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Summary

In-frame deletion mutations can result in disease. The impact of these mutations on protein 

structure and subsequent functional changes remain understudied, partially due to the lack of 

comprehensive datasets including a structural read-out. Additionally, the recent breakthrough in 

structure prediction through deep learning demands an update of computational deletion mutation 

prediction. In this study, we deleted individually every residue of a small α-helical sterile alpha 

motif (SAM) domain and investigated the structural and thermodynamic changes using 2D NMR 

spectroscopy and differential scanning fluorimetry. Then, we tested computational protocols to 

model and classify observed deletion mutants. We show a method using AlphaFold2 followed 

by RosettaRelax performs the best overall. Additionally, a metric containing pLDDT values and 

Rosetta ΔΔG is most reliable in classifying tolerated deletion mutations. We further test this 

method on other datasets and show they hold for proteins known to harbor disease-causing 

deletion mutations.
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Graphical Abstract:

We lack datasets to develop computational tools that can help predict the effect of in-frame 

deletion mutations on protein structure and function. Woods et al. presents a comprehensive 

structural and biophysical analysis of a series of deletion mutations. The experimental results are 

evaluated against computational predictions using AlphaFold2 and Rosetta.
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Introduction

According to the Humane Gene Mutation Database, 22% of disease-associated mutations 

are insertions or deletions (indels).1 The 1000 Genomes Project reports each individual 

carries around 200 small in-frame indels.2 In-frame deletion mutations cause genetic 

disease, for example, the deletion of F417 in the ferrochelatase enzyme results the enzyme 

being inactive causing erythropoietic protoporphyria.3 Deletion mutations also occur in the 

rapid viral escape, recently observed in SARS-CoV2 alpha-variant containing a del69-70 

deletion.4,5 Deletions as escape mutations have also been observed in cancer. For example, 

the interaction of tyrosine kinase inhibitors such as erlotinib with their target epidermal 

growth factor receptor (EGFR).6,7
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Accurate computation of the mutational impact on protein structure and function is key 

to predicting biological readouts of pathogenicity. However, most structural methods and 

protocols focus on the prediction of missense mutations8–10 and model their impact on 

protein folding, function, or drug interaction. Modeling how indels effect protein structure-

energy relationships will progress our biophysical understanding of how deletion mutations 

alter structure-function mechanisms to drive disease states.

One resource that predicts the impact of indels is PROVEAN, however, it is purely 

sequence-based and takes no structural information into account.11,12 Structure-based 

methods that predict the functional and structural impact of deletions have not been 

updated since the recent paradigm shift in computational protein prediction provided 

by deep learning-based algorithms. A major limitation for modeling deletion mutations 

accurately is the lack of exhaustive datasets. While data for somatic mutations have become 

available through the increasing application of deep mutational scanning13–15, the amount 

of structural and functional data that can be used to test methods for deletion mutations 

are limited. Structural data are especially rare as deletion mutations often destabilize the 

protein and make it unavailable to classic structure determination methods such as X-ray 

crystallography or cryo-electron microscopy (cryo-EM). One of the few systematic studies 

on the impact of deletion mutants on the structure and function of a protein has been 

conducted by Arpino et al.16 who deleted individually every residue from green fluorescent 

protein (GFP) and monitored its functional fitness. In their study, it became apparent that 

GFP tolerated deletions in the loop regions, but not in the core residues that form β-strands 

of the β-barrel. This study falls short in that GFP is limited in secondary structural elements 

since it does not contain many α-helical regions and the study did not collect any direct 

structural data. Using this GFP dataset, Jackson et al.17 tested a computational protocol to 

model deletion mutants that consisted of a combined RosettaRemodel18 and Modeller19,20 

approach and found weighted contact number (WCN) to be a predictive measure.

Another published computational protocol uses cyclic coordinate descent to close the gap 

in the protein structure and a Monte Carlo search with gradient based minimization in 

Rosetta.21 It was tested on a benchmark set consisting of five proteins which had both 

mutant and wildtype crystal structures reported in the Protein Data Bank (PDB)22 and a ricin 

dataset that contained data on enzyme activity.23 While this protocol was tested on deletion 

mutant-determined structures, it focused on predicting enzyme activity of Ricin not stability 

effects of mutations.

