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The strength of surgical knots involves a critical
interplay between friction and elastoplasticity
Paul Johanns1, Changyeob Baek2, Paul Grandgeorge1,3, Samia Guerid4, Shawn A. Chester5,
Pedro M. Reis1*

Knots are the weakest link in surgical sutures, serving as mechanical ligatures between filaments. Exceeding
their safe operational limits can cause fatal complications. The empirical nature of present guidelines calls for
a predictive understanding of the mechanisms underlying knot strength. We identify the primary ingredients
dictating the mechanics of surgical sliding knots, highlighting the previously overlooked but critical effect of
plasticity and its interplay with friction. The characterization of surgeon-tied knots reveals the relevant ranges of
tightness and geometric features. Using model experiments coupled with finite element simulations, we
uncover a robust master curve for the target knot strength versus the tying pre-tension, number of throws,
and frictional properties. These findings could find applications in the training of surgeons and robotic-assisted
surgical devices.
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INTRODUCTION
Surgery is a delicate craft in which high-quality suturing requires
precision manual skills (1, 2). Knots are central to surgical proce-
dures, where they are used as ligatures during suturing (3, 4).
Knots are the weakest link in a suture (5, 6), with disastrous conse-
quences when they fail if they fail (7, 8). A typical complication in
surgery is wound dehiscence, whereby a previously sutured incision
reopens, thus preventing wound healing (9). The related incisional
hernia can be as high as 20% within the first year following midline
laparotomy (10). In many common surgical procedures, suturing
using monofilaments (versus braided ones) is advantageous for
lower infection risks, albeit more challenging to ensure mechanical
safety (11).

Surgeons tie sliding knots daily, consciously, or unwittingly (12);
all intended flat knots tied in monofilaments capsize into a sliding
conformation (13). Typical sliding knots consist of a series of half-
hitches around a nearly straight filament segment under tension. A
notation has been developed (5, 12, 14, 15) to describe these knot
configurations: “S” denotes a sliding throw, and “||” or “×” indicates
an identical or nonidentical subsequent throw, respectively. For
example, S || S refers to the sliding granny knot with two identical
throws, and S × S to the sliding square knot with two nonidentical
throws. The more complex S || S × S configuration describes a
sliding granny knot followed by a sliding square knot. This notation
is used throughout.

Although a high variability of knot-tying techniques is found
across surgeons (1), additional throws in a knot have been shown
to consistently decreases spontaneous untying rates (5, 16, 17). Fur-
thermore, the tying pre-tension applied by the surgeon to tighten
each throw appears to depend more on individual perception
than experience (18). Even if the importance of mechanical analysis

of knots has long been recognized in the medical profession, exist-
ing guidelines for best practices are primarily empirical and histor-
ical, not relying on physics-based structural analyses (5). Despite
their broad and practical relevance, the predictive understanding
of the physical mechanisms underlying knots remains crude. Exist-
ing frameworks in the classic mathematical theory of knots or elastic
rod theory (19) are limited to purely geometric abstractions (20–22)
or loose physical knots (23, 24) and, thus, cannot capture the me-
chanical behavior of tight physical knots with their three-dimen-
sional (3D) deformations and frictional contact (25–27). In
addition to the fundamental challenges related to topology, geom-
etry, 3D elasticity, contact, and frictional interactions, knotted sur-
gical monofilaments also undergo elastoplastic deformation (28,
29). The consequences and potentials of plasticity in functional
knots have, to the best of our knowledge, not been considered
to date.

Here, we seek to establish physics-based operational and safety
guidelines for the strength of surgical sliding knots, focusing on
commercial polypropylene suturing monofilaments which are
common in surgical practice. We develop a physical model system
to study the resistance of the knot to slippage—the knot strength—
by systematically varying the tying pre-tension, number of throws,
and knot topology (|| versus × throws). Our data are consistent with
a power law for the knot strength as a function of the applied pre-
tension and a linear relation between the knot strength and the
number of throws. In addition, we characterize knots tied by an ex-
perienced surgeon, finding that they intuitively leave a safety
margin between the regimes where knots are too loose to be func-
tional and the high-tension regime resulting in filament fracture.
The influence of friction on knot safety is explored systematically,
using finite element modeling(FEM) to simulate elastoplastic knots
with varying frictional interactions. Last, we propose a normaliza-
tion that collapses all the data onto a master curve, describing the
knot strength of tight knots in all of the configurations we consid-
ered and awide range of friction coefficients. Our analysis suggests a
robust mechanism for the strength of these surgical knots.
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RESULTS
The photograph in Fig. 1A (and movie S1) shows a series of half-
hitch throws tied by a surgeon in a polypropylene suturing filament
(Prolene, Ethicon Inc., Johnson & Johnson). This monofilament of
circular cross section and area, A, was used throughout the study in
the diameters of 0.25 or 0.49 mm United States Pharmacopeia
(USP) designation 3-0 and 1, respectively (30)]. The yield strength
of as-received Prolene was determined from uniaxial stress-strain
measurements to be σY = 19.1 MPa [from the 0.1% offset yield
point (31)]. Typically, multiple suturing knots allow binding
tissue, sealing an accident tear or a surgical incision (11, 32). In
Fig. 1 (B1 to B3) (and movie S2), we illustrate the typical surgical
failure mode of wound dehiscence using a suturing practice pad
with three stitches (S || S × S each) of different tightness. The
outer knots k1 and k3 are tighter than the middle knot k2. The
system was loaded by gradually increasing the far-field uniaxial
stress field of magnitude σ∞. At a sufficiently large stress level,
the filament of the middle knot, k2, starts sliding (Fig. 1B2) until
it completely slips out and, from then on, no longer fulfills its
binding function (Fig. 1B3).

In Fig. 1 (C and D), we present optical microscope images (top)
of S || S and the S × S knots, tightened using a UTM (universal
testing machine; Instron 5943), along with their topological
diagram (bottom). The knots (surgeon- and machine-tied) were
tied around rigid 3D-printed pins (stereolithography 3D printer:
Form 2, Formlabs; Clear V4 resin), with a flat upper surface of

width, 2L = 6 mm (Fig. 1E). This pin geometry was chosen on
the basis of the common rule for skin closures (33), prescribing
the distance between the needle’s entry point and the wound’s
edge, L, to equal the thickness of the tissue, ranging from 1 to 4
mm in the human body. After the half-hitch (identical or noniden-
tical throw) was set manually in its loose configuration on the rigid
pin, the two free extremities of the filament were clamped to the
UTM. The protocol to tighten the knot to a set pre-tension, ~T; is
described in Materials and Methods.

