Skip to main content
. Author manuscript; available in PMC: 2024 Jul 1.
Published in final edited form as: Med Image Anal. 2023 Apr 25;87:102828. doi: 10.1016/j.media.2023.102828

Table 4:

Comparison of model performance on WRAT classification task

WRAT classification with nback fMRI

Method ACC SEN SPE AUC

Graph based models TAG 0.6084 ± 0.0253 0.6494 ± 0.0363 0.5713 ± 0.0360 0.6574 ± 0.0276
SAGE 0.6427 ± 0.0258 0.4564 ± 0.0395 0.8134 ± 0.0295 0.7099 ± 0.0274
GCN 0.6432 ± 0.0262 0.5202 ± 0.0361 0.7691 ± 0.0334 0.7094 ± 0.0279
CHEB 0.6448 ± 0.0249 0.7623 ± 0.0305 0.5131 ± 0.0373 0.6876 ± 0.0283
GAT 0.6967 ± 0.0246 0.7147 ± 0.0352 0.6815 ± 0.0340 0.7149 ± 0.0276

Hypergraph based models HGSVM-L 0.6430 ± 0.0253 0.5833 ± 0.0381 0.6972 ± 0.0333 0.7168 ± 0.0271
HGSVM-R 0.6511 ± 0.0245 0.5978 ± 0.0371 0.6995 ± 0.0332 0.6960 ± 0.0273
HGNN 0.6531 ± 0.0238 0.6975 ± 0.0330 0.6051 ± 0.0369 0.7150 ± 0.0268
wHGNN 0.6851 ± 0.0241 0.7314 ± 0.0317 0.6301 ± 0.0379 0.7648 ± 0.0238
dw HGCN (ours) 0.7149 ± 0.0245 0.7597 ± 0.0314 0.6614 ± 0.0375 0.7760 ± 0.0242

WRAT classification with emoid fMRI

Method ACC SEN SPE AUC

Graph based models GCN 0.6203 ± 0.0256 0.5591 ± 0.0373 0.6846 ± 0.0345 0.6606 ± 0.0281
SAGE 0.6276 ± 0.0266 0.6232 ± 0.0396 0.6315 ± 0.0345 0.6410 ± 0.0302
CHEB 0.6371 ± 0.0268 0.6235 ± 0.0375 0.6512 ± 0.0367 0.6828 ± 0.0293
TAG 0.6428 ± 0.0254 0.6619 ± 0.0356 0.6250 ± 0.0352 0.6885 ± 0.0279
GAT 0.6606 ± 0.0268 0.6185 ± 0.0390 0.6956 ± 0.0345 0.6892 ± 0.0291

Hypergraph based models HGSVM-R 0.6105 ± 0.0252 0.5378 ± 0.0367 0.6772 ± 0.0356 0.6508 ± 0.0287
HGNN 0.6123 ± 0.0260 0.6701 ± 0.0354 0.5559 ± 0.0374 0.6544 ± 0.0291
HGSVM-L 0.6191 ± 0.0258 0.5882 ± 0.0392 0.6469 ± 0.0362 0.6369 ± 0.0287
wHGNN 0.6208 ± 0.0259 0.6612 ± 0.0357 0.5768 ± 0.0378 0.6534 ± 0.0292
dw HGCN (ours) 0.6485 ± 0.0267 0.7852 ± 0.0333 0.5158 ± 0.0374 0.7173 ± 0.0279