with respect to both physical location and 

histological features. We first extract the approximate region of each superpixel on the 

histology image and calculate the mean color value for the RGB channels, rv, gv, bv  of all 

pixels that fall in that region. Next, a weighted sum of the RGB value is calculated to 

represent the histology image features:

zv = rv × V r + gv × V g + bv × V b
V r + V g + V b

,

where V r = Variance rv , V g = Variance gv , and V b = Variance bv  for all v ∈ V . Then, zv is 

rescaled to the same scale as xv and yv as

zv
* = zv − μz

σz
× max σx, σy ,

where μz is the mean of zv, σx, σy, σz are the standard deviations of xv, yv and zv; respectively. 

The 3D coordinates for all the measured spots are derived using the same approach, and the 

Euclidean distance between superpixel v and a measured spot u is calculated as

d(u, v) = xu − xv
2 + yu − yv

2 + zu
* − zv

* 2 .

For each superpixel v, TESLA detects its top 10 nearest neighboring measured spots, 

denoted as set Nv. Then, the gene expression value of the superpixel v is imputed using 

a weighted sum of the neighboring spots’ gene expression values. The weight for a given 

neighboring spot ui ∈ Nv is negatively associated with the distance from that spot to the 

superpixel and is defined as

w ui, v = d ui, v −2

uj ∈ Nv
d uj, v −2,

where d ui, v  is the Euclidean distance calculated using the approach described in SpaGCN. 

For a given gene g, its imputed expression value for superpixel v is calculated as

eg, v =
ui ∈ Nv

w uj, v eg, uj,

where eg, uj is the measured spot-level gene expression for gene g at spot ui. For each pixel 

within the superpixel, its expression is imputed as the gene expression at the corresponding 

superpixel.
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After imputation, TESLA generates a super-resolution gene expression image for each gene 

in the tissue with tissue gaps imputed as well. We note that the center-to-center distance 

between two adjacent spots in the current 10x Visium platform is 100 μm, leaving a large 

portion of the tissue unmeasured for gene expression. Although BayesSpace can enhance the 

gene expression resolution within measured spots, regions that are not covered by spots are 

still left blank.

Multi-level tissue annotation—TESLA can annotate a tissue section at multiple levels 

by integrating different super-resolution gene expression images together with a histology 

image for joint segmentation using a convolutional neural network approach. For example, 

using integrated cell-type-specific marker gene images and the histology image as input, 

TESLA can reveal cell type distributions at the same pixel-level resolution as the histology. 

Additionally, TESLA can identify tumor regions if the tumor marker gene images are used 

as input for joint segmentation. The joint consideration of tumor marker genes and histology 

images enables the detection of intra tumor heterogeneity that might be missed by traditional 

pathology-based tumor diagnosis. For simplicity, we use cell type annotation to demonstrate 

the annotation method.

Generation of meta gene image: The joint segmentation takes both gene expression and 

histology images as input. A histology image has 3 color channels representing red (R), 

green (G), and blue (B) color intensities, while the gene expression are represented by K 
channels for a cell type with K marker genes. If the channels are weighted equally, the gene 

expression would dominate the joint segmentation results when K is larger than 3, whereas 

the histology image would dominate when K is less than 3. Therefore, it is important to find 

a balance between the histology and gene expression. Since the number of marker genes 

varies across cell types, we combine the K markers into one meta marker gene, which can be 

represented by one color channel, to make our method robust across different cell types.

Since not all marker genes are expressed, an ideal meta gene should preserve the expression 

pattern for at least a subset of the marker genes. Given K marker genes and a pre-specified 

number k, for any superpixel i, we first rank all markers’ relative expression in descending 

order as e1, i, e2, i, e3, i, …eK, i, . Next, we select the top k expression values and calculate the meta 

gene’s relative expression at superpixel i as:

emeta, i = min e1, i, e2, i…ek, i .

