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Abstract

Beta-glucocerebrosidase is a lysosomal hydrolase, encoded by GBA1 that represents the most 

common risk gene associated with Parkinson’s disease (PD) and Lewy Body Dementia. 

Glucocerebrosidase dysfunction has been also observed in the absence of GBA1 mutations 

across different genetic and sporadic forms of PD and related disorders, suggesting a broader 

role of glucocerebrosidase in neurodegeneration. In this review, we highlight recent advances in 

mechanistic characterization of glucocerebrosidase function as the foundation for development of 

novel therapeutics targeting glucocerebrosidase in PD and related disorders.
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Introduction

Parkinson’s Disease (PD) is a debilitating neurodegenerative movement disorder that 

presents with a diverse array of symptomatology. The disease signature most notably 

associated with motor symptoms (bradykinesia, rigidity, postural instability, and tremor) 

is the selective degeneration of dopaminergic neurons in the substantia nigra [1]. However, 

PD is a progressive disorder that also affects other neuronal subpopulations leading to non-

motor symptoms such as cognitive decline, behavioral and mood disorders, and autonomic 

dysfunction [2,3]. PD is pathologically characterized by eosinophilic inclusions known as 

Lewy bodies or Lewy neurites consisting of the aggregated protein alpha-synuclein (αSyn) 

[4].

Although predominantly known as an idiopathic disorder, approximately 15% of PD cases 

are considered familial with up to 10% inherited in Mendelian pattern [5]. Several genetic 

risk factors identified since the late 1990s have been studied to better understand convergent 

mechanisms potentially applicable to sporadic PD [6,7]. Interestingly, more than half of 

PD risk genes identified in GWAS studies are associated with putative variants linked 

to lysosomal storage disorders [8]. GBA1, the gene encoding for beta-glucocerebrosidase 

(GCase), is the most common genetic risk factor for PD that has been involved in 

PD pathogenesis [9,10]. Glucocerebrosidase is a member of the coordinated lysosomal 

expression and regulation (CLEAR) network that functions in glycosphingolipid processing 

and ceramide metabolism [11,12]. Given the established genetic link between GBA1 and 
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PD, several studies have aimed to understand GBA1-based mechanisms that contribute to 

PD-related neurodegeneration.

Several excellent reviews have comprehensively described the link of GCase deficiency and 

dysfunction to PD. In this review, we provide an update on mechanistic studies exploring 

the role of GCase in PD, including how non-cell autonomous GCase dysfunction may 

contribute to PD pathogenesis, and highlight important considerations to better understand 

GCase-pathophysiology and effective targeting for therapeutic development.

The Association of Gaucher Disease and GBA1-PD

Glucocerebrosidase is a 497-amino acid protein which functions within the acidic lumen 

of lysosomes to hydrolyze glycolipids and sphingolipids. Synthesized GCase is transported 

from the endoplasmic reticulum (ER) to the lysosome by the lysosomal integral membrane 

protein-2 (LIMP2) encoded by SCARB2 [13]. Lysosomal GCase functions independently 

from homologous cytosolic glucosidases, glucocerebrosidase-2 and -3 (GBA2/GBA3), 

which do not have genetic associations with PD, but GBA2 has been linked to hereditary 

spastic paraplegia [14]. Biallelic mutations in the GBA1 gene are known to cause Gaucher 

Disease (GD), a rare, pan-ethnic lysosomal storage disorder that ranges in a broad spectrum 

of clinical presentations and ages of onset [15]. Although a majority of GD cases present 

as a disease of the peripheral organs (known as Type 1 GD), a small fraction of GD cases 

manifest in neuronopathic disease (Types 2 and 3) which features focal neurodegeneration 

and brainstem dysfunction [15,16]. A vast majority of GD associated mutations cause 

loss-of GCase activity which leads to substrate accumulation in lysosomes, most commonly 

observed in the form of engorged macrophages (termed “Gaucher Cells”) clustered in 

the spleen, liver, lungs, and bone marrow [16]. The severity and rate of progression of 

disease is variable amongst GD patients and associated to particular risk variants. For 

example, the most common missense mutation, p.N370S (now commonly referred to as 

p.N409S due to an updated annotation featuring an additional 39-residue leader sequence) 

typically is characterized by milder phenotypes associated with Type 1 GD [17,18]. The 

other common variant, p.L444P (i.e. p.L483P), is observed across all three subtypes of GD 

and is considered a more severe mutation. To date, almost 400 mutations in the GBA1 locus 

have been identified throughout coding and non-coding sequences, possibly contributing to 

heterogeneity in disease course and progression [19].

In 1996, Neudorfer described six cases of GD-associated Parkinsonism with cardinal 

features including tremor, rigidity, bradykinesia, and speech impairment [20]. These findings 

were later validated in larger studies showing a higher propensity of GD patients to develop 

PD [18,21]. Interestingly, the higher incidence of Parkinsonism in GD patients was also 

observed in first- and second-degree family members of GD patients, indicating that GCase 

function, even in heterozygous carriers, may be an important factor in PD pathogenesis 

[22,23]. Sidransky et. al. confirmed the link between GBA1 heterozygosity and PD in an 

international, multicenter study that compared 5691 PD and 4898 control subjects and found 

an odds ratio of 5.43 for GBA mutation carriers to develop PD [9]. Since then, multiple 

studies have reproduced these findings with the incidence of PD in GBA-mutant carriers 

ranging from 5–20% depending on the populations of interest. Several studies have provided 
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excellent summaries of the distribution mutations across ancestries [19,24,25]. Recent 

additional studies of carrier frequency were conducted in India, the Netherlands, Ireland, 

and New Zealand [26–29]. However, as exome-sequencing and whole genome sequencing 

for GBA1 can be problematic due to a highly analogous pseudogene on chr.1 (GBAP1) 

[30], utilizing refined methods to analyze comprehensive mutant status from populations is 

necessary to understanding the scope of GBA1-PD populations [31].

