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3D deconvolution of human skin immune architecture
with Multiplex Annotated Tissue Imaging System
Manon Scholaert1,2†, Raissa Houmadi1†, Jeremy Martin1†, Nadine Serhan1†, Marie Tauber1,3,4,5,
Emilie Braun2, Lilian Basso1, Eric Merle6, Pascal Descargues6, Manuelle Viguier7, Cécile Lesort4,8,
Benoît Chaput9, Jean Kanitakis4,8, Denis Jullien4,8, Cristina Bulai Livideanu1,10,
Laurence Lamant11, Emeline Pagès2, Nicolas Gaudenzio1,2*

Routine clinical assays, such as conventional immunohistochemistry, often fail to resolve the regional hetero-
geneity of complex inflammatory skin conditions. We introduce MANTIS (Multiplex Annotated Tissue Imaging
System), a flexible analytic pipeline compatible with routine practice, specifically designed for spatially resolved
immune phenotyping of the skin in experimental or clinical samples. On the basis of phenotype attribution
matrices coupled to α-shape algorithms, MANTIS projects a representative digital immune landscape while en-
abling automated detection of major inflammatory clusters and concomitant single-cell data quantification of
biomarkers. We observed that severe pathological lesions from systemic lupus erythematosus, Kawasaki syn-
drome, or COVID-19–associated skin manifestations share common quantitative immune features while display-
ing a nonrandom distribution of cells with the formation of disease-specific dermal immune structures. Given its
accuracy and flexibility, MANTIS is designed to solve the spatial organization of complex immune environments
to better apprehend the pathophysiology of skin manifestations.
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INTRODUCTION
The skin acts as a barrier organ that separates the body from the
external environment. Upon inflammation, blood-circulating
immune cells are recruited to help orchestrate the cutaneous immu-
nity and are often nested nearby key structural elements (e.g., post-
capillary venules, hair follicles, dermal-epidermal junction, etc.) (1,
2). In pathological settings, the nature and activation status of the
skin immune landscape often represent precious biological infor-
mation that can help establish an accurate diagnosis, apprehend in-
terpatient heterogeneity, and select the most appropriate treatment.
The use of imaging-based approaches to identify cutaneous
immune cells is still challenging because of the high level of auto-
fluorescence arising from the tissue itself, the potential spectral
spillover when more than four fluorochromes are used simultane-
ously, and the entanglement of all cells within thick and polarized
structural appendages.
The vast majority of microscopic diagnoses of inflammatory skin

conditions relies on repeated immunohistochemistry analysis of
one or two proteins and/or hematoxylin and eosin (H&E) staining

in thin (2 to 5 μm) formalin-fixed, paraffin-embedded (FFPE) spec-
imens (3, 4). While such two-dimensional (2D) approaches are re-
producible and suitable for routine practice, they do not permit to
apprehend the complex topology and heterogeneity of immune cells
(5), particularly those nested in-between epidermal appendices. The
development of image-based histo-cytometry, which consists of an-
alyzing segmented multicolor images with classical flow cytometry
gating strategies, has paved the way toward the development of so-
phisticated image generation systems coupled to computational
imaging (6). Recently, highly multiplexed imaging systems have
substantially advanced our understanding of tissue-resident
immune subsets and of their spatial distribution with regard to
tissue structures, with a strong focus on cancer samples and
tumor heterogeneity, such as CODEX (Co-detection by indexing)
(7, 8), MIBI-TOF (Multiplex Ion Beam Imaging by Time Of
Flight) (9), IMC (Imaging Mass Cytometry) (10), MuSIC (Multi-
plexing using Spectral Imaging and Combinatorics) (11), CyCIF
(tissue-based cyclic immunofluorescence) (12), Cell Dive (13),
and others (14). While multiplexed imaging has an immense poten-
tial, there is a strong need to democratize these methods with the
use of inexpensive instrumentation compatible with standard
tissue processing and coupled to an analysis interface that is user-
friendly enough to be used in routine practice.
Here, we present an integrated framework primarily designed for

spatially resolved immune cells phenotyping in FFPE human skin
biopsies. We first set up a simple and inexpensive method to acquire
10 fluorescent signals simultaneously and in 3D using a classical
confocal microscope.We next designedMANTIS (Multiplex Anno-
tated Tissue Imaging System), an adaptable and interactive analyt-
ical system that automatically generates a digitalized version of the
skin immune landscape and enables single-cell quantitative data vi-
sualization. On the basis of these settings, MANTIS could be imple-
mented in most laboratories coupled to existing confocal
equipment to bridge the gap between sophisticated research tools
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and standard-of-care diagnostic procedures with minimal human
intervention.

