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INTRODUCTION
Accurate environment perception is
a critical topic in autonomous driving
and intelligent traffic. Current envi-
ronmental perception methods mostly
rely on on-board cameras. However,
limited by the installation height, there
are problems such as blind spots and
unstable long-range perception in vehi-
cle perceptual systems. Recently, with
the rapid improvement of intelligent
infrastructure, it has become possible
to use roadside cameras for traffic
environment perception. Benefiting
from the increased height when com-
pared with on-board sensors, roadside
cameras can obtain a larger perceptual
field of view and realize long-range
observation.

Roadside perception is of great signif-
icance to autonomous driving and traf-
fic intelligence. With the help of road-
side perception, autonomous vehicles
can achieve a global perspective far be-
yond the current horizon and cover-
ing blind spots that can greatly increase
safety. Since information from roadside
cameras can broadcast to all surround-
ing autonomous vehicles, the additional
economic cost brought about by road-
side equipment is worthy. What is more,
roadside perception can also achieve traf-
fic flow control and improve efficiency.
In order to achieve roadside percep-
tion, high-precision roadside monocular
three-dimensional (3D) detection algo-
rithms are essential.

Challenge
Roadside monocular 3D detection has
the following challenges.
� Domain gap. Compared with the rel-
atively fixed installation parameters of
on-board cameras, each roadside cam-
era has various specifications, such
as camera intrinsic, pitch angle and
mounting height, which introduces do-
main gaps. Tasks that involve do-
main gaps pose additional challenges
to roadside 3Ddetection, due to the in-
herent ambiguities.

� On-board prior invalid. The roadside
camera is installed on a pole with a
pitched angle, so the on-board prior as-
sumption that the optical axis of the
camera is parallel to the ground is no
longer valid, and thus monocular 3D
detection methods with this prior can-
not be directly applied.

� More obstacles.The utilization of road-
side cameras enables the perception
system to apprehend a wider range of
obstacles, resulting in an increase in
obstacle density. As a result, the chal-
lenge faced by the perception system
becomes increasingly complex.

� Generalization. Generalization of the
roadside algorithms is difficult. Com-
pared with autonomous driving vehi-
cles that move everywhere, roadside
cameras are fixed in position after in-
stallation and can only collect data
from a single scene.The long-tail prob-
lem faced by roadside perception is
more serious.

In order to solve the above problems
and promote roadside perception to as-
sist intelligent transportation, this com-
petition focuses on roadside monocular
3D detection tasks. Based on roadside
image data and labeling information, par-
ticipating teams designed monocular 3D
detection algorithms to achieve the pre-
dictions of object category, 2D bounding
box, location, dimension (length, width
and height) and orientation in roadside
area of interest.

Competition details
Dataset
The competition used the Rope3D [1]
benchmark to evaluate algorithms, which
consists of camera images, intrinsics,
extrinsics, ground norm files, depthmaps
and annotations. The dataset provided
a total of 50 000 training images with
1920 × 1080 resolution. As shown in
Fig. 1 within the online supplementary
material, it contained scenes with differ-
ent weather conditions (sunny, cloudy,
rainy), different times (daytime, night,
dawn/dusk) and different densities
(crowded, normal, less traffic). There
were a total of 13 classes annotated:
car, van, truck, bus, pedestrian, cyclist,
motorcyclist, barrow, tricyclist, traffic
cones, triangle plate, unknown unmov-
able and unknownmovable.The distance
between obstacles and corresponding
cameras ranged from 10 to 140 m. More
than half of the objects were partially or
heavily occluded.
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Evaluation metric
Following Rope3D, the competition
used Ropescore as the main metric that
consists of five submetrics, such as
average precision (AP), average ground
center similarity (ACS), average orien-
tation similarity (AOS), average area
similarity (AAS) and average four-
ground-point distance and similarity
(AGS).The form of Ropescore is

Rope s c or e = ω1 ∗ AP + ω2 ∗ S
ω1 + ω2

,

(1)
where S = (ACS + AOS + AAS +
AGS)/4,ω1 = 8,ω2 = 2. More details of
the submetrics can be found in ref. [1].