The distribution of mutations has been well reviewed in previous work [19,32,33]. However, 

new PD-associated mutations continue to be uncovered, most recently including the 

p.N227S mutation found in GD patients in Chinese population studies [34]. Although 

a majority of PD-associated variants overlap with causative GD mutations, several PD-

selective variants have also been identified which are not considered pathogenic for GD (e.g. 

p.D443N, p.E326K, p.K7E, and p.T369M) [33,35–37]. The data suggest some risk variants 

may contribute specifically to the development of PD pathologies without inducing GD 

pathophysiological sequalae.

Interestingly, the calculated relative risk of developing PD is similar between GD patients 

and heterozygous GBA1 mutation carriers (RR of 21.4 to 30, respectively) [38,39]. It 

is relevant to note that although GBA carriers have a substantially higher odds ratio of 

developing a synucleinopathy than the general population, mutations are poorly penetrant, 

and a vast majority of carriers do not manifest with disease [40]. Penetrance is hypothesized 

to be linked to a combination of genetic, epigenetic, and environmental modifiers that 

modulate GCase-linked pathologies.

Clinical Manifestations of GBA1-PD

GBA1-PD is marginally distinguishable from the classical PD. Disease onset in GBA1-

carriers is accelerated by approximately 2–6 years, depending on variant and population 

[9,33,41]. The acceleration of motor dysfunction coincides with a shorter, but more 

prevalent, prodromal phase of disease that characteristically features anosmia, autonomic 

dysfunction, neuropsychiatric and behavioral disorders, and early motor dysfunction [42]. 

Honeycutt et. al. reported no change in the severity of motor prodrome in GBA-carriers, 

but indicated a more rapid conversion to PD or cognitive impairment from prodromal 

indications [43]. Data also suggest an association between the severity of variant and the 

acceleration of disease onset [44]. GBA1-PD patients are reported to experience faster motor 

symptom progression and a more rapid conversion to Hoehn and Yahr Stage 3 (onset to 

postural instability) [45,46]. A long-term, UK-based study of mutant carriers conducted by 

Stoker et. al. validated higher rates of dementia in mutant carriers and also indicated earlier 

mortality in patients carrying pathogenic, GD-associated mutations [47].

In addition to canonical PD symptomatology, GBA1-PD patients commonly develop 

non-motor symptoms at significantly higher rates than non-mutant carriers, including 

neuropsychiatric sequalae and cognitive deficit. Several studies have demonstrated a higher 

prevalence of cognitive decline and dementia in GBA1-PD compared to non-mutant carriers 

[33,46,48,49]. This disease progression is observed with higher frequencies of neocortical 

and limbic neuropathology. A recent study analyzed CSF GCase activity of PD patients 
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(with and without mutations) and control subjects and found GCase activity to be lower 

at the time of diagnosis in patients who develop dementia within 10 years compared 

to cognitively normal patients [50]. These data suggest CSF GCase activity may be an 

effective prognostic differentiator for newly diagnosed patients. Although the difference in 

PD prevalence is marginal between GD patients and GBA1 heterozygotes, two studies in 

Ashkenazi Jewish populations indicate GD-PD patients demonstrate earlier ages-of-onset, 

and may develop more pronounced motor and non-motor deficits than GBA1-PD patients, 

suggesting a potential dose effect of GCase in the development of PD symptomatology 

[51,52].

The prevalence of non-motor symptomatology in GBA1-PD, most notably cognitive 

decline, raises question of the association of GBA mutations with other synucleinopathies 

or neurodegenerative illnesses that feature non-motor pathologies. GWAS studies have 

suggested an even stronger association between GBA1 variants and Dementia with Lewy 

Bodies (DLB) than with PD, with an adjusted odds ratio observed to be 8.28 [53]. Similarly, 

GBA1 was identified amongst a subtype of Alzheimer’s disease patients with concomitant 

DLB pathology (LBD-AD), providing further evidence that cortical and hippocampal 

neurons are susceptible to GCase pathologies [54]. One clinical study investigated the 

GBA1-PD specific variants p.E365K and p.T408M and highlighted lower cognitive 

performance and neuroimaging signs of more advanced disease in variant carriers vs wild-

type PD patients [55]. Interestingly, it has been suggested that mutant status may exacerbate 

cognitive deficits in patients undergoing deep brain stimulation in the subthalamic nucleus 

(STN-DBS) [56].

A recent GWAS analysis also identified GBA1 as a significant risk allele for REM sleep 

and behavioral disorder (RBD), the most predictive prodromal syndrome of conversion 

to synucleinopathy with >80% of diagnosed patients developing PD, DLB or multiple 

system atrophy (MSA) [57,58]. Interestingly, the study also identified GWAS hits in the 

loci of SNCA, TMEM175, and SCARB2, all of which directly associate with GCase or 

mediate GCase function within the lysosome [57]. Collectively, these data suggest a potent 

association with pathways involved in lysosomal GCase function and the development 

of neuronal synucleinopathies. Mutations have also been linked to the oligodendroglial 

synucleinopathy, MSA, [59], although data on the association is conflicting with some 

studies suggesting no genetic association between variants and MSA [60,61].