We characterized sliding knots by quantifying their slippage re-
sistance as follows. The loop surrounding the pin was cut open (Fig.
1E), and the protruding sliding strand (extremity of the filament at
the cut) was threaded through the hole of a rigid stopper plate, as
schematized in Fig. 1F for the S || S knot. Then, the knotted config-
uration was pulled against this plate to measure the knot-slipping
force, ~F: In this model system, the plate represents the bound
tissue in the suturing system, where tractions may lead to wound
dehiscence (Fig. 1B). Figure 2A1 presents the experimental setup,
where the protruding (sliding) strand, previously part of the loop,
was first slid through a clearance hole (0.30 − mm diameter for 3-0
USP filament) in a flat, rigid acrylic plate (4−mm thickness). Using
the UTM at the constant speed of 1 mm/s, the S || S knot is then
pulled against the plate, blocking vertical translation, and eventually
leading to the sliding mechanism (Fig. 2, A1 to A4). In Fig. 2B, we
plot the resulting dimensionless slipping force ~F ¼ F=ðσYAÞ versus
the normalized displacement ~δ ¼ δ=D: Initially, ~F increases as the

Fig. 1. Failure of surgical sliding knots. (A) Photograph of the tying of a common sliding knot by an experienced surgeon in a Prolene polypropylene filament on a rigid
support. (B1 to B3) Photographs illustrating knot safety and sliding for different levels of tightness of the S || S × S knot in a suture system on a practice pad, at increasing
levels of the far-field stress, σ∞. (C and D) Optical microscope image (top) and topological diagram (bottom) of the S || S (C), and S × S (D) sliding-knot topologies. (E)
Schematic of the S || S × S knot tied around a 3D-printed pin and visualization of the cutting location in the suture loop. (F) FEM-computed configuration for a S || S knot
tied with a pre-tension of ~T ¼ 10:9: The same configuration is implemented in the mechanical testing experiments to measure the slipping force, ~F; of the S || S knot (cf.
Fig. 2).
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vertical filament is pulled upward and the knotted filament is resist-
ed by the stopper plate (Fig. 2A2). Past an initial transient, the force
reaches a plateau, where the filament slides with a nearly constant
slipping force (Fig. 2A3). This characteristic force, denoted nondi-
mensionally as ~F0; corresponds to the knot strength, ultimately, the
cause of the knot’s untying (Fig. 2A4). Note that forces are nondi-
mensionalized in units of σYA; applied dimensionless tensions
greater than 1 involve plastic deformation of the straight fila-
ment strand.

Next, we use the mechanical testing described above to charac-
terize the knot strength, ~F0; while systematically varying the tying
pre-tension, ~T; and the number of throws, n. First, we focus on
the S || S × S topology (n = 3), with each throw pre-tensioned
equally. Different levels of ~T lead to the three distinct regimes show-
cased in Fig. 3A: (i) loose knots (~T , TminÞ; (ii) tight knots
(Tmin � ~T � TmaxÞ; and (iii) filament fracture (~T . TmaxÞ: Loose
and tight knots were distinguished quantitatively using volume
measurements on the sliding granny knot. In fig. S1, we report
results on the knot’s volume (measured from the convex hull of
x-ray tomography data) as a function of ~T; demonstrating two dis-
tinct slopes. The transition between the two regimes is compatible
with the convex hull computation applied on the ideal (purely geo-
metric), tightest sliding granny knot, using the Ridgerunner algo-
rithm (34). From this volumetric analysis, the minimum knot
tying pre-tension is determined as ~Tmin ¼ Tmin=σYA ¼ 2:59+ 0:1
4 (leftmost vertical line in Fig. 3B), below which the knot is consid-
ered loose.

Beyond the onset of tight knots, in the intermediate region (ii),
the knot strength follows

~F0 ¼ ~K~Tα ð1Þ

where the exponent α and the prefactor ~K are two fitting parame-
ters. Equation 1 provides an excellent fit to the data up to filament
fracture. This upper limit is determined by rate- and temperature-
dependent fracture tests on knotted Prolene filaments and repre-
sented by the rightmost vertical line at ~Tmax ¼ TmaxσYA ¼ 15:74+
0:63 (fig. S2).

We turn to surgeon-tied knots, mapping their strength to the
model experiments described above. Using the same monofila-
ments, topology (S || S × S), and rigid supports as in the model ex-
periments, an experienced surgeon was instructed to hand-tie 38
knots, tightened identically to their routine suturing procedure.
The level of pre-tension of the manually tied knots was unknown
(see the representative knot in Fig. 3C). Using our experimental
setup, the surgeon-tied knots were then tested for their strength, ~F0
;which, as presented in Fig. 3D, exhibits a nearly uniform histogram
in the range, 1:7 , ~F0 , 7:7: The probability distribution is sum-
marized by the box plot with a median normalized strength of 3.2
and lower and upper quartiles at 2.7 and 5.2, respectively. Projecting
the median knot strength and interquartile ranges (shaded region
from Fig. 3D to Fig. 3B) onto the results from the model experi-
ments on the S || S × S knot provides an estimate of the operating
range of pre-tensions for surgeon-tied knots, ~Tsurgeon [ ½6:6 � 10�:
We find that ~Tsurgeon [ ½~Tmin; ~Tmax�; the surgeon targets the middle
of the intermediate regime (ii) for tight knots identified by our
model experiments while leaving safety margins between loose
knot configurations, ~Tmin; and filament fracture, ~Tmax:

Thus far, we focused on the S || S × S knot, the simplest config-
uration comprising the two sliding topologies of interest: S || S and S
× S. However, surgeons typically tie more than three half-hitches for
increased knot safety. To explore the effect of the number of throws,
n, on knot strength, we return to the model experiments and inves-
tigate configurations with an initial S || S knot followed by different
numbers of non-identical (×) throws (Fig. 3E). In Fig. 3B, we plot ~F0
versus the tying pre-tension, ~T: These more complex knots with ad-
ditional throws exhibit the same functional dependence, Eq. 1, as
the simpler S || S × S topology, with α = 1.59 ± 0.03. The consistency
of α across the different tested topologies is notable, considering the
underlying geometric complexity. These robust results call for a de-
tailed theoretical analysis, which is beyond the scope of the present
study. The knot strength increases with n with a prefactor ~K; which
we denote as a multiplicative-strength factor. In Fig. 3F, we plot the
fitted value of ~K versus n, finding the linear relation ~K ¼ β1n; with
β1 = 0.047 ± 0.003. All the fitted parameters are summarized in
table S1.