At a given superpixel, if only the top k − 1 or fewer marker genes are expressed and the 

kth marker has zero expression, the meta gene will have an estimated expression value 

of 0 at that superpixel. This step ensures that expression patterns that are present in less 

than k genes are not included in the meta gene, thus avoiding generating patterns that are 

less representative. Defining the meta gene’s expression in this way guarantees that its 

expression level is high at a given superpixel if and only if all top k markers are highly 

expressed at that superpixel. In our analyses, we set k equal to 1 to capture the expression 

patterns of all marker genes.
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Tissue segmentation using convolutional neural network: Next, we convert the RGB 

channels from the histology image into one gray channel. For the meta gene image, we 

use the gene expression at each superpixel to represent the expression for each pixel that 

resides within the superpixel. Since the gray and meta gene channels are the same size, we 

can simply stack them to create a 2-channel image, where each pixel value is normalized to 

[0, 1] and fed into a convolutional neural network for unsupervised segmentation53 (Figure 

6). Let M be the number of pixels in the 2-channel image denoted by I = vm ∈ R2
m = 1

M
. A p-

dimensional feature map xm ∈ Rp
m = 1

M
 is computed from vm m = 1

M  through two convolutional 

components, each of which consists of a 2-dimensional convolution, a ReLU activation 

function, and a batch normalization function. Subsequently, a response map rm = Λxm m = 1
M

is obtained by applying a linear classifier on xm ∈ Rp
m = 1

M
, where Λ ∈ Rp × p represents the 

weights in the convolutional layer. The response map is then normalized to rm
′

m = 1
M , which 

has zero mean and unit variance. Finally, the initial cluster label cm for each pixel is obtained 

by selecting the cluster that has the maximum value in rm
′ . To initialize the neural network, 

we start with a large initial number of clusters (default p = 100).

The loss function L consists of a constraint on spatial continuity and a constraint on gene 

expression and image similarity, defined as follows:

L = μLcon rm
′ + Lfeature rm

′ , cm ,

where μ represents the weight for balancing the two constraints (μ = 5 as default). Following 

Kim et al.,27 we utilize the L1-norm of horizontal and vertical differences of the response 

rm
′

m = 1
M  as a spatial constraint, which is defined as

Lcon rm
′ = ∑

w = 1

W − 1
∑

ℎ = 1

H − 1
rw + 1, ℎ

′ − rw, ℎ
′

1 + rw, ℎ + 1
′ − rw, ℎ

′
1 ,

where W  and H represent the width and height of the 2-channel image, and rw, ℎ
′  represents 

the pixel value at w, ℎ  in the response map rm
′

m = 1
M . By applying this spatial continuity 

loss, an excessive number of clusters due to complicated patterns can be suppressed. The 

following cross entropy loss between rm
′

m = 1
M  and cm m = 1

M  is calculated as the constraint on 

gene expression and image similarity:

Lfeature rm
′ , cm = ∑

m = 1

M
∑

i = 1

p
− δ i − cm logrm, i

′ ,

where δ ⋅  is an indicator function. This loss ensures that pixels assigned to the same cluster 

have similar meta gene expression and H&E image features. Since the input gray-scaled 

H&E image and meta gene image are normalized to the same scale, they contribute equally 

to the final segmentation.
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In the iterative update procedure, cluster memberships for spatially close pixels or pixels 

with similar meta gene expression values are merged by considering spatial continuity and 

gene expression similarity. This process leads to the reduction in the number of unique 

clusters p′. The normalized response map vectors and cluster assignments are updated 

iteratively as follows. Since some clusters may have no pixels assigned to them, the number 

of unique clusters can be a number p′ ranging from 1 to p. During each training epoch, 

TESLA has a cluster refinement step to merge minor clusters to its neighboring major 

clusters. First, clusters containing less than 1000 (default) pixels will be selected as minor 

clusters. Next, for each pixel in a given minor cluster, its neighboring pixels, defined as 

pixels located within a circle of radius 3 centered at that pixel, are collected into a set. 

Based on the cluster identities of all neighboring pixels of the pixels in that minor cluster, 

TESLA will detect the major cluster which has the most pixels in the neighboring set, 

referred to as the neighboring major cluster. TESLA then merges the minor cluster with 

its neighboring major cluster, which increases the integrity of the segmentation. Due to 

the cluster refinement step, the number of clusters decreases during the training process. 

The model will stop training when the number of clusters reaches a pre-defined threshold 

(default is 30). We tested the value of this threshold from 10 to 50 and found that it does 

not affect the target cell type detection much. We use 30 as default to allow the algorithm to 

assign some tissue edge and small contaminated regions as small clusters.