Attempts have been made to model disease causing deletion mutation such as delF508 

using the respective wildtypes cryo-EM map.24 These attempts have been of a case study 

nature and assume that the deletion mutation undergoes only local and not global structural 

changes.

All these methods were created and tested before paradigm-shifting advances in the field 

of computational structure prediction. New deep learning structure prediction methods such 

as AlphaFold225,26 and RoseTTAFold27,28 dramatically outperform traditional modeling 

techniques such as homology modeling. However, these methods rely on their training data, 

which consist of the structurally resolved proteins in the PDB and make poor predictions 
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for structures for which they were not trained29. Additionally, preliminary reports indicate 

that AlphaFold2 falls short in predicting the structural effects of missense mutations given 

an input sequence of a protein variant30. This is most likely due to the fact that AlphaFold2 

training datasets are limited to determined structures and therefore, predicted models 

are biased towards wild-type or homologous sequences. As deletion mutant-determined 

structural models are rare and only cover tolerated mutations that result in similar structures, 

these methods may fall short in predicting structural models for deletion mutations at high 

accuracy.

Overall, datasets to benchmark computational methods for modeling deletion mutations 

are sparse and limited in structural and stability effects. Structural read-outs for multiple 

deletion mutants are necessary for the systematic evaluation of structural changes. In order 

to compare computational predictors for protein stability with a test dataset, thermostability 

of respective deletion mutants must be evaluated. The performance of recently reported deep 

learning methods, therefore, must be compared with traditional structure prediction methods.

In this study, we use a small α-helical protein and biomolecular nuclear magnetic resonance 

(NMR) spectroscopy for generating a deletion mutant dataset that covers the entire amino 

acid sequence. With this, we aim to cover the effect of mutations on α-helical proteins. We 

measure thermostability using 2D NMR and nanoDSF, then match our observations with 

four computational protocols in order to identify metrics to differentiate deleterious from 

tolerated deletion mutations. Using AlphaFold2 in combination with RosettaRelax31,32, we 

benchmark the performance of new deep-learning methods for modeling deletion mutations. 

In total, we were able to obtain data for seventeen deletion mutants and observed that N- 

and C-terminus and a loop region tolerated in-frame deletion mutations whether all other 

attempts resulted in insoluble protein. When applying structural modeling protocols, we 

observed that a combination of AlphaFold2 in combination with RosettaRelax performed 

best over our test case and two other reported deletion mutant studies. With this we are 

proposing a comprehensive method to model and score the impact of deletion mutations on 

protein structures of various structural compositions.

Results

The modeling of deletion mutations in an α-helical protein was studied using multiple 

computational protocols, reflecting protocols available for sampling of missense mutations 

but also emerging modeling methods using deep learning. The lack of a test dataset was 

overcome through the investigation of structural and biophysical changes in deletion mutants 

in an α-helical model protein. Solution NMR experiments were chosen to probe structural 

changes in the protein backbone, as it generates a structural footprint for every soluble 

deletion mutant. Thermal unfolding using nanoscale differential scanning fluorimetry 

(nanoDSF) was chosen to probe the structure-energy relationship between wild-type and 

deletion mutants. We compared these data to our modeling results and identified metrics 

capable of differentiating structurally disturbing deletion mutations.
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Structural and biophysical effects of deletion mutations on a small α-helical domain

The effect of deletion mutations on the structure and biophysical properties were 

investigated using a small α-helical sterile-alpha-motif (SAM) domain (Figure 1A). The 

backbone assignment for this protein was recently published (BMRB: 51377)33,34 and 

allowed for a structural evaluation of every soluble deletion mutant in 1H-15N-HSQC 

experiments. Biomolecular NMR studies were accompanied by circular dichroism (CD) 

measurements35 to verify α-helical structure and melting temperature determination using 

both CD and nanoDSF.