Although a majority of mutant carriers will not go on to develop PD, there are lines 

of evidence that suggest non-manifesting GBA mutant carriers experience subtle clinical 

changes that may indicate preliminary PD conversion. A study from the Parkinson’s 

Progression Markers Initiative (PPMI) investigated a longitudinal cohort of GBA non-

manifesting carriers and found higher scores in the Movement Disorders Society-Unified 

Parksinson’s Disease Rating Scale (MDS-UPDRS) in carriers (9.5) vs control subjects (4.6) 

indicating a subtle clinical dysfunction that may precede DAT deficits [62]. Neuroimaging 

studies of non-manifesting carriers, however, have shown highly-variable and conflicting 

evidence of a prodromal PD signature [63]. Similarly, studies in discordant siblings have 

shown no development of clinical Parkinsonism in non-manifesting carriers [64,65]. These 

data caution against over-interpreting non-penetrant GBA1-mutation carriers as eventual 
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converters to PD, and suggest the need for more comprehensive longitudinal studies to better 

evaluate the penetrance of GBA1-PD.

Glucocerebrosidase and Alpha-synuclein

Neuropathological studies and concordant clinical presentation of non-motor symptoms 

have suggested a strong association with GCase and alpha-synuclein (αSyn) pathology. 

Unlike other common PD risk variants such as LRRK2 or PRKN, Lewy pathology (LP) 

is commonly seen in GBA1-PD. LP has also been observed in the brainstem, cortex, and 

hippocampal regions of GD patients that develop DLB-like phenotypic dysfunction and 

Parkinsonism, suggesting a prominent association between GCase and αSyn [16]. αSyn 

is an intrinsically disordered 140-amino acid protein most prevalently found in synaptic 

compartments of neurons. Although the precise function and requirement of αSyn remains 

unclear, studies suggest αSyn plays a role in synaptic vesicular dynamics and transmission 

[66,67]. αSyn belongs to a class of amyloidogenic proteins which have a propensity to 

aggregate and induce proteopathic templating of naïve protein under pathologic conditions.

Since the near parallel discoveries of αSyn as a causative gene for PD [68] and 

its predominance as a protein constituent in LP [69], a substantial body of work 

has characterized mechanisms by which αSyn may cause cellular toxicities and 

neurodegeneration [4]. Several mutations [70–74] and multiplications [75,76] of the SNCA 
locus further confirmed the genetic association of αSyn and PD. Gunder et. al. demonstrated 

increased αSyn levels in the substantia nigra of post-mortem patients with GBA mutations 

[77]. These findings coincide with data illustrating decreased GCase activity in the 

substantia nigra of PD and DLB patients [78]. GWAS analysis of modifiers identified 

variants near the SNCA locus amongst two candidate loci that may have a significant role 

in GBA1-PD penetrance, indicating a potential genetic interaction in addition to protein 

interactions [79].

Our group has demonstrated a bi-directional association between GCase and αSyn, whereby 

GCase impairment leads to accumulation of αSyn in iPSC-derived dopaminergic neurons 

[10]. Furthermore, accumulated GlcCer from GCase deficiency can stabilize intermediate 

aggregate structures to drive the generation of high-molecular weight αSyn species [10]. 

Conversely, aggregated αSyn was observed to decrease GCase activity in iPSC-derived 

neurons and post-mortem brains of patients with idiopathic forms of disease, illustrating 

a positive feedback mechanism of αSyn-GCase toxicity [10]. These data suggest that this 

feedback loop would lead to decreased activity of wild-type or mutant GCase in any cell 

that accumulates αSyn. However, this mechanism does not explain preferential vulnerability 

of midbrain dopaminergic neurons in PD. Our subsequent work suggested that the activity 

of wild-type or mutant GCase can be decreased by accumulation of oxidized dopamine 

in dopaminergic neurons [80]. While the effects of αSyn on trafficking of GCase can 

affect GCase activity in dopaminergic and non-dopaminergic cells, the effect of oxidized 

dopamine would be seen only in dopaminergic populations. Mitochondrial oxidant stress 

and dysfunctional synaptic vesicle endocytosis contribute to increased oxidized dopamine 

in PD patient dopaminergic neurons [81]. Since oxidized dopamine and neuromelanin were 
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detected in human but not mouse dopaminergic neurons, our data highlight the importance 

of human models for studying dysfunction of nigral dopaminergic neurons in PD.

We have also observed decreased GCase activity and concomitant PD pathology in neurons 

derived from patients with alternative familial PD mutations, including LRRK2, PRKN, and 

DJ-1, implicating convergent GCase-αSyn pathology across PD subtypes [82]. Collectively, 

these results suggest that direct targeting of wild-type glucocerebrosidase may improve 

pathogenic phenotypes across synucleinopathies. To this end, we identified allosteric GCase 

modulators increase wild-type GCase activity in dopaminergic neurons from patients with 

various forms of PD [82]. These modulators improved lysosomal dysfunction, lowered 

oxidized dopamine, αSyn, and glucosylceramide in patient neurons. Activation of wild-type 

GCase may serve as a potential therapeutic target for multiple synucleinopathies that exhibit 

decreased GCase activity.