RESULTS
Extraction of single-cell statistics from skin sections by
combining conventional confocal laser scanning
microscopy and computational imaging
We developed a simple method to generate 3D multiplexed fluores-
cent images from FFPE (10-μm-thick) or fresh frozen (50-μm-
thick) skin biopsies that could be implemented in most research
or clinical laboratories on existing equipment. Skin sections were
first stained with different panels of commercially available fluoro-
chrome-coupled antibodies added simultaneously and then
quenched to avoid excessive natural autofluorescence of skin struc-
tural elements (Fig. 1A). We acquired 3D fluorescent multiplexed
images with a conventional inverted confocal laser scanning micro-
scope equipped with five laser lines, five detectors, and a 40× oil
immersion objective, using a strategy of sequential acquisition com-
posed of fast consecutive steps (Fig. 1B; the detailed description of
optical paths and lasers of our 8-year-old Leica SP8 system is pro-
vided in Materials and Methods). This setting enabled the acquisi-
tion of 8 to 10 fluorescent channels, on a system primarily designed
for four colors, over a skin section of the following three dimen-
sions, 0.6 mm (x) by 0.4 mm (y) by 20 μm (z), within 25 min.
The obtained 3D images were then deconvoluted and compensated
to correct 3D fluorescent spectral spillovers (Fig. 1, C and D) using
the Huygens software (Scientific Volume Imaging), a strategy rou-
tinely applied in flow cytometry to combinemultiple fluorochromes
simultaneously (6, 15). Compared to classical segmentation strate-
gies based on nucleus expansion (16), which often lead to under- or
overestimation of cellular cluster composition, we used the general
immune biomarker CD45 as a robust immune staining visualized in
most skin-resident immune cells to constitute the core of our cell
segmentation strategy for future single immune cell statistics extrac-
tion (Fig. 1, E and F). Using the isosurface algorithm of the Imaris
software (Bitplane), we next modeled the 3D fluorescence signal of
CD45 for individual immune cells and exported a corresponding
single-cell database composed of the mean fluorescence intensity
(MFI) of all individual biomarkers and precise x, y, and z tissue co-
ordinates obtained with a resolution of 299 nm by 299 nm by 999
nm per voxel (Fig. 1F). We found that CD45-based segmentation
enabled an efficient isolation of single immune cell characteristics,
even when those were found aggregated around dermal structural
elements. Overall, we demonstrate that it is possible to extract a
10-parameter single-cell database using regular confocal equipment
coupled to basic computational imaging steps.

Analysis of the skin immune landscape using MANTIS
phenotype attribution matrices
On the basis of the literature, we designed two panels composed of
antibodies directed against immune biomarkers suitable to generate
a non-exhaustive overview of lymphoid cell (LC) and myeloid cell
landscape of the skin, with an average cost of approximately $65 per
sample. The combination of CD45, CD3e, CD4, CD8, γδ T cell re-
ceptor (TCRγδ), CD20, and CD57 [a terminally sulfated glycan car-
bohydrate epitope shared by natural killer (NK) and T cells with
high cytotoxic potential (17, 18)] allows us to identify the following
LCs: conventional CD4 and CD8 T cells (being CD57low or

CD57high), CD4+ CD8+ double-positive (dp) T cells (19), CD4−

CD8− double-negative (dn) T cells (20), γδ T cells, B cells, and
NK cells (table S1). The combination of CD45, CD207, CD1c,
human leukocyte antigen DR [HLA-DR (Human Leukocyte
Antigen - DR isotype)], CD123, Siglec8, myeloperoxidase (MPO),
and tryptase allows us to identify the following myeloid cells: Lang-
erhans cells, Langerin+ (CD207+) dermal dendritic cells (dDCs) and
Langerin− dDCs, eosinophils, basophils, neutrophils, and mast cells
(table S1). The activation status of DC, Langerin+ DC, and LC was
investigated using levels of HLA-DR expression. A detailed list of
excitation/emission/detection strategies is provided in table S2.
We next aimed to develop an adaptable analytical system that

could integrate and batch-process extracted single-cell databases
and enable an unsupervised phenotyping of immune subsets. To
address this latter challenge, we developed MANTIS, an interactive
digital tool based on phenotype attribution matrices inspired by the
analytical logic of single-cell RNA sequencing that identifies corre-
lations between the single-cell database and the expression profiles
of different cell types (Fig. 2A and fig. S1A). Such an analysis is pos-
sible by computing Spearman’s ρ correlation, which accommodates
nonlinear relationships in the expression values (i.e., in our case, the
collected MFI of each biomarker). In practice, MANTIS runs in-
stantaneously a pairwise Spearman’s correlation analysis, for each
detected single-cell, against selected combinations of biomarkers
to identify the immune subsets annotated in the phenotype attribu-
tionmatrices. The output information is the attribution of specific ρ
values per single cell, which then automatically finds the best match
of cellular identity and generates associated quantitative statistics
(Fig. 2, A to C, and fig. S1, B and C). When analyzed side by side
with conventional flow cytometry, we found that the same popula-
tions were detected; however,MANTIS enabled the identification of
more LCs and CD4 T cells (and less dn T cells), while flow cytom-
etry enabled the identification of more HLA-DRhigh dDCs and eo-
sinophils (fig. S2). As a proof of concept, we generated data from
two serial sections of an acral lesion from a patient with systemic
lupus erythematosus (SLE; i.e., lupus chilblains) stained with a lym-
phoid and a myeloid panel. The fast 3D acquisition of one region of
interest (ROI) composed of six fields of view [i.e., 0.6 mm (x) by 0.4
mm (y) by 20 μm (z)] enabled the annotation of 519 myeloid cells
and 708 LCs for a total of 19 different immune subsets identified
(Fig. 2D and fig. S1D). One can then decide to visualize annotated
immune populations using either a heatmap, in which the MFI of
individual biomarkers is displayed per single cell (fig. S1E), or a
graph-based dimensionality reduction, i.e., t-distributed stochastic
neighbor embedding (t-SNE), specifically designed for visualizing
clusters of populations and corresponding expression of biomarkers
per cluster (Fig. 2E).
A particularly challenging aspect of multiplexed imaging tech-

nologies is to circumvent the spatial distribution of immune cells
with respect to longitudinal and polarized structural elements
(e.g., epidermal appendages of the skin) in thick tissue sections.
We developed an interactive software interface that contextualizes
the immune topology of the skin by replacing all annotated single
immune cells within their 3D spatial context and leverages the
natural autofluorescence of keratinocytes to model the epidermal
layer to facilitate biopsy orientation (Fig. 2F and fig. S1, F and G).
The algorithm allows us to use two complementary analytical ap-
proaches and to switch from one to the other with a simple
drawing tool (movie S1). The analysis can start from the

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Scholaert et al., Sci. Adv. 9, eadf9491 (2023) 7 June 2023 2 of 12



visualization of the skin digital immune landscape and then be
pursued with the investigation of the immune composition of
defined microregions via instantaneous recomputation of drawn
ROI. Conversely, it is also possible to start from all annotated
immune cells on a t-SNE graph, draw around subsets of interest,
and immediately visualize their anatomical distribution in the
skin digital immune landscape (Fig. 2G and movie S1). Together,
these data suggest that the MANTIS interactive analytical system

can be used to compute the 3D spatial organization of immune
and structural elements of inflammatory skin samples from
patients.