The SAM domain consisted of seventy-two amino acids with an N-terminal his-tag. Amino 

acid duplications were located at five positions in the amino acid sequence, meaning that 

upon amino acid removal they resulted in the same amino acid sequence (doublets: V 5-V6, 

A26-A27, T30-T31, D41-D42, and I64-I65). In this study, every unique amino acid was 

removed using site-directed mutagenesis. Excluding doublets, and the N- and C-terminal 

residues, sixty-five deletion constructs were tested.

All sixty-five possible deletion mutants were tested for expression in the soluble fraction 

of E. coli culture lysates. Seventeen of the sixty-five possible deletions were purifiable and 

processable for further analysis in CD and nanoDSF, all other mutants were either insoluble 

or adequate amounts for CD and nanoDSF analysis could not be purified. We classified 

these seventeen deletion mutations into four groups on the protein sequence: the N-terminal 

residues 2, 3 and 5, the loop IV residues 50–52 and the helix V residues 59,62–64 and 

the C-terminal residues 66–72 (Figure 1A). These residues were surface exposed or in 

flexible regions of the protein (Figure 1B). In contrast, deletion of core residues likely 

resulted in insoluble protein products or lacked expression levels. The seventeen soluble 

deletion mutants were subsequently investigated in CD spectroscopy and nanoDSF for their 

secondary structure composition and stability (Table 1). Overall, all deletion mutants showed 

an α-helical composition in CD wavelength scans (SI, Figure S1A–D), indicating that the 

overall composition of secondary structure elements was maintained for all soluble deletion 

mutants.

The protein stability change was estimated through the determination of melting 

temperatures from CD and nanoDSF measurements (SI Figures S2, S3). In general, the 

measurements agreed fairly well. The original SAM protein (called “wildtype”) displayed 

a TM of 58.92 °C in CD melting experiments and of 60.15 °C in nanoDSF. Most TM’s of 

the respective deletion mutations varied around the wildtype temperature, with exception 

of delA50 and delQ63, which were significantly lower for both CD and nanoDSF (Table 

1). When mapping the temperature differences to the wildtype structure from nanoDSF 

experiments onto the structure (Figure 1C), some of the most drastic changes occurred at 

more occluded sites; such as delA50 that belongs to the connecting loop between α-helix 

IV and the C-terminal α-helix V. For delT52, which mirrors delA50 position and a similar 

behavior was expected, the TM measurements were not conclusive; while the nanoDSF 

suggests a temperature decrease, the TM from CD melting curves was elevated.

All soluble deletion mutants were labeled with 15N and assessed in 1H-15N-HSQC 

experiments, except for delD59, which could not be produced in sufficient yields. The 
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resulting spectra were compared to the wildtype protein to investigate structural changes 

on a residue level (SI, Figures S1E, S4). The N-terminal deletions delF2, delS3 and 

delV5 resulted in spectra with mostly perfect overlaying peaks indicating only small and 

local structural changes as compared to the wildtype (Figure 1D and 2A). The deletion 

mutations of the loop IV between α-helix IV and α-helix V, delA50, delI51 and delT52, 

resulted in distinct spectra with more drastic changes as compared to N- and C-terminal 

deletion mutants (Figure 1D and 2B). The overall differences in the spectra become more 

pronounced for α-helix V deletions in closer proximity to the core of the SAM domain, e.g. 

delD62-64 (Figure 2C). The spectrum of delQ63 (2C and SI Figure S1E) was of poor quality 

and lacks a number of signals, which makes it insufficient for further analysis. However, 

this result is in accordance with the low TM observed in CD and nanoDSF (Table 1). We 

observed a similar pattern for the C-terminal deletions 66–72 as for the N-terminal deletions: 

the core of the protein stays largely unchanged with perfectly overlapping peaks except 

for the locally neighboring residues of the deletion mutations (Figure 1D and 2D). As N- 

and C-terminus are in proximal space some of the N-terminal residues show smaller shifts 

in peaks (e.g. residue A4). Overall, for deletion 66–72, the protein core is maintained and 

smaller structural changes occur in the N- and C-terminal regions. This result is reflected 

in the chemical shift perturbation (CSP) plots that were calculated for all deletion mutants 

except delQ63 (Figure 1D).