The direct interaction between GCase and αSyn is still relatively unknown. A study from 

Yap et. al. identified C-terminal interactions between αSyn and GCase at sub-cytosolic pH, 

which was tempered by p.N370S mutant GCase [83]. Thus, αSyn may feature a direct 

binding motif that facilitates processing. However, it is uncertain how aggregated forms of 

αSyn modify binding capacity with or without the presence of GCase mutations. Kuo et. al. 

observed that misfolded mutant GCase is aberrantly bound to the lysosomal membrane 

in post-mortem brains of PD patients [84]. This mislocalization leads to interference 

and disruption in chaperone-mediated autophagy (CMA) and consequently leads to αSyn 

aggregation and induced DA neurodegeneration, thus providing an indirect mechanism for 

the GCase-αSyn pathological cascade [84]. A recent study of GBA1-PD fibroblasts used 

a shotgun lipidomic method to differentiate p.L444P-patients from control subjects and 

sporadic PD cases [85]. Lipid extracts from the p.L444P fibroblasts rapidly accelerated 

αSyn aggregation upon co-incubation, indicating a permissive lipid profile for αSyn 

pathology that may be promoted through impaired GCase activity [85].

Several studies have utilized animal models to understand how mutations may affect 

αSyn seeding, propagation, and toxicity. One study in a drosophila model of αSyn 

neurodegeneration confirmed several loss-of-function enhancers of αSyn toxicity, including 

SCARB2, SMPD1, CTSD, all of which are associated with lysosomal function, or more 

directly, GCase function [86]. In the p.D409V transgenic mouse model, heterozygous 

animals showed no histopathological aggravation of αSyn pathology or behavioral insults 

compared to wild-type littermates after unilateral injection of αSyn pre-formed fibrils 

(PFFs) into the olfactory bulb [87]. However, two independent studies injecting PFFs into 

the striata of p.L444P heterozygous mice show enhanced formation and spread of αSyn 

inclusions compared to control subjects [88,89]. Mahoney-Crane et. al. reported pathological 

exacerbation specifically in the hippocampus, whereas the rate of nigrostriatal and cortical 

pathologies was unaffected [89]. Previous reports have demonstrated the diversity of αSyn 

pathology profiles are contingent to the site of PFF injection and the corresponding 

neural networks associated with the target brain region [90–92]. However, these studies 

in GBA1-mutant model systems also suggest GCase modification of αSyn aggregation 

kinetics may be dependent on the particular pathogenic variant. In studies in both primary 

murine neuronal cultures and mouse models, Henderson et. al. show GCase inhibition 
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does not induce αSyn aggregation, but is permissive to already initiated pathological 

processes in which pathological αSyn attenuates GCase activity [93]. Intriguingly, the 

indirect association between αSyn seeding and GCase activity has also been tested in 

peripheral tissues. In a study modeling gut-to-brain pathological αSyn spread, delivery of a 

peripheral-targeting AAV carrying GBA1 was efficient in reducing enteric nervous system 

αSyn pathology and highlighted potential therapeutic benefit of restoring active GCase in 

peripheral tissues [94]. It is hypothesized that a fraction of PD pathologies may initiate from 

peripheral induction points with CNS contacts such as the gut [95]. Studies exploring these 

axes of pathological initiation and transfer are useful in understanding what role peripheral 

GCase deficiencies may play in CNS disease.

The imbalance of lipid pathways upon glucocerebrosidase deficiency

The primary known function of GCase is the hydrolysis of glucosyl residues from 

glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph), although several other 

glycosphingolipid moieties may also be substrates specific to lysosomal GCase. Mutation-

induced impairment in GCase activity thus shifts the stoichiometry of glycosphingolipid 

processing causing an abundance of unprocessed lysosomal substrates and changes in 

ceramide levels. However, the specific role of how substrate-product imbalance contributes 

to GBA1-PD pathophysiology has been conflicting and difficult to resolve.

GlcCer has been demonstrated to directly mediate αSyn aggregation dynamics [10]. 

However, post-mortem assessment of GlcCer levels in the brains of synucleionpathy patients 

show conflicting data, with one study suggesting age-dependent accumulation in PD patients 

[96] and others showing no changes compared to control subjects [97,98]. Some evidence 

suggests GlcSph levels may also have an association with PD pathology. Taguchi et. al. 

showed in vitro GlcSph specifically induces seed-competent αSyn oligomerization that can 

template naïve αSyn in neurons [99]. They further show GlcSph accumulation to precede 

GlcCer accumulation in a PD mouse model generated from GD mice crossed with αSyn 

transgenic mice [99]. Recent data quantifying lipid content in plasma from p.N370S carriers 

in PD and non-PD populations showed increases in GlcSph in mutant carriers compared to 

controls, but were unable to differentiate the PD from non-PD cohort [100].