Fig. 1. Between-stack microscope configuration allows sequential acquisition of 7+ channels with classical image processing. (A) Sample preparation. FFPE-skin
sections were cut and stained for myeloid and lymphoid panels after appropriate epitope retrieval and autofluorescence quenching. Sample images were then acquired
using an SP8 confocal microscope from Leica Microsystems as described in (B). (B) Microscope configuration and acquisition settings. Mosaic sequential images were
acquired using the between-stack configuration with tunable detection windows. Sequences were overlaid and 3D-stitched. An example of data acquisition is given for
healthy (left) and pathological [systemic lupus erythematosus (SLE)] (right) skin. (C) Deconvolution of regions of interest and spectral unmixing. Acquired 3D images were
deconvoluted and compensated to correct optical aberrations and 3D fluorescent spectral spillovers. (D) Representative 3D multiplex image of healthy (top) and path-
ological SLE (bottom) skin sample for lymphoid panel, staining CD45, CD3, CD4, CD8, TCRγδ, CD57, and CD20. (E) Colocalization of DAPI (4′,6-diamidino-2-phenylindole)
and CD45 staining and respective RGB profiles. (F) Segmentation and single-cell database creation. Cell segmentation using the CD45 fluorescence channel allowed
efficient isolation of individual objects, i.e., immune cells. Individual object statistics (xyz coordinates, sphericity, volume, and MFI) were extracted for each sample. Scale
bars, 30 μm.
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Fig. 2. MANTIS algorithm allows automated cell type attribution and interactive exploration of skinmyeloid immune topology. (A) Automated tissue annotation.
A reference attribution matrix defining the literature-based theoretical signature of a particular cell type was constructed and designated as MANTIS attribution matrix. A
correlation matrix calculating Spearman coefficient between the single-cell database and MANTIS attribution matrix was computed. Each segmented cell was annotated
to the cell type having the highest correlation coefficient, and cell type proportions were extracted. (B) Single-cell staining of all used biomarkers in identified myeloid
cells. Scale bar, 5 μm. (C) MANTIS-simplified attribution matrix for myeloid panel. (D) Tissue annotation and cell proportion of pathological (SLE) skin. (E) Representative t-
SNE plot of myeloid cell populations (top) and MFI levels of used markers (colored intensity scale) (bottom). (F) Representative 3D confocal multiplex image (top) and
associated digital map (bottom) of predesignedMANTIS myeloid panel of pathological (SLE) skin. Scale bar, 50 μm. (G) Interactive reverse-gating. A population of interest
(neutrophils) was selected on the t-SNE plot. Recomputation of the corresponding digital map enabled the visualization of the anatomical distribution of this particular
population in the skin biopsy.
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Quantitative validation ofMANTIS annotation system using
healthy-looking skin and inflammatory
pathological lesions
With the constant increase in the number of cases, a large panel of
putative skin manifestations of coronavirus disease 2019 (COVID-
19) have been observed worldwide (21, 22), including an unprece-
dented high rate of acral lesions, which represent ~75% of all cases
and commonly named “COVID-toes” (23–26). Such manifestations
(fig. S3A), compared to non-inflamed healthy-looking skin (fig.
S3B), are associated with an important immune cell infiltration
(fig. S3C) and tend to develop in young patients with no or very
mild respiratory symptoms (26, 27). While some pathological fea-
tures of those lesions have been described (3, 28, 29), a precise anal-
ysis of their spatial immune profile is currently missing, which
impairs the development of a clear readout to better diagnose and
treat these rare cutaneous lesions. A possible explanation could be a
collateral clinical manifestation of an efficient antiviral type 1 inter-
feron response because acral lesions are also commonly observed in
patients with interferonopathies, such as the Aicardi-Goutières

syndrome (30) and SLE (31). With this in mind, we decided to
benchmark the effective performance of MANTIS to resolve the
immune topology of skin lesions of similar clinical severity from
five patients with COVID-toes, two patients with the multisystem
inflammatory syndrome, which is clinically similar to Kawasaki
syndrome (i.e., a rare severe systemic inflammatory condition trig-
gered by severe acute respiratory syndrome 2 infection, named here-
after “Kawasaki syndrome”), and three patients with SLE chilblains.
Abdominal skin biopsies from five healthy-looking controls were
used to set the baseline of a natural steady-state immune environ-
ment, albeit from a distant anatomical region.
We validated the quantitative performance of MANTIS to anno-

tate immune cells by calculations of statistical correlations with a
supervised approach of histo-cytometry (6, 15) applied on the
same datasets for each antibody panel in all skin samples. This
last method consists of a manual gating of immune subsets on the
same principle used in traditional flow cytometry. A total of 20,464
single CD45+ immune cells were identified with the following dis-
tribution per condition: 1670 immune cells in five healthy-looking

