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Abstract

Brain derived neurotrophic factor (BDNF) signalling through its high-affinity tropomyosin 

receptor kinase B (TrkB) is known to have potent effects on motor neuron survival and 

morphology during development and in neurodegenerative diseases. Here, we employed a novel 

1NMPP1 sensitive TrkBF616 rat model to evaluate the effect of 14 days inhibition of TrkB 

signalling on phrenic motor neurons (PhMNs). Adult female and male TrkBF616 rats were divided 

into 1NMPP1 or vehicle treated groups. Three days prior to treatment, PhMNs in both groups 

were initially labeled via intrapleural injection of Alexa-Fluor-647 cholera toxin B (CTB). After 

11 days of treatment, retrograde axonal uptake/transport was assessed by secondary labeling of 

PhMNs by intrapleural injection of Alexa-Fluor-488 CTB. After 14 days of treatment, the spinal 

cord was excised 100 μm thick spinal sections containing PhMNs were imaged using two-channel 

confocal microscopy. TrkB inhibition reduced the total number of PhMNs by ~16%, reduced 

the mean PhMN somal surface areas by ~25%, impaired CTB uptake 2.5-fold and reduced the 

estimated PhMN dendritic surface area by ~38%. We conclude that inhibition of TrkB signalling 

alone in adult TrkBF616 rats is sufficient to lead to PhMN loss, morphological degeneration and 

deficits in retrograde axonal uptake/transport.

Keywords

retrograde transport; phrenic motor neurons; neurotrophins; neural plasticity

*Correspondence: Gary C. Sieck, Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 1st St SW, Rochester, MN 
55905, sieck.gary@mayo.edu.
Author Contribution: MF and GS contributed to conception and design of the study. MF, DD, OK and GS performed experiments 
and analyzed the data. MF wrote the first draft of the manuscript. MF, DD, OK and GS made the figures, contributed to manuscript 
revision, read, and approved the submitted version.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflicts of Interest: The author declares no conflict of interest.

HHS Public Access
Author manuscript
Mol Cell Neurosci. Author manuscript; available in PMC 2024 June 01.

Published in final edited form as:
Mol Cell Neurosci. 2023 June ; 125: 103847. doi:10.1016/j.mcn.2023.103847.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Phrenic motor neurons (PhMNs) located in the cervical spinal cord innervate the diaphragm 

muscle (DIAm) and their axonal discharges are essential for DIAm activation during a 

variety of ventilatory and non-ventilatory behaviours [1]. The orderly recruitment of DIAm 

motor units underpins the effective matching of diverse DIAm pressure and endurance 

requirements to different behaviours [1,2]. Smaller PhMNs with lower capacitance (higher 

input resistance) and slower axonal conduction velocities are recruited first for ventilation. 

By contrast, larger PhMNs with higher capacitance (lower input resistance) and faster axonal 

conduction velocities are recruited later [1,3], generating the greater pressures required for 

effective straining and expulsive behaviours (eg. defecation, coughing and sneezing) [1,2].

Smaller PhMNs innervate type I or IIa DIAm fibres comprising Slow (S) or Fatigue-

Resistant (FR) motor units, respectively, whilst larger PhMNs innervate type IIx/IIb DIAm 

fibres comprising Fast Fatigable (FF) motor units [1,2]. During development and throughout 

the lifespan, the efficacy of DIAm straining and expulsive behaviours is influenced by the 

abundance and function of FF motor units [1]. In a variety of motor pools FF motor units 

and their larger constituent motor neurons (MNs) are most vulnerable to degeneration and 

death in MN conditions such as amyotrophic lateral sclerosis [ALS] [4–8] and ageing [9,10].

Neurotrophic signalling, influences MN function and survival during development [11–15] 

and various neuromotor disorders [16–21]. There is also evidence that BDNF signalling 

impacts the maintenance of IIx/IIb fibres of type FF motor units [22]. In particular, 

brain derived neurotrophic factor (BDNF) via its high-affinity full-length tropomyosin-

related kinase (TrkBFL) receptor mediates synaptic activity at central and peripheral 

synapses [14,23], including PhMNs and DIAm [24,25], via mechanisms including the 

phosphorylation of the transcription factor CREB (pCREB) [26,27] in conjunction with 

phosphorylated ATF-1 (pATF-1) [28]. When pCREB/pATF-1 is inhibited, neuronal death 

can ensue [29]. BDNF also signals through truncated (TrkBT1 and TrkBT2) receptors and 

the low affinity p75 neurotrophin receptor (p75NTR), all of which have been implicated in 

MN loss [18,30]. During development, deletion of the TrkBFL receptor causes MN death 

and perinatal death, precluding the assessment of adults [12]. Using an alternative Cre-Lox 

approaches, cortical pyramidal neurons undergo morphological remodeling and neuronal 

death in response to an inducible TrkB deletion (of all TrkB isoforms) in adult mice [31]. 

Loss and atrophy of MNs within the facial nucleus occurs when TrkBT1 is overexpressed 

following stereotaxic injection of the viral vector promotor [17]. However, the specific 

effects of impaired TrkBFL signalling on MNs of otherwise healthy animals remains elusive.

We previously found that TrkB inhibition in adult TrkBF616A mice impairs DIAm function 

[32,33]. The TrkBF616A chemogenetic mice expresses knock-in alleles that permit rapid, 

selective and reversible inhibition of TrkBFL kinase activity upon exposure to the kinase 

inhibitor, 1NMPP1 [34]. To date, MN survival and morphology have not been investigated 

under conditions of inducible TrkBFL inhibition. As non-invasive intrapleural cholera toxin 

β labeling of PhMNs is capricious in mice [35], we developed this novel chemogenetic 

TrkBF616 rat, with similar DIAm neurotransmission impairments to those of TrkBF616A mice 

[36] to unambiguously assess PhMNs.
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We aimed to investigate the effects of inhibited TrkB kinase activity on PhMN survival and 

morphology. We hypothesized that in TrkBF616 rats, 1NMPP1-induced inhibition of TrkB 

kinase will result in PhMN loss and reduced size. We further hypothesized that TrkB kinase 

inhibition using 1NMPP1 would blunt pCREB/pATF-1 in response to BDNF.