THE SOLUTION OF THE
WINNING TEAM
Baseline selection
This competition based on the Rope3D
dataset is essentially a monocular 3D
detection task. Many mature and excel-
lent on-board methods of this field have
been proposed in recent years [2,3].
However, most of these approaches
are based on the assumption that the
optical axis of the camera is parallel to
the ground. Roadside cameras do not
satisfy such an assumption, leading to an
inability to apply these methods directly.
Additionally, some approaches [4,5]
relied on LIDAR data to provide ad-
ditional modalite information to assist
learning, and thus cannot be used in
this competition. Among the remaining
methods, MonoDLE [6], which is based

RGB

Depth

Ne
ck

 m
od

ule

2D Bbox
heatmap

Offset
vector

Depth

Shape
dimensions

Observation
angle

Figure 1. The dual-stream model structure consists of separate feature extraction modules for the
depth and RGB images.

on CenterNet [7], considers both per-
formance and runtime. It proposes a 3D
intersection-over-union-based dimen-
sion loss and uses the Laplace method
to model depth uncertainty to further
improve the accuracy of 3D attribute
prediction. As a kind of 3D detection
paradigm,MonoDLE has high scalability
and does not rely on any strong prior as-
sumptions. Based on the above analysis,
MonoDLE was chosen as the baseline.

Method design
Compared to on-board detection, one of
the difficulties of roadside problem is
the diversity of camera configurations.
For instance, the focal length ranges
from 2200 to 3000 pixels in the Rope3D
dataset, which may cause obstacles with
different depths under different focal
lengths corresponding to similar appear-
ance features. This makes it ambiguous
to estimate the depth of an obstacle di-
rectly from a single RGB image. In or-
der to address this problem, a depth map
was introduced as auxiliary data. Further-
more, a variety of depth information uti-
lization strategies were developed, and
finally, a dual-stream network was de-
signed. Experiments proved its effective-
ness for roadside monocular 3D detec-
tion. Different hyper-parameter settings
were also fully explored to improve the
model performance. Overall, the contri-
butions are summarized as follows.
� In order to solve the domain gap prob-
lem of roadside images, depth maps
were introduced to eliminate ambigu-
ity.

� Different strategies of utilizing depth
maps were explored and a final
dual-stream network structure was
designed.

� Under comprehensive parameter tun-
ing, the final model achieved smaller
floating-point operations per second
(FLOPs) while maintaining outstand-
ing precision performance.

Details
Using a depth map can make the monoc-
ular 3D detection task become unam-
biguous under different focal lengths. Es-
sentially, after the introduction of depth
information, the monocular 3D detec-
tion task was transformed from an ill-
posed problem to a complete optimiza-
tion problem. The model can use depth
information to fine-tune z to achieve
more accurate 3D detection.

However, how to make better use of
depth information is key to further im-
proving performance. One of the most
typical and straightforward ideas is con-
cating the depth map and RGB image
along the channel dimension and feed-
ing them to the model to extract fea-
tures. Another method is also based on
shared weights, but the depth map and
RGB image can be fed into the network
separately, and then their features can
be fused. A better technique is to build
a separate feature extraction module for
the depth image, and then fuse the depth
features and RGB features in different
stages. Our experiments demonstrated
that this technique can achievebetterper-
formance.

The model can be trained end-to-
end and the whole pipeline is as fol-
lows: (1) feature extraction, (2) feature
interaction and fusion, (3) regression
head, (4) loss calculation and backpropa-
gation.TheDLA34 [8] network was cho-
sen as the feature extraction backbone,
as it provides the most balanced trade-
off between speed and precision. Depth
maps and RGB images have two sepa-
rate feature extraction modules. At each
stage of the backbone, feature maps of
the depth and RGB images were fused.
Considering the FLOPs of the model, an
adding operator was used.The simplified
model structure is shown in Fig. 1.
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Experiments
This subsection presents the details of the
experiments. For fair comparison, nopre-
trained models were used. Table 1 in the
online supplementarymaterial shows the
key results of the model in the competi-
tion.
� Hyper-parameter choice. The AdamW
optimizer performed best in the model
and the batch size was set at 16. Mean-
while, the warm-up technique and co-
sine warm-up were used in the training
stage where the initial learning rate was
2× 10−3.

� Data processing. Instead of forcing the
model to focus on the hard samples,
the proposed method ignored some
extremely small and far cases, lead-
ing to an improvement in the over-
all performance. Image augmentation
techniques such as horizontal mir-
ror flip, brightness contrast, Gaussian
noise and motion blur were also used
to improve the diversity of data.