Fig. 3. 3D quantitative and spatial analysis of skin immune cells at the cellular level provide insight into disease signatures. (A and B) Representative 3D confocal
multiplex images (top) and associated digital maps (bottom) of predesigned MANTIS myeloid (A) and lymphoid (B) panels of healthy and pathological skin. Scale bar, 50
μm. (C) Representative heatmap of LC and myeloid cell densities in logarithmic scale with hierarchical clustering. (D) Principal components analysis (PCA) of immune
signatures of healthy and diseased skin. (E) Cell count per cubic millimeter of CD57low and CD57high T cells. (F andG) Dot plot of CD57MFI z score in CD4+ (F) and CD8+ (G)
T cells in healthy and diseased skin. (H and I) Representative digital map (H) andmean distance to epidermis (in μm) (I) of CD8+ CD57low (left) and CD57high (right) T cells in
COVID-19 skin lesions. Means + SEM; ***P < 0.001, Mann-Whitney test.
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skin samples (i.e., with 895 myeloid cells and 775 LCs), 1703 in two
patients with Kawasaki syndrome (i.e., with 932 myeloid cells and
775 LCs), 5076 in three patients with SLE chilblain (i.e., with 1560
myeloid cells and 3516 LCs), and 12,015 in five patients with
COVID-toes (i.e., with 2838 myeloid cells and 9177 LCs). A classi-
cal gating strategy based on mutually exclusive biomarkers was used
to assess the presence of myeloid cell (fig. S4A) and LC (fig. S5A)
subsets by histo-cytometry. We identified a total of 19 different
immune subsets and found very similar distributions of cell
counts by either supervised histo-cytometry or unsupervised
MANTIS algorithm (figs. S4, B to E, and S5, B to E). The calculated
R coefficients were between 0.75 and 1, regardless of the antibody
panel, the patients analyzed, or the disease (figs. S4F and 5F). We
observed that all healthy-looking skin samples exhibited a propor-
tion of immune cells aligned with previously described skin-resi-
dent immune populations at steady state in human (1, 32).
However, we noted a slightly higher tendency to detect rare popu-
lations of blood-circulating CD45+CD3−CD20+ B cells or
CD45+HLA-DR−CD123+Siglec8+ basophils, only when 3D
images were computationally analyzed with MANTIS (figs. S4B
and 5B). This is consistent with the fact that the skin is a highly vas-
cularized tissue and that recent studies identified rare B cells in
healthy skin (33).
Having validated the quantitative and qualitative performance of

MANTIS-based annotation, we next defined a high-level view of the
complex immune environment of pathological lesions from all 10
patients. Compared to healthy-looking samples, pathological
lesions contained large immune infiltrates, confirming their inflam-
matory status (Fig. 3, A and B). All three conditions were associated
with an infiltration of myeloid cells composed of a large number of
neutrophils, eosinophils, mast cells, and conventional CD45+-
CD1c+CD207−HLA-DR+ dDCs (Fig. 3, A and C). While detected
in relatively low numbers in all analyzed skin samples, no difference
was observed between healthy-looking and pathological samples for
CD45+CD1c−CD207+HLA-DR+ LC or CD45+CD1c+CD207+HLA-
DR+ dDC populations.
Compared to patients with Kawasaki syndrome, patients with

SLE and COVID-19 tended to have an increased proportion of
LCs (Fig. 3, B and C), with an enrichment in conventional CD4+
or CD8+ T cells and NK cells and, to a lesser extent, in γδ T cells.
We also observed dp CD45+CD4+CD8+CD3+TCRγδ− and dn
CD45+CD4−CD8−CD3+TCRγδ− T cells in all inflamed and some
healthy-looking samples, albeit in smaller numbers (Fig. 3, B and
C, and fig. S4). Such populations of T cells were often understudied,
as CD4 and CD8 biomarkers are thought to be mutually exclusive;
however, they have been often reported in autoimmune and chronic
inflammatory disorders (19, 34), including SLE (35, 36).
We next performed an unsupervised clustering of all patients

and healthy-looking controls based on the quantitative analysis of
their immune signature using both a detailed heatmap based on
immune profiles (Fig. 3C) and a principal components analysis
(PCA) per patient (Fig. 3D). Healthy-looking skin samples clustered
together, with no apparent relationship with the pathological
samples (Fig. 3, C and D). Patients with Kawasaki syndrome and
COVID-toes had a tendency to form disease-specific clusters,
while patients with SLE were distributed between both conditions
(Fig. 3, C and D). Although these data were obtained on a restricted
number of patients, they suggest that all analyzed pathological
lesions displayed common quantitative immune features

(Fig. 3C), with nevertheless potential disease-intrinsic characteris-
tics suggested upon analysis with a dimensional reduction PCA
(Fig. 3D). To explore this hypothesis further, we refined our analysis
by investigating the activation status of conventional CD4+ and
CD8+ T cells based on their expression level of CD57, a biomarker
classically associated with a high cytotoxic potential (i.e., pro-tissue
damage) during viral infections and autoimmune disorders, includ-
ing COVID-19 (37). We found that, compared to other pathological
conditions, three COVID-toes cases were particularly enriched in
CD4+ and CD8+ T cells, exhibiting high levels of CD57 (i.e.,
CD57high; calculated as CD57 MFI z score; Fig. 3, E to G).
During inflammatory skin conditions, cytotoxic immune cells

can relocate nearby to/in contact with keratinocytes and contribute
to severe epidermal damage (38, 39). To calculate the anatomical
location of all immune cells with respect to the epidermal layers,
we acquired the spatial coordinates of the modeled epidermis. We
next incorporated into MANTIS a k-dimensional tree algorithm
(40, 41), which automatically decomposes the structural element
coordinates (i.e., as exemplified here with the epidermis) into
virtual subspaces and enables us to calculate the nearest neighbor
to each immune cell (fig. S6A). A batch calculation of the distance
of each individual cell can then be visualized under the format of a
heatmap, providing a quick overview of the dataset (fig. S6B). We
found that HLAhigh dDCs (fig. S6C), NK cells (fig. S6D), and
CD8+ CD57high T cells (fig. S6E) were all significantly enriched
near the epidermal layer in cases of COVID-toes. CD8+ CD57low
T cells were not found enriched in the epidermis (Fig. 3, H to K),
suggesting a biological link between the expression levels of CD57
and epidermal migration in CD8 T cells. Although the number of
patients studied is limited, these findings strongly suggest the po-
tential formation of tissue-damaging subepidermal inflammatory
clusters composed of cytotoxic T cells and NK cells in COVID-toes.