Results

14-day TrkB kinase inhibition does not affect body mass

The initial and final body weights of TrKB kinase inhibited (1NMPP1) and vehicle treated 

rats were comparable, when sex differences were considered. The final body mass of 

females in both 1NMPP1 (~259 g, 7.5% increase) and vehicle (~272 g, 5.4% increase) 

treated groups was significantly lower than males (1NMPP1 ~556 g, 3.7% increase and 

vehicle ~587 g, 3% increase; F(1,10)=4.9, P=0.04, Two-way ANOVA).

14-day TrkB kinase inhibition reduces the number of PhMNs

The rat treatment and PhMN labeling protocol, used to determine the total number of 

PhMNs and to assess reduced retrograde axonal uptake/transport in the presence of impaired 

BDNF/TrkB signalling is outlined in Figure 1. In both vehicle and 1NMPP1 rats, we 

observed robust Alexa-Fluor647 labeling of PhMNs (Figure 2A). In 1NMPP1 rats (207 ± 

13), the total numbers of PhMNs were reduced by ~16% compared to vehicle treated rats 

(245 ± 14; P=0.001, Student’s unpaired t-test; Figure 2B).

14-day TrkB kinase inactivity reduces PhMN somal surface area and motor unit size 
distribution

Based on an unbiased (stereologically determined) sample (Figure 1) of PhMNs (~45 

PhMNs per animal; Figure 3), we observed that the mean PhMN somal surface area of 

PhMNs in 1NMPP1 rats (2096 ± 192 μm2) was ~25% smaller compared to vehicle treated 

controls (2768 ± 310 μm2; P=0.0027, Student’s unpaired t-test; Figure 3B).

The distribution of PhMN somal surface areas in 1NMPP1 rats was shifted toward smaller 

PhMNs compared to vehicle treated controls (P<0.0001, Kolmogorov-Smirnov; Figure 3C).

In a manner identical to prior reports [9,35], PhMNs were binned into size tertiles, based 

on mean tertile boundaries in vehicle control rats. The % of PhMNs within each tertile 

was dependent on the interaction between treatment group and size (F(2,24)=17.9, P<0.0001, 

two-way ANOVA), with an increased % of total PhMNs in the smaller size tertile (vehicle: 

31%; 1NMPP1: 48%, P=0.0006), unchanged in the medial size tertile (vehicle: 33%; 

1NMPP1: 40%, P=0.32), and a decreased % of PhMNs in the larger size tertile (vehicle: 

36%; 1NMPP1: 12%, P<0.0001) of 1NMPP1 treated 1NMPP1 rats compared to vehicle 

controls (Figure 4A).

A similar pattern was found when comparing the absolute numbers of PhMNs within each 

size tertile, with numbers dependent on the interaction between treatment group and size 

(F(2,24)=16.1, P<0.0001, two-way ANOVA; Figure 4B). In 1NMPP1 rats, there was an 

32% greater number of smaller PhMNs (99 ± 12) compared to vehicle controls (74 ± 13; 

P=0.039; Figure 4B). In 1NMPP1 rats, there was an unchanged number of medial PhMNs 
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(85 ± 21) compared to vehicle controls (82 ± 23; P>0.99; Figure 5B). In 1NMPP1 rats, there 

was an 70% reduction in number of larger PhMNs (26 ± 11) compared to vehicle controls 

(88 ± 17; P<0.0001; Figure 4B).

14-day TrkB kinase inhibition reduces the efficacy of retrograde axonal uptake/transport of 
CTB in PhMNs

As shown in Figure 5, 14-day TrkB kinase inhibition significantly reduced the number of 

dual labeled PhMNs. The % of PhMNs labeled only with Alexa Fluor647 CTB is indicative 

of the failed axonal uptake/transport following 1NMPP1 treatment. The % of PhMNs solely 

labeled by Alexa Fluor647 CTB was increased ~2.5-fold in 1NMPP1 rats (15 ± 3 %) 

compared to vehicle rats (6 ± 2 %; P=0.0002, Student’s unpaired t-test; Figure 5B).

In 1NMPP1 rats, the somal surface areas of PhMNs solely labeled by Alexa Fluor647 CTB 

(2626 ± 389 μm2) was ~33% larger than dual labeled PhMNs (1970 ± 233 μm2; P=0.0008; 

Student’s Paired t-test; Figure 5C).

TrkB kinase inactivity reduces the number of PhMN dendritic trees

We next investigated the number of primary dendrites emanating from each PhMN soma 

(Figure 6). The number of primary dendritic trees in rats with 14-day TrkB kinase inactivity 

(5.3 ± 0.6) was reduced by 24% compared to vehicle controls (7.0 ± 0.5; P=0.0002, 

Student’s unpaired t-test; Figure 6B).

When stratified into tertiles, the number of PhMN primary dendrites was dependent on 

treatment (F(1,12)=29.1, P=0.002; two-way ANOVA). Bonferroni post hoc tests revealed a 

reduced number of PhMN primary dendrites in 1NMPP1 rats, with an ~19% reduction in 

the smaller tertile (P=0.04), an ~19% reduction in the medial tertile (P=0.016) and an ~29% 

reduction in the larger tertile (P=0.0001; Figure 6C), compared with vehicle controls.

TrkB kinase inactivity reduces the surface area of the PhMN dendritic arbour

The dendritic arbour of a PhMN comprises the sum surface area or length of each dendritic 

tree emanating from the soma. We estimated total dendritic arbour surface area by summing 

the estimated dendritic tree surface areas, using a quadratic approximation previously 

validated in lumbar MNs [37] and adapted to PhMNs [38], and summing the total for 

each PhMN assessed. Overall, the total dendritic arbour surface area of 1NMPP1 rats (17140 

± 2195 μm2) was reduced by ~38% compared to vehicle controls (27690 ± 2733 μm2; 

P<0.0001, Student’s unpaired t-test; Figure 7A).

When stratified into tertiles, total dendritic arbour surface areas were progressively larger 

in with the increasing size of the PhMN somal tertile, regardless of treatment group 

(F(2,24)=7.7, P=0.0026; two-way ANOVA; Figure 7B). Total dendritic arbour surface 

area was also dependent on treatment group (F(1,12)=32.1, P=0.0001; two-way ANOVA). 