In Fig. 3F, fig. S3, and table. S1, we show that the behavior ac-
cording to Eq. 1 and the value of K are identical for the S || S × S
and the S || S || S knots. In other words, these two topologies are
equivalent regarding knot strength. Therefore, quantifying the me-
chanical performance of complex surgical knots with various topo-
logical combinations of multiple throws reduces to characterizing a
single sliding knot (n = 2) with a single topology (e.g., S || S). Com-
bining the above observations, we find that surgeon-tied sliding
knots are in the tight regime, where the knot strength follows Eq.

Fig. 2. Mechanical tests of the strength of a S||S knot. (A1 to A4) Sequence of
photographs during mechanical testing, visualizing the sliding process of a previ-
ously tied knot that is pulled against a stopper plate to measure the slipping force,
~F: The frames are shown at increasing values of dimensionless displacement, ~δ ¼
δ=D; of the vertically pulled filament. (B) Representative curves (experiments and
FEM) of ~F versus displacement, ~δ: The plateau of the curves defines the knot

strength, ~F0: The points A2 and A3 correspond to the photographs in (A2) to
(A3). The S || S knot was tied to a pre-tension of ~T ¼ 10:9:
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1, with the same exponent, independently of the number of throws
or the topological combination. The knot strength is described by a
multiplicative-strength factor, ~K; which depends linearly on the
number of throws, such that

~F0 ¼ β1n~Tα ð2Þ

We proceed by complementing the experimental results with
fully 3D finite element modeling (FEM) simulations to gain physi-
cal insight into the underlying mechanism leading to the knot
strength in the tight regime. We used the commercial package
ABAQUS/EXPLICIT (Simulia, Dassault Systèmes) to simulate

knotted filaments, probing physical quantities not accessible in
the experiments, especially the reactions on the surface of the fila-
ment. The self-contact of the monofilaments was modeled using
Amontons-Coulomb friction enforced through normal penalty
forces, combined with tangential frictional forces, with a prescribed
dynamic friction coefficient, μ = 0.20 ± 0.02 (fig. S4). On the basis of
(35, 36), a 3D continuum-level constitutive model for elastic-visco-
plastic mechanical behavior (specialized for uniaxial tension) was
developed and implemented in the simulations (fig. S5 and table
S2). The filaments used throughout this study undergo unknown
deformation during manufacturing and packaging, leading to in-
trinsic curvature upon unpacking. To account for this (unknown)
loading history in the simulations, we considered an effective resid-
ual bending stress, σR, applied on the initially straight model of the
filament (fig. S6).

After calibrating the FEM simulations for uniaxial and bending
deformations (Materials and Methods) of our filaments, we simu-
lated S || S knots by applying a sequence of prescribed displacements
and rotations to control the nodes located at each end and the
central filament coordinate (see Materials and Methods and
movie S5). For generality, the simulations were performed with a
unit-diameter filament. The numerical configuration presented in
Fig. 1F was tied with ~T ¼ 10:9: The corresponding force-displace-
ment curve is shown in Fig. 2B (dashed line). Note that, at this stage,
the FEM has no adjustable parameters; all material parameters and
mechanical properties were determined independently. As a final
validation step of the numerics, we compared the computed knot
strength against experiments over the full range of ~T in the tight
knots regime (ii). In Fig. 4A, we replot the experimental ~F0 data
for the S || S knot with the solid line representing the corresponding
fit from Fig. 3B. In the same plot, we juxtapose the FEM data com-
puted using the experimentally measured kinematic friction coeffi-
cient, μ = 0.2 (* symbols). The agreement between experiments and
FEM furthers the confidence in the numerical model and validates
the choice for the nondimensionalization of the forces by σYA,
noting that all simulations were performed assuming unit diameter.
Last, we leveraged the FEM to vary μ systematically; the data in Fig.
4A reveals that the knot strength increases with μ.

Zooming into the inner workings of the knot, we used the FEM
to compute the normalized contact pressure, p/σY, between the half-
hitches and the quasi-straight sliding filament. For the representa-
tive case of an S || S knot (n = 2) with ~T ¼ 9:5; Fig. 4B shows a 3D
visualization of p/σY and its projected 2D map, the latter focusing
on the contacting regions. We distinguish two main contact
domains related to the two half-hitches, with four distinct pressure
hot spots. Integrating the local normal tractions over the entire
surface of the knotted rod yields the integrated normal contact
force, ~Fn ¼ Fn=σYA: It is useful to define the prereleased configu-
ration as the state when the pre-tension is still applied before freeing
the ends and the released configuration when the ends have been
freed for testing. Their respective renderings are shown in Fig. 4C
(left and right, respectively). The inset in Fig. 4C plots the integrated
normal contact force in the released versus that in the prereleased
configurations, i.e., ~Frn versus ~Fprn : For μ ≥ 0.15, we find ~Frn � ~Fprn
(dashed line), meaning that the released configuration maintains
the normal contact force onto the sliding filament due to the
plastic deformation accumulated during the pre-tensioning step.
For μ < 0.15, ~Frn , ~Fprn as the knot dilates (elastic springback)

Fig. 3. Dependence of the knot strength on pre-tension and topology. (A)
Photographs of representative S || S × S knots tied with different values of pre-
tension: (i) loose knot (~T ¼ 15Þ; (ii) tight knot (~T ¼ 8:5Þ; and (iii) fracture of the
last throw (~T ¼ 20Þ: (B) Knot strength, ~F0; versus tying pre-tension, ~T; for sliding
knots with multiple throw. The solid lines represent the average power-law in-
crease, and the corresponding shaded regions are the 65% confidence interval.

The bounds of the intermediate region (ii), ~Tmin and ~Tmax; are represented by ver-
tical solid lines with their SD by the dashed lines. (C) Photograph of a surgeon-tied
S || S × S knot. (D) Histogram and box plot of knot-strength measurements for
surgeon-tied knots (S || S × S), with the mapping (shaded region) onto the exper-
imental curve in (B). (E) Photographs of sliding knots with different numbers of
throws, n = {2,4,5,6} (~T ¼ 8:5Þ: (F) Multiplicative-strength factor, ~K; cf. Eq. 1, of
the fitted curves in (B) as a function of the number of throws, n. The linear fit to
Eq. 2 and the corresponding 65% confidence interval are represented by the solid
line and shaded region, respectively.
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after the pre-tension is released with an insufficient level of plastic
deformation. In these low-friction cases, the desired constricting ge-
ometry around the sliding filament is insufficient; consequently, the
normal tractions in the released configuration are low. Thus, plas-
ticity turns out to be crucial to prevent the complete unraveling of
the knot, even for vanishing friction coefficients (μ = 0.05). The
plastically bent filament guarantees the knot topology, while the
same knots on a purely elastic rod would unravel (movie S3).