MANTIS enables topographic exploration of skin lesions by
solving the α-shape of in situ immune substructures
Inflammatory dermatoses are characterized by the presence of large
inflammatory infiltrates composed of specific immune cells and
thought to be critical for the development of the pathology (e.g.,
type 2 immune cells and eosinophils in atopic dermatitis). To
better understand the regional heterogeneity of pathological
lesions from SLE, Kawasaki syndrome, and COVID-toes, we took
advantage of α-shape algorithms that enable us, by tuning the α pa-
rameter, to define a precise shape of sets of points by drawing
bounding polygons based on the principle of Delaunay triangula-
tion (42). When combined with the digital immune landscapes gen-
erated with MANTIS, α-shape algorithms automatically generate
polymorphic α-shapes around n-clusters composed of a
minimum of 15 cells (i.e., 15 being the minimum number of cells
often found in clusters of inflammatory but not in healthy-looking
samples; Fig. 4A). This method enables us to automatically detect
and quantify the major inflammatory clusters (i.e., named hereafter
“αROIs”) to provide a high-level view of the in situ immune archi-
tecture of the skin lesion for each patient and disease. We generated
lymphoid (Fig. 4, B and C) and myeloid (Fig. 4, D and E) αROIs for
all the samples. Healthy-looking controls displayed a few lymphoid
αROIs, and four of five controls did not showmyeloid αROIs. These
data indicate that, in human skin at the steady state, LCs have a ten-
dency to form aggregates [i.e., composed of perivascular T lympho-
cytes (1)], while myeloid cells are more likely to be randomly
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distributed. In line with the data presented in Fig. 3, we found a
higher proportion of both lymphoid and myeloid αROIs in patho-
logical samples as compared to healthy-looking controls (Fig. 4, B to
E). Using global unsupervised hierarchical clustering of αROIs per
disease, we can generate a high-level view of inflammatory cluster
composition and observe trends in disease-specific immune re-
sponses (Fig. 4, F and G). Notably, lymphoid αROIs of both

Kawasaki syndrome and COVID-toes exhibited a significantly
higher proportion of CD4+CD57low T cells than that of patients
with SLE (Fig. 4, F and H). Both COVID-toes and SLE lesions dis-
played significant clusters of CD8+CD57high cytotoxic T cells, high-
lighting the cytolytic aspect of pathological lesion
microenvironment in these conditions (Fig. 4, F and I). We next an-
alyzed myeloid αROIs for all cases. We found that, COVID-toes had

Fig. 4. Automatic detection of αROI
enables exploration of inflamma-
tory cluster topography in healthy
and diseased skin. (A) α-Shape al-
gorithm. Delaunay triangulation of a
given set of points formed a bound-
ing polygon that contains all the
points of the set. The α parameter
was defined by the value α, and a
circle with 1/α radius was drawn
around each point of the dataset. The
line between two circles’ meeting
points formed a side of the bounding
polygon, i.e., the α-shape. α value
defines the detail level of the α-shape
and allows modeling of voluminous
structures (1/α1) or smaller structures
(1/α2) having 1/α1 > 1/α2. (B and C)
Violin plot (B) and representative
digital maps (C) of lymphoid αROI
density in healthy and pathological
skin. (D and E) Violin plot (D) and
representative digital maps (E) of
myeloid αROI density in healthy and
diseased skin. (F and G) Representa-
tive heatmaps of cell proportions in
lymphoid (F) andmyeloid (G) αROIs in
pathological skin. A hierarchical clus-
tering was applied on rows and on
each pathology’s column. (H to M)
Mean proportion of CD4+ CD57low T
cells (H), CD8+ CD57high T cells (I),
HLA-DRhigh dDCs (J), HLA-DRhigh LCs
(K), mast cells (L), and eosinophils (M)
per αROI in diseased skin. Means ±
SEM; *P < 0.05, **P < 0.01, and ***P <
0.001, one-way analysis of variance
(ANOVA) (H to M).
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a particularly high density of clusters enriched in activated HLA-
DRhigh dDCs (Fig. 4, G and J). Conversely, Kawasaki syndrome
lesions showed an enrichment in both HLA-DRhigh LCs (Fig. 4, G
and K) and mast cells (Fig. 4, G and L), while SLE lesions displayed
large aggregates of eosinophils (Fig. 4, G and M). This finding is
consistent with previous reports of strong eosinophilia in SLE
(43–45). No significant differences were observed regarding other
immune cell subsets in αROIs. While the precise role played by spe-
cific inflammatory clusters of immune cells in each disease remains
elusive, these data strongly suggest that combining MANTIS digital
maps with α-shape–based algorithms can reveal a significant non-
random distribution of skin immune cells in skin lesions, with the
presence of disease-specific immune structures. MANTIS analytic
pipeline can thus enable us to quickly solve the spatial organization
of complex immune environments and open interesting perspec-
tives for future investigations in the field of dermatopathology.

DISCUSSION
Here, we propose a general framework for 3D quantitative and
spatial analysis of skin immune cells at the cellular level. We first
describe a simple method to perform a fast 3D acquisition of up
to 10 biomarkers simultaneously and extract a single-cell database
containing the biological identity (including spatial coordinates) of
skin lymphoid and myeloid cells. We then analyze the extracted da-
tabases using an automated and interactive analytic pipeline com-
posed of phenotype attribution matrices coupled with cell-to-
structure distance calculations and α-shape algorithm–based detec-
tion of major inflammatory clusters. Our analysis was focused on
FFPE samples, as it is still the most easily available source of path-
ological tissues and can enable analysis of patients’ skin-sampled in
routine clinical practice. However, the use of cryopreserved samples
is compatible with the approach that we describe here and enables
the analysis of thicker tissue sections (fig. S2).
We identified that the first step of the process, which consists of