Bonferroni post hoc tests revealed a reduced dendritic arbour surface area in 1NMPP1 rats, 

with an ~33% reduction in the medial tertile (P=0.02) and an ~36% reduction in the larger 

tertile (P=0.0006; Figure 7B), compared with vehicle controls.
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Acute TrkB kinase inhibition reduces the abundance of pCREB (serine 133), pATF-1 the 
pCREB to total CREB ratio and total CREB expression in response to intrathecal BDNF 
within the cervical spinal cord ventral horn

We have previously shown in the rat that CREB expression increases in response to 

intrathecal BDNF [39]. As TrkBFL signals through pCREB/pATF-1 [27,40], we assessed the 

expression of pCREB, pATF-1, total CREB and the pCREB to CREB ratios in TrkBF616 rats 

following intrathecal BDNF in vehicle (artificial cerebrospinal fluid) and 1NMPP1-treated 

rats (Figure 8A). pCREB levels (normalised to total protein) were decreased by ~70% in 

the BDNF+1NMPP1 group (0.045 ± 0.039, n=4) compared to the BDNF group (0.150 ± 

0.103, n=4; P=0.024, Student’s unpaired t-test; Figure 8B). pATF-1 levels (normalised to 

total protein) were decreased almost totally, ~99% in the BDNF+1NMPP1 group (0.0005 

± 0.0002, n=4) compared to the BDNF group (0.0743 ± 0.0303, n=4; P=0.0286, Mann-

Whitney U-test; Figure 8C). pCREB/total CREB ratio was decreased by ~32% in the 

BDNF+1NMPP1 group (0.67 ± 0.14, n=4) compared to the BDNF group (0.46 ± 0.13, n=4; 

P=0.014, Student’s unpaired t-test; Figure 8D). Total CREB (normalised to total protein) 

was also reduced by ~57% in the BDNF+1NMPP1 group (0.094 ± 0.067, n=4) compared to 

the BDNF group (0.218 ± 0.109, n=4; P=0.024, Student’s unpaired t-test; Figure 8E).

Discussion

The results of the present study demonstrate four main findings in rats with 14-day 

inhibition of TrkB signalling: i) There is a loss of PhMNs following TrkB kinase inhibition; 

ii) The distribution of PhMN somal surface area is shifted toward smaller PhMNs following 

TrkB kinase inhibition; iii) Impaired retrograde axonal uptake/transport is evident in rats 

with TrkB kinase inhibition, which seems to affect larger neurons; and iv) There is a 

reduction in the number and size of PhMN dendritic trees following TrkB kinase inhibition. 

In this study we also demonstrate the potent and rapid inhibition (within one hour) of the 

main transcription factor associated with reduced TrkB kinase activity – pCREB/pATF-1 

in TrkBF616 rats. Taken together, these results support the hypothesis that BDNF/TrkB 

signalling has a potent effect on PhMN survival, retrograde axonal uptake/transport and 

morphology, with a summary of the findings of the present study, and a related investigation 

of DIAm neuromuscular transmission failure in TrkBF616 rats [36] presented in Figure 9.

The relationship between increased BDNF/TrkB signalling, maintenance of MN survival 

is well established during the developmental period of programmed cell death [12] and 

in response to nerve crush [41]. Frustratingly, BDNF/TrkB signalling becomes more 

complicated in ageing and adult neuromotor diseases, where different TrkB receptor 

isoforms (TrkB-truncated) are highly expressed, p75NTR BDNF receptors are more 

prevalent [17,42,43] and TrkBFL expression declines [44–46]. Indeed, ligand binding to 

these other receptors (TrkB-truncated and p75NTR) may contribute to MN death, although 

the precise mechanisms by which this occurs remains obscure, along with age- and 

disease dependent levels of BDNF bioavailability [18,30]. Adding to this complexity are 

observations that motor neurons within different neuroanatomical locations within the spinal 

cord may respond differently to different neurotrophins [47].
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In the current study, we were limited in our ability to selectively probe for different TrkB 

isoforms (including TrkBT1 and TrkBT2) and p75NTR in PhMNs, as the immunolabelling 

lacks sufficient specificity [19,48]. In previous evaluations of adult facial motor neurons 

with viral vectors increasing the expression of TrkBT1, concomitant evaluation of TrkBFL 

was not performed, with the authors speculating that vulnerability was likely dependent on 

the extent of TrkBT1 stifling TrkBFL rather than systematically altering TrkBFL expression 

[17]. In models of hippocampal excitotoxicity, there is some evidence suggesting that 

altering levels of TrkBT1 does not alter levels of TrkBFL [49], although this is far from 

conclusive [50].

Regardless, our results indicate an alternative pathway to neuronal death, beyond that of 

BDNF signalling via TrkBT1, TrkBT2 and the p75NTR may be occurring. It may be the 

case that in the smaller MNs that are constantly activated to perform ventilatory behaviours 

[1], that activity-dependent neurotrophic feedback is sufficient to maintain cellular health 

via metabolically-sensitive transcription factors (pCREB/pATF-1). By contrast, in the larger 

PhMNs, seldom activated to perform expulsive airway defence manoeuvres [1], BDNF 

signalling via TrKBFL is essential to maintain cellular health via the same pCREB/pATF-1 

pathway (Figure 9), which when inhibited leads to neuronal death [29]. In support of the 

non-activity dependent trophic mechanisms being of great importance in FF motor units, 

BDNF signalling appears to maintain type IIx/IIb muscle fibres [22]. Additionally, axonal 

transport speeds were identical between S and FR motor axons, yet type FF units alone were 

non-responsive to BDNF in the SOD1 mouse model of ALS [19]. Future studies uncovering 

the relative salience of metabolically sensitive transcription factors and altered or alternative 

BDNF signal transduction via TrkBT1, TrkBT2 and the p75NTR has critical implications for 

other neurodegenerative diseases, including those of motor neurons.