Focusing on the tight, nondilated configurations (μ ≥ 0.15), the
data in Fig. 4C evidence that the global knot strength depends lin-
early on the integrated local normal force; ~F0 / ~Frn: Therefore,
despite the strong underlying geometric nonlinearities, the Amon-
tons-Coulomb friction law is at the source of this proportionality (as
implemented in the FEM model), relating the total integrating tan-
gential force, ~Ft; and hence the knot strength, to ~Frn: Combining the
friction-related dependencewith Eq. 2, the knot strength is expected

to behave as

~F0 ¼ β2nμ~Tα ð3Þ

with the prefactor β2 ¼ ~K=ðnμÞ ¼ 0:21+ 0:07 measured by fitting.
In Fig. 4D, we plot ~F0=ðnμÞ versus ~T for the experimental data (n ∈
[2,6], from Fig. 2) together with the FEM data (n = 2 and μ ∈
[0.15,0.35]). Consistently with Eq. 3, the data collapse onto a
master curve with α = 1.56 ± 0.23. These results confirm that the
frictional interactions dictate the knot strength with the required
normal contact forces ensured by the plastic deformation accumu-
lated during pre-tensioning. As evidenced in Fig. 4C, note that the
description of Eq. 3 is valid only for tight knots (above Tmin). These
findings call for future theoretical efforts to rationalize the mea-
sured values of α and β2, which are independent of the filament di-
ameter, the number of throws, and the friction coefficient (for μ ≥
0.15), in the tension range of the tight-knots regime.

Fig. 4. Analysis of surface tractions and master curve for knot strength. (A) FEM-computed knot strength, ~F0; versus tying pre-tension, ~T; for the S || S (n = 2) confi-
guration, over a range of friction coefficients, μ ∈ [0.05 − 0.35]. The green line corresponds to the experimental fit of the data in Fig. 3B to Eq. 1; the shaded region
represents the 65% confidence interval of the fit. The experimental value of the friction coefficient is μ = 0.2 (fig. S4). (B) Three-dimensional visualization of the S || S knot
system (~T ¼ 95Þ simulated using FEM (top). Contact pressure, p/σY, visualized on the pulled 3D rod (bottom) and mapped in 2D along the axial coordinate, z/D, and the
angular coordinate, ϕ(right). (C) Knot strength, ~F0; versus released integrated normal contact force, ~F

r
n; for friction coefficients in the range, μ∈ [0.15− 0.35]; see legend in

(A). Linear fit of the data (lines) and 65% confidence interval (shaded regions). Inset: Released normal contact force, ~F
r
n versus the prereleased normal contact force, ~F

pr
n ; for

all the simulated values of μ; see legend in (A). Spring back (dilation) of the knots is observed for the datasets with μ = 0.05, 0.10, an example of which is shown in the
adjacent FEM configuration corresponding to the red-circled data point (μ = 0.10, ~T ¼ 6:8Þ: (D) Effective knot strength, ~F0=nμ; versus ~T; combining all the experimental
and numerical results obtained in this study.
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DISCUSSION
Our results on both surgeon-tied knots and model experiments,
combined with FEM, enabled us to identify the ingredients dictat-
ing the strength of surgical sliding knots. In addition to topology,
geometry, and elasticity, the interplay between plastic deformation
and frictional interactions is crucial in a knotted monofilament.
Our findings could be translated into practical guidelines on how
to tie a safe surgical knot in a given suturing monofilament with
friction coefficient, μ ≥ 015, and yield strength, σY. The surgeon
can adapt the filament caliber and the number of throws, or
control the tying pre-tension to induce an appropriate level of
plastic deformation and hence normal-contact pressures, which,
through friction, establish a desired knot strength. Since we only
considered dry conditions, the master curve of the effective knot
strength is applicable to dry suturing environments. In the presence
of fluids during surgical procedures, lower knot strengths are to be
expected, which can be compensated by ~T and n.

We hope that our investigation will raise awareness of the phys-
ical ingredients in surgical knots among experienced surgeons and
will be valuable in the training of entry-level surgeons. Further-
more, our quantitative description of the mechanism underlying
sliding knots could be implemented into emerging robotic-assisted
surgical devices containing haptic feedback to target effective knot-
tying at a level akin to an experienced surgeon (37).

MATERIALS AND METHODS
Experimental procedure for knot-tying in our physical
model system
To reproducibly tie knots of well-defined pre-tension, we used the
following protocol. Rigid 3D-printed pins were used as support for
manually tying an initial half-hitch in its loose configuration. One
end of the filament was kept straight by applying a slight tension (far
below the yield strength), while the other end was wound around
the straight filament segment. The manually applied tension
should be just enough to keep the half-hitch in place before the
two free filament extremities were clamped on the UTM. Then,
the knots were tightened under displacement-controlled condi-
tions, followed by a load-controlled holding step to account for
any viscous material effects. The pulling speed was 1 mm/s (i.e., en-
gineering strain rate _ɛ ¼ 0:01=sÞ up to the set value of the tying pre-
tension, ~T; and held constant for 100 s to account for any potential
viscoelastic effects. Subsequently, the sample was unmounted from
the UTM, and anotherhalf-hitch (identical or nonidentical throw)
was added manually in its loose configuration, and then tightened
with the UTM. This protocol was repeated for every additional
throw (increasing n).

Threshold to define tight knots
As demonstrated in the main text, tight knots, compared to loose
knots, exhibit higher knot strength due to the increased self-
contact pressure between different segments of the filament. In
general, the transition from loose to tight physical knots is a contin-
uous process without an abrupt change in geometry or mechanical
behavior (see fig. S1A). Still, we developed a method to define an
approximate threshold separating the two regimes, combining a
volumetric analysis based on x-ray micro–computed tomography
(μCT) and a purely geometric rod model. We focus on the

elementary, sliding granny knot, S || S, since knots with higher
throw numbers are not necessary for the procedure described.