In summary, seventeen deletion mutants out of a total of sixty-five were soluble and 

subsequently investigated for their structural and biophysical properties. This experimental 

dataset will serve as a test case for computational methods to model deletion mutations.

Computational methods to predict structure and stability of deletion mutations in a SAM 
domain

Four computational methods commonly used in structural modeling were chosen for 

modeling deletion mutations in an α-helical protein: 1) De novo folding using Rosetta36–39; 

2) RosettaCM40-based segment hybridize as templated protocol; 3) RosettaRelax31,32,41,42 

and 4) AlphaFold225,26 combined with RosettaRelax (SI Figure S7). All methods were used 

to generate models for all possible deletion mutants of the SAM domain and subsequently 

scored using the Rosetta scoring function.43,44 We applied RosettaRelax before scoring 

AlphaFold2 output models with the Rosetta scoring function to optimize the structure based 

on the Rosetta score function and to relieve any clashes that may artificially inflate the 

Rosetta score. For example, the distance between two atoms may appear reasonable to 

AlphaFold2, but be slightly too close for Rosetta causing the energy term representing 

repulsion forces between atoms to be high. This type of clash is easily adjusted during 

RosettaRelax. Detailed protocols can be found in the SI.

Firstly, we investigated whether any of the methods were able to distinguish between soluble 

and insoluble deletion mutants based on the ΔΔG. Out of all methods, de novo folding and 

AlphaFold2 predicted deletion tolerance based on score the best (Figure 3A, SI Figure S5C). 

Relax, and Segment Hybridize protocols all produced score distributions for soluble and 

insoluble mutants that overlap substantially (Figure 3A).

Woods et al. Page 6

Structure. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Instead of using Rosetta ΔΔG scores alone, the additional information from predicted 

Local Distance Difference Test (pLDDT) scores from Alphafold2 were investigated for the 

AlphaFold2 protocol, which represent confidence of prediction per residue. When pLDDT 

scores averaged across all residues are plotted with ΔΔG measures from Rosetta, they 

show a clear separation between soluble and insoluble variants, when using 0 REU as a 

cut-off for ΔΔG measures and the wildtype average pLDDT score as reference (Figure 3B). 

Interestingly, there are few deletion mutations that pLDDT and ΔΔG measures disagree, 

having either high average pLDDT and high ΔΔG measures or low average pLDDT and low 

ΔΔG measures.

In a study by Jackson et al.17 on the tolerance of deletion mutations in GFP, side-chain 

weighted contact number (WCN) was found to be predictive for discriminating between 

tolerated and non-tolerated deletion mutations. We computed WCN as described by Jackson 

et al.17 for deletion mutations in our α-helical protein and observed that while there is 

a significant difference in the distribution of WCN, there is substantial overlap in the 

distributions (Figure 3C). Interestingly, the WCN metric for insoluble proteins, which also 

include non-expressing proteins, fall into two populations, resulting in a bimodal distribution 

(Figure 3C). Based on WCN alone it was not possible to group deletion mutants in the SAM 

domain in tolerated and non-tolerated.

Next, we compared soluble deletion mutants’ ΔTMS to scores obtained from all four tested 

computational models (Figure 3D). Rosetta ΔΔG calculations are assumed to capture the 

enthalpic difference between mutants43, therefore, ΔΔG was compared against measured 

ΔTMS from nanoDSF (Figure 3D). Overall, no protocol reliably predicted changes in melting 

temperature based on score alone. The segment hybridize and AlphaFold2-RosettaRelax 

protocol both capture the relationship between ΔTM and score insufficiently (Figure 3D). De 
novo folding and RosettaRelax both show a clearer correlation between ΔTM and Rosetta 

score, with de novo folding outperforming the other method. Interestingly, de novo is able to 

map deletion delA50 and delQ63 in a higher scoring range as compared to the other deletion 

mutants, which correctly described the measured ΔTM values (Figure 3D).