In the case of TrkBFL inhibition, germline knockout drastically reduces MN number, 

although the effect in adults is difficult to study as these knockout rodents do not survive 

beyond 1–2 days postnatal [12,34]. In adult heterozygote mutants, there is evidence of 

abundant NMJ morphological disruption and neurotransmission defects are observed [15], 

although no MN phenotype has been reported. In adult rodents with an inducible TrkBFL 

knockdown using Cre-lox approaches, neuronal death is readily apparent [31]. In the present 

study, we had good reason to expect that there would be an effect of TrkB inhibition on 

PhMN number, as we observed a marked effect of 14-day 1NMPP1 treatment on DIAm 

neuromuscular transmission [36], consistent with motor unit expansion following PhMN 

death [36] (Figure 9). Notably, due to the lack of overt denervation at the neuromuscular 

junction, these impairments are likely due to increased branch point failures due to increased 

innervation ratios [36] (Figure 9), rather than an effect on release or receptor sensitivity. To 

determine the effect of impaired TrkB signalling on PhMN survival in adults, we compared 

PhMN counts in TrkBF616 rats treated with 14 days of either Vehicle or 1NMPP1. Thus, 

we assessed PhMN number and retrograde axonal uptake/transport in TrkBF616 rats, where 

there is no reason to expect that the bioavailability of BDNF is limited. In support of this 

assumption, intrathecal BDNF did not increase pCREB/pATF-1 in TrkBF616 rats acutely 

treated with 1NMPP1 (this study), nor did BDNF rescue DIAm neuromuscular transmission 

deficits in TrkBF616 rats treated acutely or for 14-days with 1NMPP1 [36], although ex vivo 
approaches have shown altered BDNF levels via ELIZA in DIAm using various stimulation/
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blockade approaches [51]. Our approach also obviates the aforementioned problems of 

differential TrkB expression with age and any negative effects of developmental TrkB 

deficiency.

Our current findings of ~16% PhMN loss are modest compared to the effects of ageing 

(~30% bilateral loss of total PhMNs) and unilateral cervical spinal cord contusion injury 

(~50% loss unilaterally, 25% loss of total bilateral PhMNs) [9,52]. Though mild, the 

magnitude of difference in PhMN survival is ~triple the variability of our total PhMN 

counts (CV = ~5 %) (Figure 9). Importantly, there are other major contributions to PhMN 

loss beyond neurotrophic disturbances in both ageing and unilateral cervical spinal cord 

contusion injury. The most notable of these is inflammation, with inflammatory cytokines 

(notably tumour necrosis factor-α) steadily increasing in rodent serum and brain tissue 

with advancing age [53,54] and is associated with ageing-related MN death [53]. Similar 

inflammatory cytokine elevations following spinal cord injury may also contribute to MN 

loss beyond trauma necrosis [55,56]. The interactions between inflammation, oxidative 

stress, neurotrophins and neuronal death may be more direct than previously assumed, with 

BDNF/TrkB signalling implicated in mitochondrial homeostasis via TrkB receptors being 

located on mitochondria [57–59]. However, the direct relationship between dwindled BDNF/

TrkB signalling and mitochondrial structure and function within MNs remains unexplored.

The efficacy of BDNF/TrkB signalling itself is dependent on retrograde transport [60–62]. 

In addition, reduced levels of TrkB have been shown to reduce axonal transport [63], 

independent of BDNF availability [63]. In neurodegenerative conditions with severe MN 

loss, such as ALS [4,7,8,64], neurotrophic retrograde signalling is substantially impaired 

[20,21,43]. In chronic 1NMPP1 rats, we observed a ~two-fold increase in failed retrograde 

transport of CTB to PhMN somas. The subset of PhMNs that do not take up CTB is 

present in very low levels in control rats, consistent with past reports comparing “gold-

standard” retrograde nerve dip, with ganglioside-dependent [65] CTB retrograde labeling 

[66]. Importantly, neurons that failed to adequately transport CTB to the soma following 

chronic inhibition of TrkB kinase were larger than those whose transport remained effective. 

Thus, TrkB signalling may be more important in PhMNs that are infrequently activated, 

while those that are continually active may not require substantive neurotrophic support and 

instead be maintained with activity-related feedback mechanisms (Figure 9). Of great future 

interest will be the molecular characterization of this subset that fails to adequately engage 

in retrograde axonal uptake/transport. We speculate that the reinnervation capacity, which is 

essential throughout the lifespan [67], may be impaired with age in this PhMN population, 

as indicated by morphological disarray at DIAm NMJs [68–70] and decreased reinnervation 

capacity observed in old age [71,72].

Other groups have investigated neuronal morphology following BDNF/TrkB signalling 

inhibition in adults [31]. In MNs, somal size is particularly important, as size serves as 

the basis for recruitment, as well as for estimating motor unit type differences [1]. Under 

conditions where MN degenerate (eg. ageing and ALS), larger MNs are more susceptible 

to death and denervation [4,7,9,10,73–76]. We observed a robust reduction in PhMN somal 

surface areas of 1NMPP1 rats compared to controls. These findings are similar to those of 

facial motor neurons following over-expression of TrkBT1 [17]. Unlike in ageing, where 

Fogarty et al. Page 7

Mol Cell Neurosci. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the overall range of PhMN size was reduced, without changing the size of the smallest 

PhMNs [9], a simple death of larger PhMNs does not fully explain our results. Here, our 

size-distribution analysis shows that chronic TrkB inhibition leads to the shrinking of a 

discrete fraction of PhMNs in such a manner to have somal surface areas smaller than 

those of the smallest vehicle controls. There remains the possibility that TrkB inhibition 

results in a selective loss of larger PhMNs, but our size distributions suggest that remaining 

PhMNs undergo plastic changes consistent with somal shrinkage. A variety of molecular 

markers for the motor unit type specification of motor units exist [77–79], with some 

seemingly more developmental in relevance than true markers of type and most expressing 

in a gradiated fashion with or without an observed size relationship [7,80,81]. However, 

their major limitation is the failure to reliably distinguish motor neurons of type FR units 

from motor neurons of type FF units, hence the apparent loss of size-dependence of motor 

neuron classification in many of these molecular approaches [7,8,79,82]. The importance of 

distinguishing FR from FF units is more than just scholarly pedantism, as physiologically, in 

muscles of mixed motor units, type FR units are recruited to perform a markedly different 

endurance-related behavioural repertoire (e.g., breathing or walking), compared to the more 

ballistic activities type FF units are recruited to achieve (e.g., coughing or jumping) [1]. 

There are also well-documented pathophysiological reasons to evaluate size-dependent loss, 

with ageing and ALS exhibiting selective vulnerability of FF unit motor neurons and muscle 

[5–7,9,10,68,76,82–86]. Despite being somewhat arbitrary, the tertile approach to somal 

sizes allows for a solid physiological basis (i.e., capacitance and recruitment order – see an 

excellent review [79] for the molecular and functional advantages and limitations to unit 

type discrimination) for the identification of PhMNs as likely type S and FR or likely type 

FF.