The notion of “tightest knot” is well-defined in the mathematical
framework of ideal (geometric) knot theory: A prescribed diameter
and arc length of an ideal filament enable the computation of the
tightest knot shape for the maximal end-to-end shortening (21,
26). An ideal filament is characterized by an undeformable circular
cross section, inextensible centerline, and vanishing bending stiff-
ness (22). On the basis of this geometric theory of knots, we com-
puted the shape of the tightest S || S knot using the software
Ridgerunner, developed by Ashton et al. (34). This software itera-
tively increases the tightness of an initial (ansatz) knot geometry.
The tightening algorithm is based on a C-language code for tight-
ening ideal knots (38), combining a polygonal thickness version
(39–41) with a constrained gradient descent. In our case, this
ansatz was provided by the centerline coordinates of an FEM sim-
ulation of a loose knot. In fig. S1B, we present the tightest S || S knot
configuration. The compactness of the resulting knot was character-
ized as the volume of the 3D convex hull [convhulln function in
Matlab 2019, based on Qhull (42)], around the bulk knot, excluding
the protruding filaments. The computed convex hull on the tightest
sliding granny knot is represented as a semi-transparent envelope in
fig. S1B and was measured to have a dimensionless volume of
4Videal/πD3 ≈ 32.3. A cylinder of diameter and height D (normal-
ized volume, πD3/4) is used as the reference volume.

Next, we make use of 3D μCT images of physical knots to quan-
tify their compactness as a function of the pre-tension applied to
both throws. First, the S || S knots were machine-tied on monofila-
ments (Prolene 1 USP 0.49 mm in diameter) within the range of
tying pre-tensions, 1:5 � ~T � 6:8: Second, as shown in the photo-
graph in fig. S1A, the knots were mounted in an array of increasing
pre-tensions, ~T; labeled (1) to (7). Then, the samples were slid along
a narrow cylindrical sample holder (diameter, 14 mm) and scanned
with the maximum spatial resolution of 4.9 μm (voxel size) using
μCT imaging (μCT100, Scanco Medical).

In fig. S1C, we show the 3D reconstruction of the μCT-scanned
tightest knot (7) with four protruding strands. To quantify only the
volume of the knot, we excluded the four protruding strands by im-
plementing the following cropping steps using MATLAB (Matlab
2019b, MathWorks). The 3D image consisted of grayscale values,
representing the local material density of the voxels, ranging from
0 (nonoccupied voxels outside filament) to 1 (occupied voxels
inside filament). The dataset was binarized using the voxel value
0.5 as the threshold. The gradient profile (gradient function in
MATLAB), representing the change in the number of occupied
voxels, was computed in each of the three spatial directions, {x, y,
and z}. The gradient profile (along each spatial direction) exhibits
peaks (gradient values larger than 25) at the transition between the
bulk knot and either surrounding air or a single protruding strand.
Beyond each peak location, the voxel values were set to 0 (nonoccu-
pied voxels), such that the long protruding strands were cut off from
the bulk knot, leaving a confined knot region. This technique was
repeated by rotating the knot in each of the three spatial directions
(incremental rotation angle: π/4 rad) and smoothly removing all
protruding strands. Similar to the compactness measurement of
the tightest ideal knot, we constructed the 3D convex hull on the
bulk physical knot, as shown by the semi-transparent cover in
fig. S1D.
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In fig. S1E, we plot the volume measurements of the convex hull
obtained from the μCT, 4V/πD3, as a function of the tying pre-
tension, ~T: Each experimental data point is based on three
scanned knot samples. We observe two regimes with different
slopes, whose transition was determined by performing a linear
fit to each of the two regions and determining the intersect,
fitting seven consecutive data points in each regime. The uncertain-
ty of each best fit is at the basis of the error analysis on the intersec-
tion point. The resulting onset of tight knots is given by the tying
pre-tension, ~Tmin ¼ Tmin=σYA ¼ 2:59+ 0:14 (vertical line). At
this tightness level, the experimental knot volume is 4V0/πD3 ≈
28.1 and corresponds to knot (7) in fig. S1A. The transition
between the two regimes is compatible with the result of the tightest
knot volume from the purely geometric model, 4Videal/πD3 ≈ 32.3,
reported above and represented by the dotted horizontal line in fig.
S1E. We conclude that the transition between the distinct behavior
in volume reduction is an appropriate definition for the onset of
tight knots. Note that the smaller convex hull volume of experimen-
tal knots at the transition compared to the purely geometric case is
presumably due to cross-sectional elastoplastic deformations, which
induce a decrease in volume for the same amount of confined
arc length.

Note that since the knot tightness is dictated by the volume of
each individual throw, the tight-knot onset depends only on the
applied tying pre-tension. In the main text, we report a change in
the knot strength behavior between lower and higher tying pre-ten-
sions, i.e., between loose and tight knots. The transition between the
two regimes corresponds to the transition tension determined using
the critical knot volume described above, ~Tmin; further asserting the
validity of the knot volume method to describe the onset of
tight knots.

Material testing and fracture
All the experiments presented in the main text were performed at
room temperature (21°C) and with constant engineering strain rate
_ɛ ¼ 0:01=s for the knot tying and strength testing. Here, we describe
the mechanical tests performed to quantify the material response,
including fracture, aiming to evaluate the range of applicability of
our results for different tying rates and operating room
temperatures.

We tested the tensile properties of single-filament specimens fol-
lowing the ISO 11566 (43) standard, which is designed to avoid fil-
ament fracture at the clamps. In fig. S2 (A and B), we present
schematic illustrations of the sample preparation procedure with
either straight, unknotted (A), or knotted (B) monofilaments.
Since the knotted case is used for fracture tests, an S || S knot was
tied manually on the rigid pin (described in the main text). For both
cases (A) and (B), the Prolene 3-0 USP filament was glued with
epoxy on a rectangular polyvinyl chloride shim stock frame (thick-
ness: 0.1 mm, outer dimensions of the frame: 70 × 20 mm2) with a
gauge length of L = 50 mm. Besides setting reference length precise-
ly, this technique also reinforces the filament at the ends by the
epoxy layer, preventing fracture at the clamping due to stress con-
centration. Once the sample is clamped in a UTM (Instron 5943),
the frame is cut along the y direction (orthogonal to the filament).
Then, the mechanical response is measured by pulling along the
axial direction of the filament (x direction in fig. S2, A and B)

and recording the traction force throughout the imposed
displacement.