In NMR studies, some of the deletion mutants resulted in 1H-15N-HSQCs with substantially 

different chemical shift patterns (Figure 1D and Figure 2A–D). In order to investigate 

whether one of the protocols was able to match the experimentally determined chemical 

shift differences between deletion mutants and wildtype protein, the scores and Cα root 

mean squared deviation (RMSD) were broken down for every residue (Figure 3E, 4A–B). 

RMSD is able to partially capture some of the patterns observed in the CSP plots with 

lower RMSD values throughout the structure for deletions at the N and C-termini (Figure 

4A). Surprisingly, we see higher ΔΔG per residue scores in the N-terminal deletions (del3-5) 

compared to other deletions (Figure 4B). Similar to RMSD, we see lower changes in score 

for C-terminal deletions (Figure 3E, 4B).

In summary, the AlphaFold2-RosettaRelax protocol matches the experimental data for a 

small α-helical protein, both on predicting the tolerance of the deletion mutation and 

the structural changes in the protein. De novo folding was similar powerful in predicting 

deletion tolerance, but not as good in matching with experimental melting temperatures. We 
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found using both Rosetta ΔΔG and average pLDDT together was the best way to recover the 

experimentally observed tolerance of deletions.

Modeling of deletion mutations in proteins with different structural composition - GFP and 
Ricin

In order to further test our two best methods Alphafold2 and de novo modeling, we used 

two reported datasets to monitor the methods’ performance: GFP and Ricin (Figure 5A–

B). The dataset from Arpino et al.16 contained tolerated deletion mutants of GFP using 

a functional GFP fluorescence read-out comparable our the SAM domain expression, but 

without a method to probe structural changes.17 De novo folding failed to differentiate 

between tolerated and non-tolerated deletion mutants in GFP (SI, Figure S5D,E), which is 

expected as de novo folding is limited to small proteins with total amino acid counts of 

120–150.37 The AlphaFold2 plus RosettaRelax protocol showed a significant difference for 

the GFP dataset, although not as pronounced as for the α-helical SAM domain (Figure 5C, 

SI Figure S5E). The same is true when modeling Ricin (Figure 5D, SI Figure S5F), which 

was probed for its enzymatic activity after expressing deletion mutants23. Additionally, 

WCN was calculated for GFP and Ricin deletion mutants, confirming the observation 

made by Jackson et al.17 that WCN is a reliable predictor of deletion mutation tolerance 

in GFP (Figure 5E, SI Figure S5E). However, WCN was not able to separate active and 

non-active deletion mutants in Ricin (Figure 5F, SI Figure S5F). Although we confirmed 

the WCN results from Jackson et al. for GFP, our data suggest WCN is not a reliable 

predictor for tolerated deletion mutations overall as both Ricin and the SAM domain 

results cannot be matched with WCN. The other problem with WCN is that values are not 

comparable between different proteins. Using both Rosetta ΔΔG and average pLDDT scores 

from AlphaFold2, tolerated deletion mutations could be enriched for GFP (Figure 5G). 

However, the usage of a reference for pLDDT values was impeded because GFP wildtype 

outperformed all but 10 deletion mutations with a score of 97.2. Interestingly, Rosetta ΔΔG 

has strong predictive power: whenever the ΔΔG is negative the deletion is tolerated, with a 

single misclassified deletion in the GFP dataset. Rosetta ΔΔG predicts a number of tolerated 

deletions as not-tolerated, however together with average pLDDT most of these deletions are 

stable, low ΔΔG, and confidently predicted, high average pLDDT - lower right corner of the 

plot (Figure 5G). For Ricin, similar behavior can be observed: the wildtype protein already 

contains an average pLDDT value higher than most active deletion mutants (Figure 5H). For 

Ricin most of the discriminative power comes from Rosetta ΔΔG. Also, average pLDDT 

values for different proteins are not comparable and cannot be used as a general cut-off or 

measure of deletion mutation tolerance.