It has been previously established that the number of dendritic trees and the size of the 

dendritic arbours are dependent on MN size, with larger MNs having a greater number 

and size of dendritic trees [5,6,87]. These properties are consistent with passive membrane 

properties such as capacitance and input resistance determining the order of MN recruitment 

[1,88]. In other cases of MN loss, the number of dendritic trees and dendritic arbourisations 

may increase or decrease depending on the motor pool and age of loss [5,6,85,89–91]. 

In studies where attention was given to MN size, these changes are predominantly in 

larger MNs, likely due to the increased vulnerability of FF motor units to neuromotor 

degeneration [5,6,85,87]. In our current study, we show that inhibition of TrkB signalling 

resulted in reduced surface areas of the entire dendritic post-synaptic domain of PhMNs 

(i.e., total dendritic surface areas). We interpret this finding as indicative of TrkB signalling 

being essential to maintain the post-synaptic substrate for PhMN inputs in adult rats. 

Maintenance of the post-synaptic PhMN domain is likely to be incredibly important in 

cervical spinal cord injury, where de novo inputs to PhMN somas and dendrites are likely 

to be essential for the recovery of DIAm motor unit function [92–96]. Recovery of DIAm 

activity has been shown to be dependent on BDNF/TrkB signalling, with gain- and loss-of-

function studies cementing the importance of these neurotrophin-associated neuroplasticity 

mechanisms [24,39,97]. However, despite the abundance of empirical evidence indicating 

the utility of BDNF/TrkB signalling in DIAm motor unit recovery, the pre- or postsynaptic 

locus of action, and whether the effect is perisomatic or distal to the PhMN somas is 
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unknown. Clarifying the effects of TrkB inhibition on PhMN dendrites (size-dependent or 

otherwise) will prove highly informative for any neurotrophic treatment strategy. Likewise, 

understanding the influence altered MN somal morphology has on motor unit recruitment 

and discharge will be valuable in many preclinical contexts.

To date, our studies in the TrkBF616A mice and the TrkBF616 rat have focused on the 

diaphragm motor unts, evaluating the effects of inhibiting TrkBFL kinase activity on 

PhMNs (the present study), DIAm NMJs [32,36], DIAm behaviours [33] or the activity 

of diaphragm motor units following spinal cord injury [97]. However, it is likely that some 

of the effects of impaired TrkB kinase activity on PhMNs is mediated by supraspinal and 

spinal neural circuits [1]. These inputs are to PhMNs are myriad [1], with BDNF/TrkB 

signalling shown to influence brainstem respiratory groups [98] and the pre-Bӧtzinger 

complex respiratory pattern generator [99]. Due to the amenability of the rat to robust 

and detailed functional ventilatory assessments [24,39,52,92,93,96,97], The TrkBF616 rat 

promises to be a useful tool to assess the physiological effects of network-wide TrkB kinase 

inhibition in sculpting the respiratory rhythm and pattern.

In summary, we provide evidence that inhibition of TrkB signalling in TrkBF616 rats results 

in death of PhMNs, reduced retrograde axonal uptake/transport and marked morphological 

disturbances. We are confident that the TrkBF616 rat model will be highly useful for 

examining the effects of TrkB signalling inhibition on PhMN function in various scenarios, 

particularly ageing and cervical spinal cord injury.

Methods

Animals and anesthesia:

This study was approved by the Institutional Animal Care and Use Committee (IACUC) 

and all procedures were performed in accordance with American Physiological Society’s 

Guiding Principles in the Care and Use of Vertebrate Animals in Research and Training. 

TrkBF616 rats were generated on a Sprague Dawley hybrid genetic background and were 

genetically modified to stably harbor a knock-in mutation in the Trk exon (a phenylalanine 

to alanine substitution) within the kinase subdomain sensitive to PP1 derivatives such as 

1NMPP1 [34]. In the presence of 1NMPP1, this mutation results in inhibition of TrkB 

kinase activity, in a manner similar to the TrkBF616A mouse [34] that we have used in 

previous studies [32]. We chose to develop and use the TrkBF616 rat model because reliable 

labeling of the PhMN pool by intrapleural injection of retrograde of CTB is not possible in 

mice.

All rats were individually housed and maintained on a 12-h light-dark schedule under 

specific pathogen-free conditions with ad libitum access to food and water. For chronic 

14-day experiments, adult (4 months of age) female and male TrkBF616 rats (n=4 per sex, 

except n=3 per sex in the control group) were used to selectively inhibit TrkB kinase 

activity following oral 1NMPP1 treatment (25 μM in drinking water). While undergoing 

chronic 14-day oral 1NMPP1 treatment, water intake was monitored daily. In TrkBF616A 

mice intraperitoneal injections of 1NMPP1 (~0.66 mg/kg) have been shown to inhibit TrkB 

activity within an hour [33]. Based on the consumption in drinking water (25 μM), ~1.4 
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mg/kg/day of 1NMPP1 is consumed by TrkBF616A mice, similar to the 1.7 mg/kg/day 

consumed in the present study by our TrBF616 rats. The dosage in drinking water (25 μM) 

has previously been shown to be effective at reducing the ratio of phosphorylated TrkB 

protein to total TrkB protein in protein by ~13-fold in the neural tissue of TrkBF616A mice 

[32]. Treatment duration was based on previous demonstration of substantial DIAm NMTF 

following 14 days of altered synaptic activity in TrkBF616 rats [36]. As the rats are drinking 

water throughout the day, we did not need to determine the half-life of 1NMPP1.

For chronic 14-day experiments, two age-, weight-, and sex-matched groups were studied; 

DMSO (0.3%; vehicle) treated control TrkBF616 rats (vehicle; n=7) and 1NMPP1 (25 mM) 

treated TrkBF616 rats (TrkB kinase inhibited - 1NMPP1; n=8). For chronic experiments, 

treatment was initiated when the rats were 4 months of age (initial body weights – ~241 g 

females and ~536 g males) and continued for 14 days (Figure 1). Treatment duration was 

based on previous demonstration of substantial DIAm NMTF following 7–14 days of altered 

synaptic activity in TrkBF616A mice [32,33,97] and TrkBF616 rats [36]. At the terminal 

experiment, animals were deeply anesthetized by intraperitoneal injection of ketamine (90 

mg/kg) and xylazine (10 mg/kg) and then exsanguinated.