In fig. S2C, we present the cyclic engineering stress-strain behav-
ior (maximum strain, ε = 0.5) of the straight Prolene 3-0 USP fila-
ment at room temperature (21°C) as a function of the applied strain
rate, ranging from _ɛ ¼ 0:0025=s to _ɛ ¼ 0:16=s: Each curve shows
the mean (solid line) and SD (shaded region) of three tests on
five different Prolene 3-0 USP samples. We notice a slight increase
in the stress quantities for higher strain rates. Still, despite the vast
range of explored strain rates (variation of 6300%), the relative
change in measured engineering stress at εeng = 0.5 is only 6.7%.
The nominal fracture strength is determined by the maximum re-
corded engineering tensile force on straight filaments and repre-
sented by the blue box plots in fig. S2D. Similarly to the stress at
εeng = 0.5, the fracture strength does not change considerably for
different strain rates. Adding an S || S knot to the filament
reduces the macroscopic fracture strength by 40 to 50% (see gray
box plots), which is in agreement with the experimental observa-
tions reported in (6, 26, 28, 44), although the underlying mecha-
nism remains poorly understood.

In fig. S2E, we present results for the engineering stress-strain
response of filaments under cyclic loading (constant strain rate, _ɛ ¼
0:01=sÞ while controlling temperature. The tests were conducted at
21°, 37°, and 45°C, within clinically relevant temperature ranges. In
the operating room, the temperature is crucial to avoid intraopera-
tive hypothermia (core temperature < 35°C) (45, 46): in orthope-
dics, the room temperature is regulated to 16°C to reduce the
infection risk (47); in obstetrics, the well-being of the newborn re-
quires a temperature of 20° to 21°C (48); and in burn surgery, the
operating room is heated to 30° − 40°C (49). Three tests on three
different Prolene 3-0 USP samples were performed for each curve
in fig. S2E. High reproducibility was achieved, as suggested by the
small uncertainty regions (shaded region) around the average curve
(solid curve). The Prolene filaments are somewhat temperature-de-
pendent, exhibiting softening in their mechanical response to
higher temperatures. Temperature dependence is less prominent
in the nominal fracture strength of S || S-knotted filaments,
plotted in fig. S2F as a function of the three temperature-regulated
environments. The relative difference between the median values of
the fracture strength at 21°C versus 45°C is only 3.6%.

As expected, the mechanical response of straight Prolene mono-
filaments exhibits some rate and temperature dependence. In the
current case study, however, we are mostly concerned with the un-
certainty of the macroscopic fracture strength in knotted samples
since this fracture strength defines the upper boundary of applicable
pre-tension during knot tightening. Relative changes of 12.3 and
6.1% are to be expected for the ranges of explored strain rates
( _ɛ ¼ ½0:0025 � 0:16�s� 1Þ and temperature (21° − 45°C), respective-
ly. Therefore, given the vast ranges of parameters, the rate and tem-
perature effects are relatively small. Consequently, for the study
described in the main text, we consider the mean fracture strength
with its SD, σc = 300.6 MPa ± 12.1 MPa, for the case of a strain rate,
_ɛ ¼ 0:01=s; and at room temperature (21°C). Last, the normalized
maximal tying tension, ~Tmax ¼ σc=σY ¼ 15:74+ 0:63; is consid-
ered as the upper force limit, corresponding to the vertical lines
in Fig. 3B of the main text.
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Topological effect on knot strength
In Fig. 1C of the main text, we visualized the two possible sliding
knot topologies, S || S and S × S, comprising two consecutive
half-hitches. Although the topologies differ, we are interested in
the resulting knot performance for a given tying pre-tension. In
fig. S3, we compare the knot strength, ~F0; as a function of the
tying pre-tension, ~T; between the S || S × S and the S || S || S
knot. Note that the first two throws share the same topology for
both cases to avoid contact effects from the underlying pin during
tying. Unlike the log-log plots on knot strength in the main text,
here, we use linear axes to better contrast the difference in the re-
sponse of the two knots, especially for higher tying pre-tensions.
Again, the knot-strength data are consistent with the functional in-
crease described by Eq. 1 of the main text. We find that the knot
strength is equivalent for the two-knot topologies throughout the
whole range of tight knots. We conclude that the resistance to
sliding of surgical sliding knots does not depend on the throw di-
rection (identical versus nonidentical throws). Within this study,
this observation enables us to reduce the complexity from various
topological combinations to a single topology, e.g., S || S.

Frictional contact interaction
Inspired by the apparatus reported in (50), we have designed an ex-
perimental setup to measure the frictional properties of two fila-
ments in sliding contact using an orthogonal-crossing
configuration in dry conditions. The upper end of the first filament
(Prolene 1 USP) was attached to a 50-N load cell of the UTM
(Instron 5943), and a dead load of 100 g was attached at the other
end of the filament. A second filament (Prolene 1 USP) was tightly
coiled (10 turns) around a rigid acrylic post (square cross section of
20 × 20 mm2 with rounded corners), as shown in the photograph of
fig. S4A. The straight vertical filament was pressed by an annular
ball bearing (external diameter: 30 mm) against the coiled filament
with a normal load, Fn, using a mass-pulley system (not shown in
the photograph). Next, the vertical filament was displaced upward at
a speed of 1mm/s, which is the same displacement velocity imposed
in the knot untying experiments reported in the main text. In fig.
S4B, we plot the measured tangential contact force, Ft, as a function
of the applied normal force, Fn. We find a linear relationship
between the two, as expected for Amontons-Coulomb friction be-
havior. The linear fit, Ft = μdFn (solid line in fig. S4B), of the exper-
imental data yields a dynamic friction coefficient, μd = 0.20 ± 0.02,
in agreement with values reported in the literature for Prolene
monofilaments (29).

Elastoplastic constitutive material model
During the tying and testing of surgical knots, the Prolene filament
can undergo considerable plastic deformation. Quantitatively re-
producing this mechanical behavior in the FEM simulations re-
quires an appropriate constitutive material model for the
elastoplastic behavior of the polymer filament. Before describing
the plasticity model, we implemented in FEM, we must first char-
acterize the constitutive response of the Prolene filaments
experimentally.