Target cell type detection—After obtaining the cluster assignments from segmentation, 

TESLA identifies which cluster(s) are enriched for a specified target cell type. Since the 

segmentation output has the same resolution as the meta gene image, TESLA can calculate 

the average meta gene relative expression across all pixels within each cluster and sort the 

clusters in descending order of this value as e‾meta, cluster1, e‾meta, cluster2, …, e‾meta, clusterp . Next, clusters 

whose average meta gene relative expression is greater than t × e‾meta, cluster1 are considered as 

clusters that are enriched for the target cell type. We find that t = 1/2 generally generates the 

best performance in practice. Finally, each cluster is annotated on the histology image with 

color corresponding to the average meta gene expression level. This framework is flexible, 

where users can customize their own gene list for a cell type of interest; for example, by 

changing the cell type marker genes to tumor marker genes (Table S4), one can detect the 

tumor region in the tissue.

Intra-tumor heterogeneity analysis—With tumor region annotation, we can further 

draw the leading edge and separate the tumor into edge and core, which allows us to study 

intra-tumor heterogeneity. TESLA first detects the boundary of the tumor region using the 

Canny-edge-detection algorithm implemented in the python package “opencv”. Tumor edge 

is defined as the area that is within 200 μm interface of tumor and adjacent to non-malignant 

tissue and the tumor core is defined ast he proximal tumor area within the tumor edge.27 

After the tumor edge and core are identified, we can perform differential expression analysis 

to detect genes enriched in the edge and the core, which will help in understanding the 

heterogeneity inside the tumor. We performed DE analysis between pixels in the tumor core 

and edge using Wilcoxon rank-sum test. Genes with a false discovery rate (FDR) adjusted 

p-value <0.05 are first selected. Toensure only genes with enriched expression patterns in the 

core/edge region are selected, we further require a gene to meet the following three criteria: 
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1) mean log (gene expression) >0.1; 2) in/out group expression fraction ratio >=1, where “in 

group” refers to spots in the target region (e.g., tumor edge or tumor core), and “out group” 

refers to the remaining spots, “in group expression fraction” is the percentage of spots in 

the “in group” where the gene is expressed, and “out group expression fraction” is the 

percentage of spots in the “out group” where the gene is expressed; 3) in group expression 

fraction >0.5; 4) fold change of in group gene expression/out group gene expression >1.2.

Detection of tertiary lymphoid structure—Previous studies have suggested that TLS 

formation results from a complex interplay between B cells, CD4+ T cells, and dendritic 

cells, with reciprocal signaling between these cells mediated by chemokine CXCL13. 10 

TESLA detects the potential location of TLS based on the colocalization of B cells, CD4+ 

T cells, dendritic cells, and chemokine CXCL13 (marker genes in Table S4). For any 

pixel i, TESLA first calculates the molecular abundance of each cell type as the mean 

expression across all pixels for the corresponding meta gene of that cell type. TELSA then 

ranks the molecular abundances of these cell types and CXCL13 in descending order as 

b1, i, , b2, i, b3, i, b4, i, . Next, the TLS score is calculated as the minimum value of the top three 

abundances:

TLS scorei = min b1, i, b2, i, b3, i .

This minimum pooling from the top three values ensures that a pixel has a high TLS score if 

and only if at least three out of the four abundances are high. We do not perform minimum 

pooling using all four values because we expect the enrichment of B cells, CD4+ T cells, 

and dendritic cells, and CXCL13 may be closely related to TLS but not perfectly overlap 

with the other three cell types. Next, we annotate the whole tissue with color corresponding 

to the TLS score, where dense regions embedded inside the tumor with high TLS scores are 

identified as TLSs.

Comparing image similarity using SSIM—The Structural SIMilarity (SSIM) index is 

a method for measuring the similarity between two images. The SSIM between two images 

x and y of the same size is calculated as

SSIM(x, y) = 2μxμy + c1 × 2σxy + c2

μx
2 + μy

2 + c1 × σx
2 + σy

2 + c2
,

where μx, μy  and σx, σy  are the means and standard deviations of x and y, σxy is the 

covariance of x and y, c1 = (0.01 × L)2 and c2 = (0.03 × L)2 are two variables used to stabilize 

the division, and L is the dynamic range of the pixel-values. When calculating the SSIM 

between protein’s immunofluorescence staining image and the super-resolution gene image, 

the protein staining intensity and the super-resolution gene expression are scaled to the range 

(0,255).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• TESLA enhances gene expression to super resolution using histology images

• TESLA integrates gene expression and histology to annotate tumor and 

lymphoid cells

• TESLA characterizes intra-tumor heterogeneity by separating tumor into core 

and edge

• Tertiary lymphoid structures can be identified by colocalization analysis in 

TESLA
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Figure 1. Workflow of TESLA
(A) TESLA starts from generating superpixels to cover the entire tissue area. The gene 

expression of each superpixel is imputed by the weighted sum of its nearest measured spots 

in a 3D space, defined by the spatial coordinates (x, y) and the 3rd dimensional coordinate z, 

obtained from the RGB values in the histology image.