Methods to detect lipid accumulation in post-mortem brains have several potential 

confounding variables that may generate lower signal-to-noise ratios. For example, different 

cell types have large distributions of GCase expression and activity. Isolating neuronal 

glycosphingolipid content from glial fractions is technically challenging and may not present 

the most relevant lipid profiles for neurodegeneration. Also, the mass spectra signal of 

GlcCer and GlcSph may be contaminated by enantiomeric glycosphingolipids such as 

galactosylceramides which are prevalent in CNS tissue. Additionally, lipid content is subject 

to variability due to post-mortem intervals and tissue processing methods. Other studies have 

investigated substrate accumulation profiles from CSF, but have similarly found conflicting 

or negative results from GBA1-PD patients [98,101]. Thus, it is problematic to establish 

conclusions of substrate accumulation in GBA1-PD from the current literature, and studies 

to validate GBA-substrate/product ratios will require larger cohorts and more consistent 

methodology than have previously been utilized [102].
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Although the evidence of GCase substrate accumulation from PD patient data has been 

conflicting, evidence from animal models of substrate accumulation led to the development 

of Venglustat, a small molecule inhibitor of glucosylceramide synthase, for the treatment 

of GBA1-PD [103]. Phase II clinical data (ClinicalTrials.gov Identifier: NCT02906020) 

suggested effective target engagement and lowering of CSF GlcCer at 4 weeks (a decrease 

of 72% from baseline in Japanese patients and 74.3% from baseline in non-Japanese 

patients at highest treatment dose) [104]. However, treated patients showed no signs of 

improvement in UPDRS part II or III [104]. Although the phase II study was not powered 

to detect meaningful clinical changes, further development of Venglustat for treatment of 

GBA1-PD was suspended. These findings suggest GlcCer accumulation may not be an ideal 

pharmacological target for effective therapy, or may indicate substrate reduction therapy to 

be ineffective in combating GBA1-PD.

GCase impairment may also contribute to impaired ceramide processing, which may play a 

significant role in cellular health and function. Ceramides are important constituents in lipid 

membrane stabilization and signaling [105]. In a recent study, our group showed lysosomal 

ceramides activate Cathepsin B which, in turn, promotes cleavage of prosaposin to saposin 

C, the coactivator of lysosomal GCase [106]. In PRKN-mutant models of PD, deficient 

ceramide levels correlated with impaired GCase activity [106]. Conversely, treatment with 

an inhibitor of acid ceramidase to upregulate ceramide rescued Cathepsin B activation [106]. 

However, clinical data of ceramide levels in GBA1-PD are conflicting. One study comparing 

brain ceramide levels in patients with Lewy Body Disease (LBD) vs age-matched controls 

showed elevations of ceramide in LBD regardless of variant status [107]. Indeed, these data 

collectively suggest altered sphingolipid processing in patients with Lewy Body Disease, but 

does not show clean directionality on ceramide levels.

It is also possible that GCase mediated lipid dysregulation may be challenged beyond 

ratios of specific GCase substrates, suggesting greater lipid imbalances that may influence 

pathologies. Interestingly, several other proteins involved in glycosphingolipid enzymatic 

processing have also been implicated as PD risk genes, specifically functioning in the 

ceramide metabolism pathway (e.g. GALC, GLA, SMPD1, ASAH1) [6,8,108]. These 

findings suggest a collective dysregulatory network which may lead to lipid imbalances 

and cellular dysfunction. Recent data suggests that plasma multiple glycosphingolipid levels 

may be abnormal in PD patients with or without select GBA mutations, nominating lipid 

dyshomeostasis as a convergent phenomenon across PD subtypes [109]. Studies using 

unbiased lipidomic analyses across glycosphingolipid processing with respect to GCase 

activity may provide insight into functional requirement and makeup of lipid profiles with 

respect to disease progression and tissue type.

Glucocerebrosidase and the Autophagic Lysosomal System

Lysosomal network genes and enzymes function in a carefully regulated and coordinated 

manner as part of cellular autophagy-lysosome system. As such, many hypotheses of GCase-

related cellular dysfunction connect GCase-induced impairments to global lysosomal/

autophagic dysfunction. Several studies have explored and documented global impairments 

in the autophagy lysosomal system as a product of GCase deficiency [110–112]. GCase 
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deficiency has also been associated with disruption to chaperone-mediated autophagic 

programs [84].

However, autophagic responses to GCase damage may differ depending on model system. 

One study investigating the role of proteasomal turnover and autophagic regulation in 

mutant flies with gba1b deficiency (the drosophila ortholog of GBA1) showed no GCase-

associated perturbation in global autophagy or other protein regulation systems [113]. The 

study did find higher levels of extracellular vesicle synthesis and release in gba1b mutants, 

indicating a potential pathologic role in vesicle cycling and protein aggregation [113]. 

One study investigating post-mortem brain tissue assessed sphingolipid hydrolase activity 

to determine whether network sphingolipid dysregulation contributed to PD decline [96]. 

The study identified GCase impairment to be accompanied by a network of dysfunctional 

hydrolase activities, leading to impairments in complex ganglioside concentrations [96]. 

Importantly, sphingolipid processing impairments were correlated with aging in control 

subjects, but were more pronounced in PD subjects. These findings suggest the concept of 

lysosome enzymatic fatigue as a product of aging, which may provide important context in 

the malignancy and penetrance of GBA mutations.