In fig. S5A, we present results for the cyclic stress-strain behavior
of a straight (unknotted) Prolene monofilament (1 USP, gauge
length, L = 50 mm), plotting the axial true stress, α, versus true
strain, ε. The tests were performed at the constant engineering

strain rate of _ɛeng ¼ 0:01=s: For these characterization tests, we
used the ISO11566 protocol for large-strain measurements. In the
lower inset of fig. S5A, we show a schematic of the tested specimens
prepared identically to those described in the “Material testing and
fracture” section above. The plot in the upper inset of fig. S5A quan-
tifies the dissipated energy density per cycle,W, measured from the
area enclosed by each loading-unloading σ(ε) curve, for a particular
cycle. We find thatW decreases by ≈500% between the first and the
second cycles before converging into a steady cycle. This seemingly
large dissipated energy observed in the first cycle may be attributed
to the unknown state of the material due to prior deformation
history. We interpret the straightening of the intrinsically curved
filament from the packaging and the preparation of the specimen
for testing as the first loading cycle. To account for this first
loading cycle, we will calibrate the constitutive model from the uni-
axial tensile tests of a filament that has been preconditioned by pre-
stretching it first to ε = 0.215 (i.e., after it has undergone the first
cycle), and then unloaded for subsequent testing. In fig. S5B, we
plot the σ(ε) experimental curves (solid lines) for the three subse-
quent loading-unloading cycles (2, 3, and 4); these data will be used
to calibrate the elastoplastic constitutive model described next.

The 3D continuum-level constitutive model for elastic-visco-
plastic mechanical behavior that we developed and implemented
for the FEM simulations is based on (35, 36). Hence, only a
summary of the relevant content underlying the model is provided
here. Overall, the model includes isotropic hardening since the fil-
aments only undergo one single loading cycle during the knot-tying
and tightening process. Furthermore, the model is rate-dependent,
a choice that is supported by the data presented in fig. S2. The total
deformation gradient is decomposed into elastic and plastic parts

F ¼ FeFp ð4Þ

We assume that plastic flow is incompressible, meaning that det
Fp = Jp = 1, where J = det = F. The evolution equation for Fp is

dFp

dt
¼ DpFp ð5Þ

The flow rule may be written in the form

Dp ¼

ffiffiffi
1
2

r

νpNp ð6Þ

where the equivalent plastic shear strain rate is

νp ¼ ν0
�τ
S

� �1=m

ð7Þ

the equivalent shear stress is

�τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðMe

0 :Me
0Þ

r

ð8Þ

and the direction of plastic flow is given by

Np ¼
Me

0ffiffiffi
2
p

�τ
ð9Þ

In the expressions above, the notation (•)0 denotes the deviator
of (•). TheMandel stress in Eq. 6 is given by the constitutive relation

Me ¼ 2GEe þ λðTrEeÞ1 ¼ 2GEe0 þ KðTrEeÞ1 ð10Þ
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where G, K, and λ = K − (2/3)G are the shear modulus, bulk
modulus, and Lamé parameter, respectively. Note that the strain
measure used is Ee = ln Ue, where Ue is the elastic stretch, Fe =
ReUe, and accounts for large deformations. The Cauchy stress is
related to the Mandel stress by

T ¼ J � 1ReMeReT ð11Þ

The strength model is given by an evolution equation for the de-
formation resistance S, which enters Eq. 4, taking the form

_S ¼ hðSsat � SÞνp; Sðt ¼ 0Þ ¼ S0 ð12Þ

where Ssat is a saturation level for the deformation resistance, and h
controls how quickly S approaches Ssat.

In summary, the elasto-viscoplastic model with isotropic hard-
ening presented above involves the following material parameters,
E, S0, Ssat, h. Moreover, we define initial yield strength σ0 as the
initial condition for S. These parameters must be determined by
fitting to the experimental data presented in fig. S5B, for the three
consecutive loading and unloading cycles of a straight, unknotted,
and prestretched Prolene monofilament.

The 3D constitutive model has been specialized for uniaxial
tension, and the reduced model is implemented into MATLAB
for the purpose of calibrating the parameters E, σ0, Ssat, h. On the
basis of the experimental data presented in fig. S5B, the built-in
MATLAB function lsqnonlin was used to perform a nonlinear
least-square optimization of the four parameters with a prescribed
initial guess and lower and upper bounds, as summarized in table
S2. The rate-sensitivity parameter was assumed as m = 0.08 to
improve the numerical convergence of the optimization process.
The shear strain rate was set to ν00001. Furthermore, we constrained
the values of E using the initial slope of the test curves in the unload-
ing region, which was measured to be ≈7000 MPa. Assuming ma-
terial incompressibility, the shear modulus is related to the Young’s
modulus by G = E/3. The optimization process yields the calibrated
quantities presented in table S2, with the model fitted (dashed lines)
to the experimental cyclic stress-strain curves (solid lines), as shown
in fig. S5B.

Residual stress
The Prolene filament used throughout the experiments came orig-
inally packaged in a stadium-shaped spool (with straight sides of
length 55 mm and semi-circular caps of radius 10 mm) and exhibits
natural curvature upon unpacking. As is common in plasticity prob-
lems, this prior loading history affects any subsequent material re-
sponse. To account for this (unknown) deformation history in the
FEM simulations, we consider the effective residual bending stress,
σR, as a predefined stress field on the initially straight reference con-
figuration of the filament and treat it as an additional fitting param-
eter. We specify σR by assuming elastic-perfectly plastic (small)
deformation of a beam with a circular cross section of diameter,
D, with curvature κ(x) along the axial direction, x, of the beam,
the axial strain in the bending direction, y, can be expressed as εxxxy.

For a fully plastic beam with yield strength, σY, the cross section
consists of two regions: the lower half, −D/2 ≤ y ≤ 0, with σxx = σY
and area, A1; and the upper half, 0 ≤ y ≤ D/2, with σxx = −σY and
area, A2. Thus, two regions of integration (A1 and A2) are

considered to compute the bending moment:

Mp ¼ �

ð

A1
yσYdA1 �

ð

A2
yð� σYÞdA2 ¼

D3σY
6

ð13Þ

The residual stress is then expressed as the difference between
the fully loaded and the elastically unloaded case,

σxxðunloadedÞ ¼ σxxðloadedÞ � Δσxx ð14Þ

with the stress difference due to elastic spring-back,

Δσxx ¼ EΔɛxx ¼ Eðκloaded � κunloadedÞy ð15Þ

Furthermore, from the moment-curvature relation, Mloaded =
EI(κloaded − κunloaded), we get

κloaded � κunloaded ¼
Mloaded

EI
ð16Þ

Plugging Eq. 13 into Eq. 12 yields the axial stress difference

Δσxx ¼ �
Mpy
I

ð17Þ

wherewe considered loading to the fully plastic state (Mloaded ≡Mp).
Thus, Eq. 11 is written in the form

