Skip to main content
. Author manuscript; available in PMC: 2023 Nov 1.
Published in final edited form as: Autism Res. 2022 Sep 2;15(11):2181–2191. doi: 10.1002/aur.2801

Table 4.

Summary using algorithm cut-off scores of ADOS-2 manual

Module 1 Algorithm 1 No ASD (N=40) ASD (N=324) All (N=364) Correctly predicting BEC diagnosis
non-spectrum (0–10) 25 (62.5%) 3 (0.9%) 28 (7.7%) 89%
autism spectrum (11–15) 8 (20%) 30 (9.3%) 38 (10.4%) 79%
autism (16–28) 7 (17.5%) 291 (89.8%) 298 (81.9%) 98%
TN 62%, FP 38% TP 99%, FN 1%
Module 1 Algorithm 2 No ASD (N=129) ASD (N=405) All (N=534) Correctly predicting BEC diagnosis
non-spectrum (0–7) 82 (63.6%) 4 (1%) 86 (16.1%) 95%
autism spectrum (8–11) 28 (21.7%) 36 (8.9%) 64 (12%) 56%
autism (12–28) 19 (14.7%) 365 (90.1%) 384 (71.9%) 95%
TN 64%, FP 36% TP 99%, FN 1%
Module 2 Algorithm 1 No ASD (N=200) ASD (N=213) All (N=413) Correctly predicting BEC diagnosis
non-spectrum (0–6) 138 (69%) 6 (2.8%) 144 (34.9%) 96%
autism spectrum (7–9) 34 (17%) 29 (13.6%) 63 (15.3%) 46%
autism (10–28) 28 (14%) 178 (83.6%) 206 (49.9%) 86%
TN 69%, FP 31% TP 97%, FN 3%
Module 2 Algorithm 2 No ASD (N=98) ASD (N=159) All (N=257) Correctly predicting BEC diagnosis
non-spectrum (0–7) 64 (65.3%) 6 (3.8%) 70 (27.2%) 91%
autism spectrum (8) 11 (11.2%) 3 (1.9%) 14 (5.4%) 21%
autism (9–28) 23 (23.5%) 150 (94.3%) 173 (67.3%) 86%
TN 65%, FP 35% TP 96%, FN 4%
Module 3 No ASD (N=812) ASD (N=764) All (N=1576) Correctly predicting BEC diagnosis
non-spectrum (0–6) 593 (73%) 41 (5.4%) 634 (40.2%) 94%
autism spectrum (7–8) 79 (9.7%) 100 (13.1%) 179 (11.4%) 56%
autism (9–28) 140 (17.2%) 623 (81.5%) 763 (48.4%) 82%
TN 73%, FP 27% TP 95%, FN 5%
Total sample No ASD (N=1279) ASD (N=1865) All (N=3144) Correctly predicting BEC diagnosis
non-spectrum 902 (70.5%) 60 (3.3%) 962 (30.7%) 94%
autism spectrum 160 (12.5%) 198 (10.6%) 358 (11.3%) 56%
autism 217 (17%) 1607 (86.2%) 1824 (58%) 88%
TN 71%, FP 29% TP 97%, FN 3%

TN: true negative, FP: false positive, TP: true positive, FN: false negative