Deficiencies in other lysosomal-associated proteins have been shown to induce GCase 

pathologies. We and others have found that patients with progranulin mutations (GRN) 

that develop frontal temporal dementia (FTD) show lower levels of GCase activity 

[114,115]. Using iPSC-derived cortical neurons, we showed GRN-mutations fail to convert 

prosaposin into saposin-C, a critical activator of functional GCase [114]. GRN-deficits 

in GCase activity have also been reported to be a product of incompletely glycosylated 

GCase protein [115]. These findings were replicated in GRN KO mice, with evidence 

that GCase activity deficits in neurons can be corrected through administration of AAV-

progranulin [115]. It has been suggested that progranulin regulates GCase activity through 

a number of different mechanisms. Progranulin has been shown to directly bind to GCase 

and regulate lysosomal compartmentalization of GCase [116,117]. In additional to failed 

GCase activation through saposin C, progranulin deficiency also causes dysregulation of 

bis(monoacylglycerol)phosphate (BMP), an anionic phospholipid that has been associated 

with GCase regulation [118].

GCase function has also been intriguingly linked with another common PD risk gene, 

LRRK2 (which encodes for leucine-rich repeat kinase-2). Similar to GBA1, LRRK2 
dysregulation is linked to both genetic and sporadic forms of PD. Our group has shown 

that LRRK2-mutant iPSC-derived dopaminergic neurons show lower GCase activity that 

can be rescued through LRRK2 inhibition, primarily through Rab10-mediated regulation 

of lysosomal GCase [119]. A study investigating p.D409V murine astrocytes also showed 

rescue of lysosomal pathologies through inhibition of LRRK2 [120]. Studies in transgenic 

mice have shown a significant depletion of GCase protein in LRRK2 KO mouse brains 

[121]. Clinical studies have recently highlighted an interaction in compound heterozygous 

and LRRK2 mutant carriers indicating a potential role for LRRK2 to modify dysfunction. 

A study monitoring patient performance on the Montreal Cognitive Assessment (MoCA) 

indicated LRRK2/GBA1-mutant carriers had slower rates of decline than GBA1-mutant 

carriers [122]. Yahalom et. al. described similar data from a smaller cohort that showed 
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lower incidence of RBD, dementia and psychosis in the dual mutant LRRK2/GBA1 cohort 

[123]. The interaction between LRRK2 modulation of GBA1 requires further study to 

understand mechanistic links between the two proteins in relevant cell types.

Impairment of Glucocerebrosidase Trafficking and ER Stress

Over the last decade, studies have described the role of ER stress in PD pathophysiology. 

One prominent hypothesis is that mutant misfolded GCase, due primarily to the prevalence 

of nonsynonymous missense mutations, fails to traffic to the lysosomal compartment 

and induces proteostatic stress signaling and ER-associated degradation (ERAD) causing 

ER stress. Bendikov-Bar et. al. showed over 50% of p.L444P mutant GCase in GD-

patient derived fibroblasts was retained in the ER and polyubiquitinated for proteasomal 

degradation [124]. Similarly, using p.N370S patient-derived fibroblasts, Thomas et. al. 

showed GBA haploinsufficiency to be accompanied by lower LIMP2 expression levels, 

thus decreasing efficiency of GCase trafficking to the lysosome [125]. Another study used 

heterozygous p.N370S patient-derived iPSCs differentiated into dopaminergic neurons to 

show upregulated unfolded protein response (UPR) and ER-stress markers compared to 

control DA neurons [126]. The study also highlighted a retention of high-molecular weight 

GCase isoforms, most likely attributed to improper GCase glycosylation processing in the 

golgi due to ER retention [126].

Other studies have also shown human cellular models of GCase inhibition and dysfunction 

to lead to ER stress, including several that link αSyn dysregulation and aggregation as a 

cause and consequence of ER-mediated GCase impairment and failure to reach lysosomes. 

Smith et. al. showed ER-GCase retention and ER stress was specific to the p.L444P variant 

compared to the p.E326K mutation in patient fibroblasts [127]. Certain mutant variants 

of GCase may induce improper folds or negatively impact LIMP2 binding which may 

promote ER retention and stress. Correcting GCase misfolding has been an attractive target 

for therapeutic intervention, as multiple studies have investigated the efficacy of molecular 

chaperones to rescue GCase pathologies. The repurposed chaperone molecule Ambroxol 

was previously shown to enhance GCase levels in mutant fibroblasts from GD and GBA1-

carrier PD patients and healthy controls [128]. Subsequent in vivo validation studies 

confirmed Ambroxol increased GCase activity in the brains of rodents and non-human 

primates [128,129]. Most recently, after the successful completion of both phase I [130] and 

phase II clinical trials (ClinicalTrials.gov Identifier: NCT05287503), a large-scale, multi-

center phase III clinical trial was confirmed, indicating evidence of potential clinical utility 

for chaperone-based pharmacological agents. Several other small molecule chaperones have 

also progressed through various stages of clinical development for the treatment of both GD 

and GBA1-PD [131].

However, it is still unclear whether ER stress is driven primarily through direct GCase 

interaction or through secondary GCase mechanisms such as αSyn aggregation and 

lysosomal dysfunction. Stojkovska et. al. demonstrated that aggregated αSyn induced ER 

fragmentation and disrupted proper protein folding in midbrain dopaminergic cultures 

[132]. These pathologies could be rescued through the use of small-molecule drugs that 

promote ER proteostasis and trafficking [132]. These findings also add to the notion 
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that many PD pathophysiologies are driven through impaired proteostatic machinery, both 

in the autophagy-lysosomal and the ubiquitin-proteasomal systems, suggesting a class of 

mechanistic targets that may be relevant to multiple PD subtypes.