σxxðunloadedÞ ¼ σxxðloadedÞ þ
Mpy
I

ð18Þ

Considering a fully plastic deformation [σxx(loaded) = ± σY], and
plugging Eq. 10 into Eq. 15 gives the residual stress field as a func-
tion of the yield strength

σRy
1þ 32y

3πD

� �
σY for y , 0

� 1þ 32y
3πD

� �
σY for y , 0

(

ð19Þ

In ABAQUS/EXPLICIT, the predefined stress field—Eq. 16—
was applied on the initially straight reference configuration, σR(σY
= 0 MPa), of the filament of diameter, DFil = 0.49 mm (1 USP), and
axial length,300 mm. Note that, whereas the calibration tests de-
scribed next used this physical value ofDFil, subsequent simulations
(including all of those reported in the main text) were done with
unit-diameter filaments for generality. The rod was meshed with
reduced hybrid 3D solid elements (C3D8I) such that the number
of elements along the axial direction was 200, with 26 elements
per cross section. In fig. S6A, we show typical initial configurations
of the filament for the different values σY = {10,20,30} MPa; differ-
ent values of σR relate to different natural curvatures of the filament.

Figure S6B presents a photograph of the apparatus developed to
calibrate the parameters of our plasticity model. In this configura-
tion, which we refer to as plastic capstan, we quantify the tension
drop, ΔT, between the free end and the pulled end (displacement-
controlled with 1mm/s) of a Prolenemonofilament (1 USP) passing
through a grooved pin with the diameter in the range 0.5mm≤DPin
≤ 9 mm. Given that the pin is mounted on an air-bearing, and the
two constraining ball bearings minimize friction, the ensemble
rotates as a frictionless gear when pulling the filament (movie S4).
Hence, there is minimal sliding frictional dissipation; the dissipa-
tion is only due to plastic bending deformation of the filament
around the pin, which causes the tension to drop between the two
extremities. By contrast, in the classic capstan problem (50, 51), the
tension drop is due to the friction interaction alone.

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Johanns et al., Sci. Adv. 9, eadg8861 (2023) 7 June 2023 9 of 11



Using FEM, we simulate this same plastic capstan configuration
for filaments subjected to residual bending stresses. The pin of di-
ameter, DPin, and the gap walls were simulated as rigid bodies ac-
cording to the fabrication tolerances of the pins, leaving a groove of
depth DFil + 0.01 mm and width DFil + 0.11 mm. In fig. S6C, we
present an FEM-computed configuration of the plastic capstan
(DPin = 0.5 mm), color-coded by the equivalent plastic shear
strain, γp, which increases along the filament from the free end
(right) to the pulled end (left) as a result of the accumulated
plastic deformation. A horizontal cut (purple dashed line) at the
height of the pin exposes the in-plane profile of γp. In fig. S6D,
we plot experimental and FEM data for the normalized tension dif-
ference, ΔT/(σYA), as a function of normalized curvature imposed
by the pin of diameter DPin on the filament of diameter DFil: 2DFil/
(DPin + DFil). Tuning the residual stresses allows for the calibration
of the numerical model by matching its results to the experimental
data to determine the fitting parameter. With the fitted value of
σR(σY = 30 ± 2MPa), we find that the FEM simulations accurately
represent the experimental data across the full range. Note that the
fitted yield strength is of the same order of magnitude as the exper-
imentally determined 0.1% offset yield strength, σY = 19.1MPa (31).

Finite element modeling—Knot tying, tightening, and
testing procedure
In the commercial package ABAQUS/EXPLICIT (Simulia, Dassault
Systèmes), two initially straight filaments were implemented, each
with unit diameter, DFil = 1. The filament (1) forming the two half-
hitches was modeled with axial length, L1 = 35DFil. The sliding fil-
ament (2) was chosen to be half as long. The two filaments were
oriented such that their centerlines cross with a relative angle of
10°. Both filaments were meshed with 3D solid elements, enhanced
with incompatible modes for bending (C3D8I). The number of el-
ements along the axial direction was 230 for filament (1) and 115 for
filament (2), with 40 elements per cross section in both cases. Two
circular plates (5DFil in diameter, 0.1DFil in thickness) with a central
clearance hole of diameter, 1.10DFil, were modeled as rigid bodies
and aligned with the centerline axis of filament (2), leaving a relative
distance 7DFil between the two plates.

The tying, tightening, and testing procedure described next is vi-
sualized in movie S5. In an initial step, the central region of filament
(1), 0.25L1 < Lcenter < 0.75L1, was subject to the residual stress field
σR(σY = 30 ± 2MPa) since the filament extremities are not part of the
knot. Mimicking the tying procedure of the surgeon, a dead load
(Mg = 50 N) was applied to one of the extremities of filament (2),
keeping the other end clamped. Next, by applying a sequence of pre-
scribed displacements and rotations to control the nodes located at
each end and the central coordinate of filament (1), two half-hitches
were formed around filament (2), corresponding to the sliding
granny knot. A similar tying protocol was introduced in (52), in
the context of the clove hitch knot. Both knots share the same to-
pology but differentiate by their application: A clove hitch knot at-
taches a rod to a rigid cylinder (typically larger than the rod
diameter), whereas the sliding granny knot is a binding knot, con-
necting two rods (of equal diameters). We made use of the tying
algorithm used in (52), withminor adaptations to tie the S || S knots.

After the S || S topology was set, both rigid plates were displaced,
leaving a relative distance of 6DFil, to help keep filament (2) in place
(in addition to the applied dead load) during the subsequent tight-
ening step. Then, the two extremities of filament (1) were gradually

loaded by the tying pre-tension of the same magnitude, ~T; but in
opposite directions to yield a symmetric knot. Next, the pre-ten-
sions were released symmetrically to free the ends of filament (1),
while one of the two plates was displaced along the centerline axis of
filament (2), away from the actual system since, subsequently, it is
no longer needed. At this stage, the clamped boundary condition at
the extremity of filament (2) was also released, such that the fila-
ment could be displaced with the constant unit speed 1 s−1. Last,
the S || S knot was pulled against the rigid stopper plate, and the
slipping force, ~F; was measured.

Supplementary Materials
This PDF file includes:
Figs. S1 to S6
Tables S1 and S2
Legends for movies S1 to S5
Legend for data S1

Other Supplementary Material for this
manuscript includes the following:
Movies S1 to S5
Data S1
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