the generation of good-quality 3D multiplexed images with a great
ratio signal over noise, is critical for the rest of the study. This is why
we emphasized the capability of a conventional 8-year-old (non–
custom-built) confocal laser scanning system to acquire 10 different
fluorochromes simultaneously. This method of acquisition can be
democratized to most academic/clinical facilities because it involves
a conventional equipment coupled to basic spectral spillover com-
pensation and single-cell data extraction strategies, via the use of
commercially available software (Huygens and Imaris; described
in detail in Materials and Methods).
Single-cell segmentation is also very critical, as it will constitute

the very core of the future analysis of immune subpopulations and
expression of biomarkers. Possible mistakes made at this step, e.g.
the inability to separate immune cells in large infiltrates, would then
result in misinterpretation of MANTIS-generated results. We tested
different approaches to automatically segment healthy-looking and
inflammatory skin samples, including random forest-based classifi-
ers (e.g., ilastik machine learning). While such a method was suit-
able to segment healthy-looking images with a low concentration of
immune cells, it failed to segment complex inflammatory lesions,
where large and packed immune clusters were present. We thus
opted for a semisupervised segmentation of single immune cells
using the software Imaris, in which the segmentation of each in-
flammatory cluster was quality-controlled manually and was in

3D (Fig. 1F). While this approach is probably more time-consum-
ing, we could ensure a precise 3D segmentation and further extrac-
tion of an accurate single-cell database to be processed with
MANTIS. A recent study has reported the use of an analysis pipe-
line, including a new segmentation strategy, adapted from the field
of astronomy named “AstroPath” (46). Using this approach and
only six biomarkers, they could identify important pathological fea-
tures in biopsies from patients withmelanoma. These results, in line
with our findings, highlight the importance of carefully selecting a
list of biomarkers to be studied and of having the right analytic pipe-
line to draw reliable insights.
Because immunologists are more commonly used to identifying

immune cell populations with manual gating of populations based
on flow cytometry, we validated the quantitative performance of
MANTIS by analyzing the extracted single-cell databases for the
15 patients analyzed with the conventional flow cytometry software,
FlowJo. We found that the MANTIS-based analysis on 3D images
generated with two different panels and just a minimal number of
10 antibodies per panel were sufficient to distinguish 19 immune
subsets and identify disease-specific trends in skin lesions.
BecauseMANTIS attributionmatrices can be quickly adjusted to

any set of markers, they could be compatible with single-cell data-
bases generated using technology with high multiplexing capabili-
ties such as CODEX (7, 8), MIBI-TOF (9), IMC (10), MuSIC (11),
CyCIF (12), Cell Dive (13), and others (14). We included in
MANTIS the α-shape algorithm that enables us to define the
precise shape of the inflammatory immune clusters based on the
principle of Delaunay triangulation (42). When applied to digital
immune landscapes, the α-shape algorithm automatically identifies
and quantifies dermal and epidermal inflammatory clusters (i.e.,
αROIs) composed of a minimum of 15 immune cells (Fig. 4A).
This method enables one to directly analyze the major αROIs to
provide a fast high-level view of the skin immune architecture in
a given lesion. Using this method, we could quickly identify that
the immune subset (e.g., mast cells, HLA-DRhigh dDCs,
CD8+CD57high cytotoxic T cells, eosinophils, etc.) was specifically
enriched in dermal areas only in some patient subgroups. These
preliminary observations suggest that, depending on their etiology,
pathological lesions could be due to distinct pathological mecha-
nisms. This type of analysis opens interesting perspectives for the
3D cartography of complex inflammatory skin lesions and should
be pursued by additional studies on a larger number of patients.
While 2D immune landscapes are represented here to facilitate
the visual assessment in the figures (3D graphs are hardly perceiv-
able on static pictures), the single-cell segmentation and extraction
of cellular spatial coordinates were all performed in 3D.
On the basis of CODEX high multiplexing capacity, previous

studies (8, 47) have shown that it is possible to generate a high-
level view of the cell-to-cell interaction landscape based on the prin-
ciple of the Delaunay neighborhood graph (48). The MANTIS α-
shape algorithm is complementary, as it automatically identifies
major immune structures while deciphering their cellular composi-
tion. Combining α-shape and neighborhood approaches could help
quickly solve the biology of major inflammatory clusters in the skin,
by drawing the ligand-receptor interactome of immune and struc-
tural cells within the identified cluster. Such a high-dimensional
analysis of the skin immune architecture could provide a promising
avenue for understanding the complexity of inflammatory skin
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manifestations with potential benefits for patient stratification and/
or diagnosis.
There is a strong need to design new tools to assist clinical deci-

sion-making and/or better apprehend the complexity of inflamma-
tory dermatoses.While very promising processes have beenmade in
the field of spatial biology (49–51), there is an unmet need for a non-
expensive and standardized multiplexed imaging analytical frame-
work capable of automatically resolving the immune architecture of
an inflamed skin. Here, we show that theMANTIS analytical system
is uniquely positioned to examine numerous questions in the fields
of skin immunobiology and should lay the foundation for a fast and
automated analysis pipeline of relevant in situ inflammatory envi-
ronments in both research and clinical facilities.

MATERIALS AND METHODS
Human skin samples
The pathological biopsies were performed as part of routine care for
diagnosis purposes in Lyon, Reims, and Toulouse university hospi-
tals. All patients have given written informed consent to the publi-
cation of their case details. Skin biopsies from patients with lupus
erythematosus were obtained from Toulouse University Hospital.
Biopsies of COVID-toes were obtained from Toulouse, Reims,
and Lyon university hospitals. Skin biopsies of multisystem inflam-
matory syndrome were obtained from Reims University Hospital.
Anonymized healthy human skin samples were obtained from
donors that underwent abdominoplasty procedures and had given
their written informed consent. Donors did not have any record of
allergies or dermatological disorders and did not use corticoste-
roids. Control healthy skin biopsies were age- and gender-
matched with pathological samples and obtained from Genoskin
SAS (www.genoskin.com/). Genoskin has obtained all legal autho-
rizations necessary from the French Ministry of Higher Education,
Research and Innovation (AC-2017-2897) and the Personal Protec-
tion Committee (2017-A01041-52). All studies were conducted ac-
cording to Declaration of Helsinki protocols.