(B) TESLA combines a set of tumor/cell-type marker genes into a meta gene and stacks 

the meta gene image with the gray-scaled histology image into a two-channel image, which 

is fed into a convolutional neural network (details shown in Figure 6) for segmentation. 
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Tumor region/cell-type distribution can be displayed on the histology image based on the 

segmentation results.

(C) TESLA can further separate the tumor region into edge and core. Downstream 

differential expression analysis is performed to identify core or edge enriched genes.

(D) Based on the colocalization of specific lymphoid cell types detected in (B), TESLA can 

identify TLS on the histology image.
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Figure 2. Evaluation of super-resolution gene images from TESLA
(A) Boxplot of Pearson correlations between the original gene expression and TESLA’s 

imputed gene expression for masked spots for SVGs detected by SpaGCN. Each point in 

the boxplot represents a gene. SpaGCN detected 68 SVGs (n = 68) from the IDC dataset, 

85 SVGs (n = 85) from the CSCC dataset and 30 SVGs (n = 30) SVGs from the cutaneous 

malignant melanoma dataset. The lower and upper hinges correspond to the first and third 

quartiles, and the center refers to the median value. The upper (lower) whiskers extend from 

the hinge to the largest (smallest) value no further (at most) than 1.5× interquartile range 

from the hinge. Data beyond the end of the whiskers are plotted individually.

(B) Scatter plots of Pearson correlations between the original spot-level gene expression and 

“spot-level” gene expression obtained from the enhanced expression generated by TESLA 
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and BayesSpace for the top 2,000 highly variable genes selected by BayesSpace for the five 

datasets. Each dot in the plot represents a gene.

(C) Spot layout of the pseudo-Visium data derived from 10× Xenium breast cancer dataset, 

in which the pseudo spots are overlayed on the H&E image.

(D) Scatter plots of Pearson correlations between observed gene expression in Xenium and 

enhanced gene expression generated by TESLA and BayesSpace at different resolutions for 

all 313 genes in Xenium. Each dot in the plot represents a gene.

(E) Intensity of the CD3ε immunofluorescence staining. Intensity was scaled to (0, 1) for 

visualization.

(F) Super-resolution gene expression image of CD3E from TESLA.

(G) Super-resolution gene expression image of CD3E from BayesSpace.
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Figure 3. TESLA characterizes intra-tumor heterogeneity in a CSCC sample and a melanoma 
sample
(A) Histology image (left), tumor meta marker gene (middle) and the tumor region detected 

by TESLA (right) from the CSCC tissue section. The yellow and blue boxes mark two 

regions with dark color on histology image but not detected as tumor region.

(B) Pathologist’s manually annotated leading edge from the original study and the leading 

edge drawn by TESLA for the CSCC tissue section.

(C) Tumor core and edge separation obtained by TESLA for the CSCC tissue section.
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(D) Examples of genes enriched in the tumor core (IGFBP2, CCNB1) and tumor edge 

(CXCL12, IL2RB) detected by TESLA for the CSCC tissue section.

(E) Pathologist annotated histology image from original study, melanoma meta marker gene 

expression, and the melanoma region detected by TESLA.

(F) Tumor core and edge separation of the melanoma region by TESLA.

(G) Examples of the tumor core (HSPB1, MIF) and edge (ITGAL, THY1) enriched genes 

detected by TESLA for the melanoma tissue section.
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Figure 4. TESLA identifies lymphoid cell types and TLS with pixel-level resolution in the CSCC 
and melanoma samples
(A) The distribution of B cells, CD4+ T cells, dendritic cells, and chemokine CXCL13 at 

pixel-level resolution characterized by TESLA in the CSCC tissue section.

(B) Clustering of spots of the CSCC tissue section using SpaGCN.