Glucocerebrosidase Deficiency in Immune Cells

Mechanistic studies exploring the link of GCase deficiency and PD pathogenesis have 

largely centered on cell-autonomous neuronal dysfunction. However, recent work has 

highlighted how GCase abnormalities and impaired lysosomal function in immune 

cells and glia may contribute to neurodegenerative processes. Indeed, the prominence 

of dyslipidemic Gaucher Cells in GD suggests a particular vulnerability in myeloid 

cells to GCase impairment [133]. Lysosomes are critical sensors in scavenging/antigen-

presenting cell populations such as myeloid cells and lymphocytes. Lysosomes drive 

cellular uptake programs like phagocytosis and modulate gene expression to mediate 

local microenvironments and induce appropriate cytokine/chemokine signaling. Thus, 

dysfunctional GCase, or associated enzymes like LRRK2 and progranulin with high 

expression in immune cells, may have significant impact on disease.

Neuroinflammation is a universal signature in the pathophysiology of synucleinopathies. PD 

neuropathology in accompanied by recruitment of both reactive microglia and astrocytes 

to primary sites of lesions [134]. Neuroimaging PET tracer studies also validate the 

localization of activated microglia to the substantia nigra of idiopathic PD patients 

[135,136]. Temporal post-mortem analysis of PD brains that received therapeutic transplants 

of fetal stem cells have also suggested that the temporal development of naïve LP is 

preceded by focal recruitment of CD45+ microglia, indicating a role in microglial signaling 

and reactivity in the development in pathology [137]. Recent studies in animal models of 

αSyn seeding have also demonstrated inflammatory glial processes to modify the kinetics of 

αSyn pathology [138,139]. Aside from CNS glial populations, both peripheral macrophages 

and T-cells have been implicated in PD pathogenesis [140,141]. T-cells from PD patients 

have been shown to bind to αSyn antigenic epitopes and may play a role in directly 

interacting with resident glial populations or dopaminergic neurons presenting MHC Class I 

[141].

There are several linking factors which implicate the role of GCase impairment in immune 

and inflammatory cell modification of neuronal pathologies. Microglial activation and 

cytokine release have been prominently associated with multiple animal models of GCase 

deficiency [142–144]. Studies utilizing the nestin-CRE floxed mouse modeling GCase 

impairment in neurons demonstrate engagement of lipid-engorged mac-2+ microglia in 

regions preceding neuronal loss and behavioral deficits [145,146]. Mutant mice as well as 

mice treated with CBE show microglial reactivity [144,147,148]. Soria et. al. generated 

a mouse with selective KO in dopaminergic neurons and observed prominent microglial 

activation without overt neurodegeneration or αSyn aggregation [149]. These data suggest 

a contribution in glial-specific GCase impairment in the degenerative thresholding of 

dopaminergic neurons. Astrocytic pathologies have also been observed in GBA1-PD 

models. Primary murine astrocyte cultures with p.D409V mutations show decreased 

lysosome counts and higher lysosomal pH than control astrocytes [120].
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Peripheral monocytes and lymphocytes are also potent reservoirs of lysosomal hydrolase 

activity, including prominent GCase expression and activity [150,151]. Impaired 

glycosphingolipid processing can activate peripheral myeloid cells and induce cytokine 

production and release through GlcCer accumulation [152]. Studies have shown peripheral 

monocytes collected from both idiopathic PD and GBA1-PD patients have significantly 

dampened GCase activity, potentially highlighting a robust source for biomarker 

development and, ultimately, target engagement. Recently, Wallings et. al. described a 

multiplexed flow-cytometry based readout for GCase and LRRK2 activity from PD 

patient PBMCs, suggesting their utility as a reliable tandem biomarker for immune-related 

deficiencies associated with PD pathophysiology [153]. Longitudinal studies monitoring 

peripheral GCase enzyme activity correlated with disease course are ultimately needed to 

determine whether peripheral immune cells can serve as a surrogate measure for brain 

GCase activity.

Stemming from evidence in GD of differential secretion patterns of cytokines and 

chemokines, several groups have investigated cytokine release as a function of GCase 

activity. One study investigating GBA1- and LRRK2-mutant carriers showed no discernable 

differences in CSF or peripheral cytokine levels between groups [154]. These findings are in 

contrast to other studies that have found differential cytokine release profiles in GBA1-PD 

patients [155,156]. Assays to measure cytokine levels have markedly variable sensitivities 

and may generate conflicting results. Larger scale studies with consistent methodologies are 

necessary to resolve the pattern of cytokine/chemokine release related to GCase pathology.

Although there are convincing pathologies relevant to immune/inflammatory involvement 

in GBA1-PD, the relative contributions of GCase impairment in these cells, or their 

mechanisms associated with neuronal dysfunction are enigmatic. Furthermore, studies have 

shown clear disparities in immune cell signatures and function in humans vs animal model 

systems [157,158]. Thus, studies exploring human-cell based interactions of these cell types, 

perhaps through co-culture methods or organotypic/organoid modeling systems, will be 

important to highlight how compounded GCase pathologies in multiple cell types may cause 

neurodegenerative disease.

Challenges in Resolving Glucocerebrosidase Function in Disease

Several challenges exist to better understand how GCase dysregulation and impairment 

may contribute to the development of PD pathophysiology. A primary barrier to functional 

genomic understanding of GCase has been species disparities in GCase regulation, function, 

and mutational output depending on model system. For example, the p.N370S mutation 

most commonly found in PD patients causes embryonic lethality in mice [159]. Similarly, 

the frequently used transgenic animal model for GCase therapeutic targeting, p.D409V, has 

not been associated with the development of PD (although the p.D409H mutation associated 

with PD has also been used to monitor pathological effects of mutant GCase) [160,161]. 