Skin section preparation, histology, and staining
Human skin samples were either frozen in optimal cutting temper-
ature compounds (OCT, Tissue-Tek) or formalin-fixed and paraf-
fin-embedded. FFPE-tissue sections (10 μm) were heated at 95°C
for 20 min. Sections were subsequently immersed into xylene for
30 min, washed in a graded series of ethanol (100, 95, 70, 50, and
30% for 5 min each), and abundantly washed with distilled water.
They were then treated using a heat-induced epitope retrieval
method as previously described (52).
FFPE-tissue sections were blocked and permeabilized with phos-

phate-buffered saline (PBS), 0.5% (w/v)% bovine serum albumin
(BSA; Sigma-Aldrich), and 0.3% Triton X-100 (Merck) for 30 to
60 min at room temperature and then incubated with fluoro-
phore-coupled antibodies or unconjugated antibodies overnight
at 4°C in the dark. The sections were then washed three times in
PBS 0.5% (w/v)% BSA, 0.3% Triton X-100 and incubated, if
needed, with secondary antibodies in PBS, 0.5% (w/v)% BSA, and
0.3% Triton X-100 for 2 hours at room temperature in the dark.
Last, samples were treated with an autofluorescence quenching sol-
ution named TrueVIEW (Vector Laboratories) for 5min. The slides
were mounted in Mowiol medium (Sigma-Aldrich) and sealed with
a coverslip. All conjugated and unconjugated antibodies used in this

study were validated in single immunostainings of human skin and
tonsils and are listed in table S1.

Acquisition
Z-stack images (512 × 512 pixel; 1 μm) were acquired using an 8-
year-old confocal microscope SP8 (Leica Microsystems) equipped
with an HC PL APO CS2 with 40× numerical aperture 1.3 oil ob-
jective, an ultraviolet diode (405 nm), and four lasers in visible
range wavelengths (405, 488, 532, 552, and 635 nm). The setup
was made up of five detectors [three hybrid detectors with high
quantum yield compared to classical photomultiplier (PMT) detec-
tors and two PMTs]. Mosaic sequential images were acquired using
the between-stack configuration to simultaneously collect individ-
ual seven or eight channels and tiles before merging them to obtain
one single image. Use of the between-stack configuration and the
modulation of the detectors’ detection windows help reduce the
leaking of fluorophores. Last, a digital zoom of 1.9 was applied
during the acquisition and a mosaic multicolor image was obtained
and exported into a .lif format. Detection windows and microscope
configuration used in our study are listed in table S2.

Image deconvolution and correction of spectral spillover
3D mosaic images were then imported into Huygens SVI software
to correct the signal by applying deconvolution and cross-talk cor-
rection. Two deconvolution methods were used: the express decon-
volution (theoretical and fast) or the deconvolution wizard
(possibility to use experimental or theoretical parameters and to
adjust the background value). Automatic cross-talk correction esti-
mation was obtained, and the coefficients were slightly adjusted
manually, if needed, for optimal spillover correction.

Segmentation
3D mosaic images were imported into Imaris software to separate
objects (cells) using a 3D surface segmentation. Before creating the
surface objects in Imaris, classical image processing was required.
For instance, defining a threshold, adding a median filter, and/or
normalizing the layers were sometimes applied to clean the back-
ground. Images were either cleaned using the CD45 surface
objects or other channels by applying appropriate masks for each
channel. Then, segmentation was applied on the CD45 channel
surface. Statistics were exported into .csv format.

Epidermis modeling
The epidermis was identified using the natural autofluorescence of
the tissue. On the basis of the autofluorescence found in multiple
appropriate channels, an epidermis surface was created using the
Object Creation semi-automated tool of the Imaris software. The
coordinates of the epidermis were then exported into .csv format.
The modeling of the epidermis shape showed on the digital maps
was obtained using the α-shape algorithm (described below).

Segmentation troubleshooting
In some cases, the surface creation parameters were not efficient in
automatically obtaining good object creation, or themodulewas not
sensitive enough to detect low-intensity objects. In this case, the cre-
ation of small objects was done manually, and the threshold selec-
tion was also reduced. If the detected object was below 1 μm, then a
manual object unification with surrounding objects of the same in-
tensity was performed.
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Statistical data exportation
Statistical properties of each segmented object (cell) in the pro-
cessed 3D Imaris Multiplex image were automatically calculated.
Object volume, sphericity, area, xyz position, and MFI in all chan-
nels were exported as a .csv table.

Skin enzymatic digestion and gradient separation
Immune cells were isolated from fresh skin biopsies fromGenoskin.
Briefly, skin was harvested in predigestion medium, fragmented
into pieces, and incubated at 37°C on a rotating plate to remove ep-
ithelial cells and other impurities. The supernatant was discarded,
and the samples were digested for 45 min on a rotating plate with
1.25 mg of Liberase (Sigma Aldrich, #5401127001) and 2.5 mg of
deoxyribonuclease I (Sigma Aldrich, #10104159001) to disaggre-
gate the tissue. Samples were further dissociated with the Miltenyi
gentleMACS Dissociator. Cells were then enriched with a Percoll
gradient, washed, and used for staining with the same panels used
for MANTIS. Data were acquired on a FACSymphony (BD) cytom-
eter and were analyzed using FlowJo (Tree Star) software.