(C) TLS scores calculated by TESLA for the cutaneous CSCC tissue section. The blue 

box marks a highly possible TLS, whereas the green box marks a region with aggregated 

lymphocytes but not forming a TLS.
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(D) The distribution of Bcells, CD4+ Tcells, dendritic cells, and chemokine CXCL 13 at 

pixel-level resolution characterized by TESLA in the melanoma tissue section. (E) TLS 

scores calculated by TESLA for the melanoma tissue section. The yellow and green boxes 

mark two potential TLSs, and the blue box marks a lymphoid node apart from the tumor 

region.

(F) H&E staining and TLS scores calculated by TESLA for the clear cell renal cell 

carcinoma (ccRCC) primary tumor data. The yellow line outlines the true TLS annotated 

by pathologists, which was further validated by triple immunofluorescence labeling 

(CD20/CD3/PD-1) on an immediately adjacent slide for frozen sample and CD3/CD20 

labeling by immunohistochemistry for FFPE sample.
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Figure 5. TESLA detects subtypes of breast cancer samples
(A) Tumor region and tumor subtype regions (HER2+, ER+, and PgR+) detected by TESLA 

in the HER2+, ER+, and PR− breast cancer dataset from 10x Genomics.

(B) Histology images with pathologist’s manual annotation from the original HER2+ breast 

cancer study.

(B–D) Tumor region and tumor subtype regions (HER2+, ER+, and PgR+) detected by 

TESLA in the three breast cancer tissue sections from patients H, G, and B in the HER2+ 

breast cancer study.
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Figure 6. Architecture of the CNN for image segmentation in TESLA
A 2-channel image is fed into the CNN to extract deep features through two convolutional 

components, each of which consists of a two-dimensional convolution 5 × 5, p , a ReLU 

activation function, and a batch normalization function. Subsequently, the response vectors 

of the features in p-dimensional cluster space are calculated through a one-dimensional 

convolutional layer 1 × 1, p  and normalized to rm
′

m = 1
M  across the axes of the cluster space 

using a batch normalization function. The normalized response map rm
′

m = 1
M  is used to 

calculate the spatial continuity loss. Further, raw cluster labels are determined by assigning 

the cluster to rm
′

m = 1
M  using an argmax function. Next, the raw cluster labels are refined to 

cm m = 1
M  and used as pseudo labels to compute the gene expression loss. Finally, the spatial 

continuity loss, as well as the gene expression loss, are combined and backpropagated. 

After training, this CNN can segment input image into different clusters, and TESLA next 

identifies the clusters corresponding to the target region.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Human Invasive ductal carcinoma spatial 
transcriptomics data

10x Genomics 10x Data: https://support.10xgenomics.com/spatialgene-expression/
datasets/1.2.0/V1_Human_Invasive_Ductal_Carcinoma

Human Cutaneous squamous cell carcinoma 
spatial transcriptomics and single-cell RNA 
sequencing data

Ji et al.17 GEO: GSE144240

Human cutaneous malignant melanoma spatial 
transcriptomics data

Thrane et al.18 Spatial Research Lab Data: https://www.spatialresearch.org/resources-
published-datasets/doi-10-1158-0008-5472-can-18-0747/

Human melanoma tumor single-cell RNA 
sequencing data

Tirosh et al.19 GEO: GSE72056

Human HER2+, ER+ and PR- breast cancer 
spatial transcriptomics data

10x Genomics 10x Data: https://support.10xgenomics.com/spatialgene-expression/
datasets/1.1.0/V1_Breast_Cancer_Block_A_Section_1

Human HER2+ breast tumor spatial 
transcriptomics data

Andersson et al.45 GitHub Data: https://github.com/almaan/her2st

Mouse Posterior brain (sagittal) spatial 
transcriptomics data

10x Genomics 10x Data: https://support.10xgenomics.com/spatialgene-expression/
datasets/)

Mouse kidney spatial transcriptomics data 10x Genomics 10x Data: https://support.10xgenomics.com/spatialgene-expression/
datasets/

Human clear cell renal cell carcinoma primary 
tumors spatial transcriptomics data

Meylan et al.44 GEO: GSE175540

Human breast cancer spatial transcriptomics 
data

10x Genomics 10x Data: https://www.10xgenomics.com/products/xenium-in-situ/
preview-dataset-human-breast

Software

TESLA This paper https://doi.org/10.5281/zenodo.7703260

BayesSpace Zhao et al.15 https://github.com/edward130603/BayesSpace

SpaGCN Hu et al.24 https://github.com/jianhuupenn/SpaGCN

RCTD Cable et al.23 https://github.com/dmcable/RCTD
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