To assess the selectivity of the effects of 1NMPP1-induced inhibition on TrkB kinase 

inhibition following BDNF challenge, we used a second cohort of 8 TrkBF616 rats. In 

this experiment, each TrkBF616 rat, anesthetized by intraperitoneal injection of ketamine 

(90 mg/kg) and xylazine (10 mg/kg), had a dorsal laminectomy at C4, followed by an 

opening of the dura surrounding the spinal cord. Subsequently, we intrathecally infused 40 

μL of artificial cerebrospinal fluid with DMSO (the BDNF control group, n=4) or artificial 

cerebrospinal fluid with 1NMPP1 (25 μM, the BDNF + 1NMPP1 group, n=4) at ~2 μL/

min. for 20 minutes. twenty minutes later, 40 μL of BDNF (100 ng/ml; rhBDNF, R&D 

Systems, Minneapolis, MN) was delivered intrathecally to C4, at a rate of ~2 μL/min. for 20 

minutes. Twenty minutes post BDNF-infusion, the rats were euthanized via exsanguination 

and fresh ventral horn between C2-C6 snap-frozen in liquid nitrogen before being processed 

for Western blotting.

Labeling PhMNs:

Three days prior to the commencement of DMSO (vehicle) or 1NMPP1 treatment, all 

rats were intrapleurally injected with Alexa-Fluor647 conjugated CTB (C34778, Thermo 

Fisher), with CTB previously shown to reliably label all PhMNs in rats [66]. The 3-day 

period allowed for adequate retrograde transport to all PhMNs prior to any treatment 

inhibiting TrkB signalling (Figure 1). Three days prior to terminal procedures (i.e., day 

11 of treatment), all rats were intrapleurally injected with Alexa-Fluor 488 conjugated CTB 

(C22841, Thermo Fisher) (Figure 1).

At day 14, following anaesthesia, all rats were euthanized by transcardial exsanguination 

and perfused with heparinized saline before perfusion with 4% paraformaldehyde (PFA) 

in 0.1M phosphate-buffered saline (PBS, pH 7.4). The fixed cervical spinal cord was then 

excised, post-fixed in 4% PFA in PBS overnight, then immersed overnight in 25% sucrose 

in PBS, prior to cutting 70 μm longitudinal (horizontal) cryostat sections. Sections were 

Fogarty et al. Page 10

Mol Cell Neurosci. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



placed on gelatin-coated slides and cover-slipped with DPX mounting media (Fluka, Sigma-

Aldritch, St Louis, MO).

Imaging PhMNs for counting and somal size assessment:

Labeled PhMNs in the cervical spinal cord sections were visualized with an Olympus 

FV2000 laser confocal microscope (Olympus Life Sciences Solutions, Waltham, MA) 

equipped with argon (488 nm) and green HeNe (640 nm) lasers. Three-dimensional confocal 

imaging techniques of labeled PhMNs have been previously reported in detail [9,100]. 

Briefly, all images were acquired at 12-bit resolution in an array of 1024 × 1024 pixels 

using a 40x Plan Apo oil-immersion objective (NA 1.30) with a step size of 1.0 μm. 

Sequential two-channel imaging was performed using a dichroic mirror beam splitter that 

allows transmission of 555–615 nm (reflects 480–555 and 615–800 nm) and appropriate 

band pass emission filters (495–535 nm and 640–670 nm - for Alexa-Fluor 488 and 647, 

respectively). To reduce crosstalk, laser illumination was done sequentially for the imaging 

of each optical slice.

Following imaging, the number of labeled PhMNs was counted on the right side of the 

spinal cord, noting which PhMNs were dual labeled or labeled with Alexa-Fluor647 or 

Alexa-Fluor488. The total number of PhMNs, and the somal and dendritic properties 

of PhMNs was based on assessment of Alexa-Fluor647 (pre-treatment) labelled PhMNs. 

Within each PhMN pool, the somal surface area of every 5th PhMN was assessed in a 

stereological manner identical to past studies [9,10,35,100] (Figure 1). Defects in axonal 

transport/uptake were assessed by the percentage of PhMNs positively labelled with pre-

treatment CTB (Alexa-Fluor647) but not post-treatment CTB (Alexa-Fluor647). The long 

and short axis of PhMNs were measured and used to calculate somal surface areas based 

on approximations of MN somas to prolate spheroids , as used previously to determine size-

dependence of a variety of MN properties [5,6,9]. The number of dendritic trees emanating 

from PhMN somas was also assessed in a subset of PhMNs, as outlined previously [9]. 

To determine the dendritic surface area of a particular PhMN, we measured the dendritic 

diameters of at least 5 PhMNs in each size tertile, in a manner similar to previous studies to 

[9,35]. These measures were used to estimate the total surface area of an individual PhMN 

dendritic tree, based on a quadratic formula [37] previously adapted for rat PhMNs [38]. All 

PhMN number and morphometry outcome measures were also assessed based on somal size 

tertiles of vehicle rats, in a manner outlined previously [5,6,9,35].

Detection and quantification of proteins using Western blot:

The ventral horn tissues were lysed in 1X RIPA Buffer (Cat. No. 9806, Cell Signaling 

Technology, Danvers, MA) supplemented with a protease inhibitor cocktail (Cat. No. 

11836170001, Roche, Millipore Sigma, Burlington, MA 01803, United States) and 

phosphatase inhibitors (PhosSTOP, Cat. No. 4906845001, Roche, Millipore Sigma, 

Burlington, MA 01803, United States). Protein concentrations were quantified using a DC 

(detergent compatible) protein assay that utilizes the principle of the well-documented 

Lowry-based assay (Bio-Rad, Berkeley, CA). 60–80 mg of total protein from each sample 

was denatured in 1X Laemmli sample buffer with beta-mercaptoethanol at 100°C for 

3 min. After denaturation, the samples were loaded onto stain-free polyacrylamide gel 
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(Bio-Rad, Berkeley, CA) and run via SDS-PAGE. Total protein content in each lane was 

visualized, imaged, and analyzed using the ChemiDoc MP Imaging System (Bio-Rad, 

Berkeley, CA). The proteins from the gel were then transferred to a polyvinylidene 

difluoride (PVDF) membrane (Bio-Rad, Berkeley, CA) using the Trans-Blot Turbo system 

(Cat. No. 1704150EDU, Bio-Rad, Berkeley, CA). After transfer, the membranes were 

blocked using 5% non-fat dry milk to prevent non-specific binding of antibodies followed 

by overnight incubation with primary antibodies designed to recognize and bind to the 

protein of interest (Table 1). Horseradish Peroxidase conjugated species-specific secondary 

antibodies were used to detect the primary antibody targets and amplify the signal 

for easier detection (1:7500 dilution). Bands were developed by incubating the PVDF 

membrane in chemiluminescent SuperSignal West Dura Extended Duration Substrate (Cat. 