FlowJo analysis and gating strategies
Identification and density assessment of immune cell subsets were
analyzed using classical histo-cytometry (6). Immune cell popula-
tions were gated in FlowJo software as follows: B cells, CD45+
CD20+; NK cells, CD45+ CD20− CD3− CD57+; CD4+ T cells,
CD45+ CD20− CD3+ TCRγδ− CD4+ CD8− CD57low or high; CD8+
T cells, CD45+ CD20− CD3+ TCRγδ− CD4− CD8+ CD57low or high;
γδ T cells, CD45+ CD20− CD3+ TCRγδ+; dn T cells, CD45+ CD20−

CD3+ TCRγδ− CD4− CD8−; dp T cells, CD45+ CD20− CD3+
TCRγδ− CD4+ CD8+; mast cells, CD45+ Tryptase+; DC, CD45+
CD1c+ CD207− HLA-DRlow or high; LC, CD45+ CD1c− CD207+
HLA-DRlow or high; DC CD207+, CD45+ CD1c+ CD207+ HLA-
DRlow or high; neutrophils, CD45+ CD1c− CD207− Tryptase−

Siglec8− MPO+; eosinophils, CD45+ CD1c− CD207− MPO−

Tryptase− Siglec8+ CD123−; and basophils, CD45+ CD1c−

CD207− MPO− Siglec8+ CD123+.

Tissue annotation using MANTIS
Implementation of MANTIS reference panels
To enable cell identification, we built a binary table containing a
literature-based theoretical signature of biomarkers expressed in
each cell population identified by the used panel (naturally depend-
ing on the used set of antibodies), known as the reference attribu-
tion panel. If a cell population is positive for amarker, then the value
is set to 1; otherwise, it is set to 0. If a cell population can be positive
for a marker, then there are two columns, one with the value set to 1
and the other with the value set to 0 (i.e., γδ T cells can express CD4
or not). Two reference tables were implemented and designated by
lymphoid and myeloid reference attribution matrices.

Dynamic adaptation of reference matrices
Sample heterogeneity led to different acquisition parameters (laser
power, gain, etc.). To standardize data processing, we scaled the ref-
erence tables and dynamically adapted, for each sample, the table
values according to the MFI values. In practice, the value “1” in
the binary table was replaced by the maximum MFI value acquired
in the corresponding channel from the tested sample.

Automatic cell type identification
To annotate the segmented objects, a correlationmatrix between the
MFI table and the adapted reference panel was generated by per-
forming a pairwise Spearman’s rank correlation using the R soft-
ware (2021). Each object was then phenotypically assigned to the
cell type having the highest correlation coefficient. Objects with
multiple highest correlation coefficients were assigned as “Other”
cell types.

Accuracy validation
The accuracy of MANTIS automatic cell identification was verified
by comparing quantification results to classical histo-cytometry (6).
Briefly, linear regression of cell type density was computed between
both attribution methods, and regression coefficients were calculat-
ed. Regression coefficients ranging between 0.75 and 1 reflect
MANTIS technique robustness.

Activation status detection
MANTIS panels were designed to include not only discriminant
markers for cell attribution but also nondiscriminant and informa-
tive markers, for instance, activation markers. The cell populations
of interest (CD4+ and CD8+ T cells in the lymphoid panel and DCs,
LCs, and CD207+ DCs in the myeloid panel) and the activation
markers that reflect the activation status of these populations
(CD57 in the lymphoid panel and HLA-DR in the myeloid panel)
were defined in the MANTIS algorithm. The latter automatically
computes the MFI density curve associated with the activation
markers within the selected populations. Subsequently, the MFI
corresponding to the first peak of the density curve is defined as
the MFI value above which the cell is considered positive for the
activation marker.

α-Shape calculation
α-Shape was calculated using the alphashape Python package.
Briefly, Delaunay triangulation of a given set of points formed a
bounding polygon that contains all the points of the set. The α pa-
rameter was defined by the value α, and a circle with 1/α radius was
drawn in such a way that two points of the dataset are located on the
boundaries of the circle and the circle is empty. For each empty
circle found, the line between the two points formed a side of the
bounding polygon, i.e., the α-shape. As α decreased, the α-shape
changed from a convex hull (e.g., epidermis α-shape, α = 0.4) to a
more tightly fitting bounding box, resulting in more refined α-
shapes [e.g., ROI α-shape (αROI), α = 0.1].

Cell-to-structure distance calculation and nearest-
neighbor search
x-y coordinates of epidermis α-shape contours were stored using
the k-dimensional tree method, which allows data ranking and
structuration. Briefly, data points were classified on the basis of
nodes and branches space-partitioning, allowing a fast nearest-
neighbor calculation. For a given point (cell) of the dataset, the
nearest neighbor in the epidermis α-shape was found, and the dis-
tance defined by r was calculated using the scipy.spatial Python
package (40). The distance of cells contained in the epidermis α-
shape was set to 0.
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Data clustering and αROI analysis
ROIs (αROI, i.e., inflammatory cell clusters) were identified using
the α-shape algorithm with a tuned α parameter (α = 0.1), allowing
correct detection of high–cell density areas. αROI with less than 15
cells were removed from the analysis. For each selected αROI, spe-
cific characteristics were calculated and extracted, such as area, total
number of cells, cell number, proportion by cell type, and αROI
center coordinates.

Data visualization
Visualization charts were obtained using the ggplot2, Pigengene,
and ComplexHeatmap R packages and matplotlib and seaborn
Python packages. t-SNE was computed with Rtsne.

Statistics
Statistical tests were performed using Prism 8 (GraphPad Software)
and the Rstats and rstatix R packages. One-way analysis of variance
(ANOVA) with Tukey’s test for multiple comparisons or Mann-
Whitney test was performed on samples as noted in the respective
figure legends. A P value of less than 0.05 was considered statistically
significant.

Supplementary Materials
This PDF file includes:
Figs. S1 to S6
Tables S1 to S4
Legend for movie S1

Other Supplementary Material for this
manuscript includes the following:
Movie S1

View/request a protocol for this paper from Bio-protocol.
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