Further development of GCase mutant transgenic lines and mutation-specific pathologies 

may illuminate key gaps in functional understanding and associations to genotype-specific 

pathophysiology. Studies employing both animal model systems in conjunction with human-

cell based paradigms may be advantageous in clarifying GCase biology.
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Another critical roadblock is poor penetrance of mutations and the development of disease. 

Recent efforts have utilized patient derived iPSCs to determine genetic modifiers of GCase 

penetrance. A large-cohort GWAS study investigating genetic risk loci for GBA-risk and 

age-of-onset identified variants near the SNCA and CTSB loci to be the most significant 

modifiers of GCase, although without very prominent effects [79]. One study on genetic 

modification of the GBA1 locus interrogated regulatory interactions and suggests expression 

in the CNS (SN and cortex) is mediated through trans-regulatory action from other 

chromosomes, whereas peripheral GCase expression is mediated through cis-regulatory 

elements [162]. Another study screened 305 PD patients vs 207 controls to identify GBA 

variant modifiers and found the strongest interactors to be an alternate variant in the GBA1 
locus and variants in genes that cause mucopolysaccharidoses [163]. Better understanding of 

specific SNPs or loci that modify CNS GCase expression will be necessary to understand 

differential expression in tissue/cell types as well as identify genetic targets for intervention. 

Recent advances in pooled and arrayed CRISPR screening methods should be employed to 

determine how modified or shut-down expression across the genome may impact GCase 

activity and function. However, a significant challenge with current methods is accounting 

for epigenetic and environmental triggers and facilitators that contribute to modified 

penetrance. As iPSCs largely lose epigenetic regulatory signals during the reprogramming 

phase, recent efforts have turned to direct fibroblast-neuron differentiation programs to 

better understand genetic regulatory tags in patient-derived material [164,165].

Recent efforts to enhance the probing of patient GCase function have highlighted 

the importance of higher resolution, more selective assays in clinical characterizations 

of GBA1-PD. GCase activity assays feature non-specific noise from extra-lysosomal 

glucocerebrosidases (GBA2) as well as activity from other glucosidase family enzymes. The 

development of flow-cytometry based probes specific to lysosomal compartmentalization 

have improved the target signal of GCase activity detection, but can still be noisy. Methods 

for optimizing readouts of GCase activity have been discussed in previous reviews [166]. A 

recent study from Deen et. al. describes the development of lysotropic GCase fluorophores 

(LysoFQ-GBA) to be used for enhanced and targeted GCase activity measurements 

specifically in lysosomes of patient-derived tissues [167]. Similarly, multiplexed fluorescent 

probe systems to monitor GCase activity in tandem with other PD-associated enzymatic 

activity (LRRK2) may provide more appropriate context in the relative role of lysosomal 

GCase activity with other convergent pathologies identified in PD patients [153].

Lastly, integrating GCase dysfunction across relevant cell types will be critical moving 

forward, particularly with respect to therapeutic targeting. For example, it is still unclear 

what role GCase activity in CNS glia or peripheral monocyte and lymphocyte populations 

plays in facilitating neurodegenerative pathologies. Furthermore, new studies, particularly 

including scRNA and snRNA datasets, continue to confirm the level of heterogeneity 

found in these cell types and their potential roles in mediating CNS microenvironments. 

Current efforts for GCase replacement, either through enzyme replacement therapy or gene 

therapy, may be limited by ineffective comprehensive targeting of the appropriate cell types. 

For example, AAV serotypes currently in clinical use for the treatment of PD and other 

neurological disorders feature poor microglial tropism which may be necessary for effective 

target engagement. Establishing better GCase and lysosomal functional profiles across these 
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cell types, as well as their potential interactions with neurons, will be important to know to 

guide targeting strategies for improved GCase function.

Conclusions

Our knowledge of GBA1-PD has increased significantly over the course of the past two 

decades. Although the genetic link of GBA and PD has been well established, understanding 

how GCase plays a role in PD and related disorders has been limited by the lack of adequate 

model systems and the tools to accurately measure the activity of lysosomal GCase. Despite 

these barriers, important recent work has provided better insight into GCase function in 

different cell types across both the central nervous system and the periphery. This expanded 

picture of GCase dysfunction provides a platform to evaluate GCase-associated mechanisms 

in the context of other pathogenic pathways that have been implicated in PD. Hopefully, 

this will lead to improved translational studies for the development of effective therapeutic 

strategies for PD and other related neurodegenerative diseases.
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Research Highlights

• Mutations in GBA1 are the most prevalent genetic risk factor for Parkinson’s 

disease.

• Lysosomal GCase dysfunction is a conserved mechanisms across genetic and 

idiopathic forms of disease.

• Enhancing GCase activity and function, in both normal and mutant protein, 

may be a powerful therapeutic avenue.

• Methods to analyze lysosomal GCase activity and function require 

standardization and higher signal-to-noise ratios for proper assessment of 

pathology.

• Identifying modifiers of GBA-PD penetrance will be critical to understand 

GCase dysfunction in disease.

• Non-neuronal glucocerebrosidase dysfunction, particularly in immune and 

glial cells, may contribute to neurodegeneration and requires future 

assessment.
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