No. PIA34075, Thermo Fisher Scientific, Rockford, IL) for 3 min and visualized using the 

ChemiDoc MP Imaging System. Band intensity was quantified using Image Lab software 

and normalized to the total protein visualized in each lane. For pCREBS133, pATF-1 and 

total CREB detection, the same blot was used to avoid gel-to-gel variation. The blot was 

probed with rabbit monoclonal pCREBS133 specific antibody (Table 1) followed by stripping 

with Restore Western Blot Stripping Buffer (Cat. No. 46428, Thermo Fisher Scientific, 

Rockford, IL) to remove the pCREBS133 specific antibodies, and the stripped blot was 

reprobed with mouse monoclonal CREB specific antibody for total CREB detection.

Statistical analysis:

The experimental design is outlined with the procedures, groups, endpoints and primary 

outcome assessments (Figure 1). The number of animals required to detect a biologically 

relevant difference of 15% in PhMN numbers was determined by power analysis based 

on previous reports [9]. Statistical analysis was performed using Prism 8 (Graphpad 

Software, San Diego, CA) with two-way ANOVA and Bonferroni post-tests used to compare 

experimental groups size tertile. For two-way ANOVAs omnibus F-values for all results are 

reported in the results section with Bonferroni post hoc values for relevant comparisons. 

Distributions were evaluated using Kolmogorov-Smirnov tests, with continuous data 

compared between two groups using unpaired Student’s t-tests. All data were assessed for 

normality with Shapiro-Wilk tests, with nonparametric assessments (eg. a Mann-Whitney 

U-test in the case of non-gaussian data). A priori it was determined that within a particular 

data set, any data point outside 2 standard deviations from the mean was excluded from 

further analysis. Significance was set as *P<0.05. All data are presented as means ± 95% 

confidence intervals (CI), unless otherwise stated. Sex was included as a biological variable 

in our experimental design; however, previously, we showed that there are no sex differences 

in the various PhMN [9,10,35,100] properties we examined. Accordingly, when sex as 

a contributing variable was excluded in the ANOVA, data for females and males were 

combined for subsequent analyses.
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Highlights

We use a novel TrkBF616 mutant rat to chemogenetically inhibit BDNF/TrkB 

signaling in otherwise healthy young adult rats

In retrogradely labeled phrenic motor neurons (PhMNs), BDNF/TrkB inhibition 

leads to PhMN death and reduced axonal transport.

To our knowledge this is the first direct report of motor neuron loss due solely 

to reduced BDNF/TrkB signaling in adult rats. Our findings have implications for 

scenarios where BDNF/TrkB signaling is impaired, such as in ALS and aging.
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Figure 1: Experimental design, timeline and PhMN sampling.
Timeline shows the order of the experiments, with Vehicle and 1NMPP1 groups randomly 

separated 3 days prior to the commencement of treatments (day −3) and pre-treatment 

intrapleural injections of CTB-647 given (dashed blue) to all rats. At day 0, treatment with 

Vehicle or 1NMPP1 commences. At this time-point CTB-647 has had sufficient time to 

retrogradely-label PhMNs. At day 11, CTB-488 is intrapleurally injected (dashed yellow) 

in all rats. By day 14, CTB-488 has had sufficient time to retrogradely-label PhMNs 

and terminal procedures (transcardial perfusion and tissue excision) are performed. The 

fluorescent pictomicrograph shows CTB-647 labelled PhMNs within the cervical spinal 

cord. Our stereological sampling of every 5th PhMN is depicted by the dotted pink frames. 

In cases where PhMN overlapping creates an ambiguity regarding somal dimensions of the 
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number of eminating dendritic processes (depicted by dotted red frames), an adjacent PhMN 

is sampled instead (dotted green frames). Scale bar = 150 μm, inset = 10 μm.
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Figure 2: 14-day TrkB kinase inhibition in TrkBF616 rats reduced PhMN number.
A: Pictomicrographs show PhMNs labeled pre-treatment (blue) with CTB following 14-day 

Vehicle (top row) or 1NMPP1 treatment (bottom row). B: Plot (mean ± 95% CI) shows 

reduced total PhMNs in 1NMPP1 (dark grey squares) compared to Vehicle rats (light 

grey circles). Student’s unpaired t-test, symbols denote a measurement from each rat (n), 

*P<0.01. Scale bar = 250 μm.
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Figure 3: 14-day TrkB kinase inhibition in TrkBF616 rats reduced somal surface area.
A: High-magnification pictomicrographs show PhMNs labeled pre-treatment (blue) with 

CTB following 14-day Vehicle (top row) or 1NMPP1 treatment (bottom row). B: Plot (mean 

± 95% CI) illustrating reduced mean PhMNs somal surface area in 1NMPP1 (dark grey 

squares) compared to vehicle rats (light grey circles). Student’s unpaired t-test, symbols 

denote a measurement from each rat (n), *P<0.05. C: Plot (mean ± 95% CI) of relative 

frequency distribution (%) of PhMNs somal surface area in Vehicle (light grey, left) 

compared to 1NMPP1 rats (dark grey, right; Kolmogorov-Smirnov, *P<0.05). Scale bar 

= 50 μm.
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Figure 4: 14-day TrkB kinase inhibition in TrkBF616 rats alters PhMN somal size tertile 
populations.
A: As expected, the relative % of PhMNs within each size tertile (mean ± 95% CI) is 

~33% in vehicle rats (light grey circles), whereas there is an increased % of smaller PhMNs 

and a decreased % of larger tertile PhMNs in 1NMPP1 rats (dark grey squares). Two-way 

ANOVA with Bonferroni post hoc test, symbol denotes a data point from an individual 

rat (n), *P<0.05. B: As expected, the number of PhMNs within each size tertile (mean ± 