� Image scale. Generally, the test perfor-
mance is sensitive to scale changes of
the input image. A larger scale can usu-
ally achieve better performance, but it
is subject to the law of diminishing
marginal utility.Themain reason lies in
the fact that score-scale variation pat-
terns between different categories (car,
big vehicle, cyclist and pedestrian) are
different. Thus, finding an appropriate
scale was crucial, taking into account
FLOPs and training resource balance.
In this solution, an input size of 768 ×
480 performed better than 960× 544.
The former could train the model for
20 epochs, while the latter could only
train for 10 epochs. In the absence of
pretrain, the number of iterations can
directly affect the convergence of the
model.

Parts of some important ablation ex-
periments are listed in Table 2 of the
online supplementary material. As can
be seen from the experimental results,
the efficient utilization of depth infor-
mation is crucial. Concurrently, the bal-
ance between the scale and maximum
epoch is also a key improvement point.
Consequently, hyper-parameter tuning
helped the model achieve better per-

formance. Additionally, the competition
used a 2D region of interest (ROI) to fil-
ter out obstacles. The score of the model
in the ROI was 57.68%, which was the
highest score.

COMMENTS ON THE
CHAMPION’S SOLUTION
Thechampionmethod achieves the high-
est Ropescore in this competition. Firstly,
it introduces a depth map to tackle the
domain gap problem in roadside 3D
detection. Meanwhile, since monocular
depth estimation is actually a more ill-
conditioned problem, the depth map
can also provide a strong depth prior,
making obstacle depth estimation easier.
Furthermore, it explores different strate-
gies that focus on how to use depth
data. Based on theoretical analysis and
a large number of experimental results,
themethoduses two independent feature
extraction backbones and performs fea-
ture fusion in multiple stages. Compared
to concat depth maps and RGB images
directly, this structure has advantages in
feature extraction of different modali-
ties. Additionally, horizontal mirror flip
and some photometric data augmenta-
tion methods are utilized to enrich sam-
ples. Comparedwith some data enhance-
mentmethods thatmay introduce feature
ambiguity (such as copy-paste, random
crop-expand, camera movement, etc.),
horizontal flip and photometric data en-
hancement can improve the effect with-
out side effects.

Overall, the champion method
achieved state-of-the-art performance
while maintaining a fast speed. As an
end-to-end approach, it is convenient for
application in industry.

CONCLUSION AND FUTURE
DIRECTION
Thecompetition aims to promote the de-
velopment of roadside 3Dmonocular de-
tection algorithms. Many teams have de-
signed different solutions according to
the challenges of roadside perception. Al-
though these methods have achieved ex-
cellent performance, there are still im-

provements for future research. Some
possible optimization directions and sug-
gestions are as follows.

� Cross domain. In industrial applica-
tions, the wide deployment of roadside
cameras will introduce a more serious
domaingapdue to various camera focal
lengths and divergences in installation
settings, which increases the difficulty
of depth estimation. Encoding this in-
formation into the model may be help-
ful to alleviate this problem explicitly.
Conversely, guiding models to learn
related features to implicitly adapt to
different domains is also a line of
thought.

� Geometric modeling. The champion
method used the depth map as ad-
ditional information. Each depth
map is fitted from a single ground
plane. However, due to the fact that
the ground may have slopes and
undulations, it is difficult for a single
ground plane to precisely describe the
physical characteristics that may cause
a decrease in accuracy. Thus, how to
model the ground more accurately is
also a topic deserving of inquiry. In ad-
dition, analogous to the near-large and
far-small imagingmodel of vehicle-side
perception, the roadside algorithm can
also summarize the prior knowledge,
and establish a corresponding math-
ematical model to further optimize
perception.

� Global information. Because of the
static nature of roadside cameras, it is
possible to design a method that can
conveniently and effectively utilize
global features to enhance the ability
of depth estimation.

� Data augmentation. Roadside per-
ception is limited by the difficulty in
collecting diverse data, and the long-
tail problem is harder to solve than
the on-board problem. Data augmen-
tation is considered one of the most
effective ways to improve generaliza-
tion. However, besides photometric
distortion and random horizontal
flipping, most 2D data augmentation
methods introduce ambiguity to 3D
detection due to breaking the imaging
principle. Thus, designing 3D data
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enhancements without introducing
ambiguous features for roadside
perception is an urgent problem to
be solved.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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