95% CI) is ~80 in vehicle rats (light grey circles), whereas there is an increased number of 

smaller PhMNs and a decreased number of larger tertile PhMNs in 1NMPP1 rats (dark grey 

squares). Twoway ANOVA with Bonferroni post hoc test, symbol denotes a data point from 

an individual rat (n), *P<0.05.
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Figure 5: 14-day TrkB kinase inhibition in TrkBF616 rats reduces retrograde axonal uptake/
transport of CTB.
A: Photomicrographs showing CTB labeled PhMNs before (Pre-Tx CTB - blue) and after 

(Post-Tx CTB - yellow) treatment with vehicle (VEH, left column) or 1NMPP1 (right 

column). B: Plot (mean ± 95% CI) shows increased % of Pre-Tx CTB labeled PhMNs in 

1NMPP1 (dark grey squares) rats (i.e., a failure of retrograde Post-Tx CTB axonal uptake/

transport under conditions of impaired BDNF/TrkB signalling) compared to vehicle controls 

(light grey circles). Student’s unpaired t-test, each symbol represents one rat, *P<0.05. C: 
Plot (mean ± 95% CI) shows decreased PhMN somal surface area of dual-labeled (Pre-Tx 

CTB and Post-Tx CTB) PhMNs compared to Alexa-Fluor647 Pre-Tx CTB labeled PhMNs 

in 1NMPP1 (dark grey squares) rats (i.e., the failure of retrograde Post-Tx CTB axonal 

uptake/transport under conditions of impaired BDNF/TrkB signalling was primarily in larger 
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PhMNs). Student’s paired t-test, each symbol represents one rat, *P<0.05. Scale bar = 50 

μm.
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Figure 6: 14-day TrkB kinase inhibition in TrkBF616 rats reduces the number of PhMN dendritic 
trees.
A: Photomicrographs showing CTB labeled PhMNs and their proximal dendrites in vehicle 

(left) and 1NMPP1 (right) rats. B: Plot (mean ± 95% CI) shows decreased PhMN primary 

dendrites (i.e., reduced dendritic trees) in 1NMPP1 (dark grey squares) compared to vehicle 

(light grey circles) rats. Student’s unpaired t-test, each symbol represents one rat, *P<0.05. 

C: Plot (mean ± 95% CI) shows decreased PhMN primary dendrites in 1NMPP1 (dark grey 

squares) compared to vehicle (light grey circles) rats in smaller, medial and larger PhMN 

size tertiles. Two-way ANOVA with Bonferroni post hoc test, symbol denotes a data point 

from an individual rat (n), *P<0.05.
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Figure 7: 14-day TrkB kinase inhibition in TrkBF616 rats reduces the estimated surface area of 
PhMN dendritic trees.
A: Plot (mean ± 95% CI) shows decreased PhMN dendritic arbour surface area in 1NMPP1 

(dark grey squares) compared to vehicle (light grey circles) rats. Student’s unpaired t-test, 

each symbol represents one rat, *P<0.05. B: Plot (mean ± 95% CI) shows decreased PhMN 

dendritic arbour surface area in 1NMPP1 (dark grey squares) compared to vehicle (light grey 

circles) rats in medial and larger PhMN size tertiles. Two-way ANOVA with Bonferroni post 
hoc test, symbol denotes a data point from an individual rat (n), *P<0.05.
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Figure 8: Acute TrkB kinase inhibition in TrkBF616 rats reduces the pCREB response to 
intrathecal BDNF in the ventral horn of the cervical spinal cord.
A: Shows Western blot gels of pCREBs133, its alternative pATF1 total CREB in rats acutely 

exposed to intrathecal BDNF (BDNF group) and rats acutely exposed to BDNF following 

1NMPP1 pre-treatment (BDNF+1NMPP1 group). B: Plot (mean ± SEM) shows decreased 

pCREB relative to total protein in BDNF+1NMPP1 (dark grey squares; n=4) compared to 

BDNF (light grey circles; n=4) rats. Student’s unpaired t-test, each symbol represents one 

rat, *P<0.05. C: Plot (mean ± SEM) shows decreased pATF-1 relative to total protein in 

BDNF+1NMPP1 (dark grey squares; n=4) compared to BDNF (light grey circles; n=4) rats. 

Student’s unpaired t-test, each symbol represents one rat, *P<0.05. D: Plot (mean ± SEM) 

shows decreased pCREB:total CREB ratio in BDNF+1NMPP1 (dark grey squares; n=4) 

compared to BDNF (light grey circles; n=4) rats. Student’s unpaired t-test, each symbol 
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represents one rat, *P<0.05. E: Plot (mean ± SEM) shows decreased total CREB relative to 

total protein in BDNF+1NMPP1 (dark grey squares; n=4) compared to BDNF (light grey 

circles; n=4) rats. Student’s unpaired t-test, each symbol represents one rat, *P<0.05.
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Figure 9: Mechanism for motor unit type differences in BDNF/TrkB neurotrophic support.
Green Box: Both motor unit activity and BDNF/TrkB signalling pathways promote 

phosphorylation of CREB (pCREB). In type S and FR motor units (orange), this is 

facilitated by their high degree of activity (incessant recruitment during breathing) and 

pAMPK leading to sufficient pCREB. In type FF motor units (blue), the relative activity 

level is lower (recruited only for straining/expulsive manoeuvres) and are thus more 

dependent on BDNF/TrkB signalling than activity per se to maintain sufficient pCREB. 

Lavender Box: The TrkBF616 rat exhibits a variety of deficits throughout the motor unit. We 

observe a loss of larger (likely FF) phrenic motor neurons (PhMNs) and consequent motor 

unit expansion. We have not noted deficits of presynaptic innervation of postsynaptic nerve 

terminals, yet have observed impaired axonal transport/uptake in larger (likely FF) PhMNs. 

In addition, we have previously reported impaired neuromuscular transmission in ex vivo 
phrenic nerve diaphragm muscle assessments. Open Portion: In the vehicle control group, 

type S and FR motor units (orange) and type FF motor units are able to achieve the full 

gamut of ventilatory and non-ventilatory diaphragm muscle behaviours and are supported 
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via both activity and neurotrophic mechanisms. In the TrkB inhibited group, frank loss of 

PhMNs, increased innervation ratios and impaired axonal transport/uptake likely contribute 

to the deficits we observe in DIAm neuromuscular function.
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Table 1:

Primary antibodies used for Western blot

Primary Ab Manufacturer Catalog Number Application Dilution

pCREBS133 Cell Signaling Technology 9198S Western blot 1:1000

CREB Cell Signaling Technology 9104S Western blot 1:1000
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