In summary, the AlphaFold2 – RosettaRelax protocol outperformed de novo folding on 

the structurally distinct GFP, WCN has no predictive power for Ricin, and a metric using 

Rosetta ΔΔG versus average pLDDT reliably at differentiates tolerated deletion mutants 

from non-tolerated also for protein topologies distinct from the SAM domain.

Predicting pathogenic deletion mutations

We applied our computation to disease causing deletion mutations in proteins with benign 

and deleterious outcomes. We used the AlphaFold2 plus Rosetta Relax protocol on 22 
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proteins with 34 unique deletion mutations of known pathogenicity, for which the wildtype 

protein was available in the PDB (SI Table1). These proteins were extracted from the 

PROVEAN dataset11,12 and cross-referenced with the determined protein structures from the 

PDB22 with a resolution below 2 angstroms where the deleted residue is covered by the 

structure. We used ΔΔG versus average pLDDT as a metric, specifically with the ΔpLDDT 

from deletion mutant minus wildtype. Most reported deleterious deletion mutants, 25/34, 

have high ΔΔG and low ΔpLDDT and are distributed in the upper left corner, indicating they 

are scored both by Rosetta and AlphaFold2 as unpreferable (Figure 6). Five mutants had 

ΔpLDDT values greater than their respective wildtype. However, two of these are coming 

from the same protein structure (1EP945) and one was scored with positive ΔΔG values by 

Rosetta. This result indicates our protocol performs robustly on disease causing deletion 

cases. WCNs were also calculated for all cases and ranged between 0.4 to 1.8 (SI Figure 

S6). For the α-helical SAM domain, a clear differentiation could not be observed, but the 

soluble deletion mutants scored between 0.2 and 0.6 while non-tolerated deletions were 

ranged in 0.3 to 0.8. For GFP, the WCN for non-tolerated deletion mutants started at 0.6. 

Again, WCN had no clear separation power, as observed for Ricin and the SAM domain.

Discussion

Understanding the structural consequences of deletion mutations is important due to the 

frequency of indel mutations in human disease. The small α-helical SAM domain allowed 

the deletion of every single amino acid and the subsequent structural investigation using 
1H-15N-HSQCs for all soluble deletion mutants. The N- and C- terminal regions tolerate 

deletions more than the folded head of the SAM domain. The only three deletion mutants 

that are not in the N- or C-terminus, del50-del52, form loop IV, which may support enough 

structural flexibility that the SAM domain can be expressed in the soluble fraction of E. coli 
lysates.

Chemical shifts between wildtype and deletion mutants in 1H-15N-HSQC spectra measured 

structural changes for all tolerated deletion mutants. However, this method may only be 

reasonable on smaller proteins since it is not high-throughput; therefore, the choice of 

example protein is crucial to reflect as much structural space as possible. Overall, the 

observed melting temperatures match the structural heterogeneity of the deletion mutants 

well, with some exceptions (delT52).

The SAM domain is not necessarily a perfect surrogate to capture the whole structural 

diversity of all α-helical proteins. It contains a structured core region and more flexible N- 

and C termini, which reflects some structural diversity. However, the results might not be 

fully predictive of α-helical proteins that span the plasma membrane. Further systematic 

structural investigations on more diverse proteins are necessary to expand upon the dataset 

reported here.

Overall, four computational methods were tested in modeling deletion mutants and 

testing different metrics to differentiate between structurally and functionally tolerated 

deletion mutations. Of all tested computational methods de novo folding and AlphaFold2-

RosettaRelax performed best for the small α-helical SAM domain. The de novo folding 
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protocol has been used in the past extensively to probe energetic landscapes46–48 and 

characterize folding funnels but is computationally more expensive. De novo folding has 

been traditionally strong in predicting α-helical proteins in contrast to β-strand-rich proteins. 

The reason for this behavior lies in the complex long-range hydrogen bond connections that 

are formed between β-strands49,50. Therefore, it is not surprising that the de novo folding 

protocol fails to maintain the same performance when modeling GFP deletion mutants, as 

compared to the SAM domain. However, in rare cases de novo folding might be a good 

choice to model small domains.

One major challenge in computational prediction performance turned out to be the choice 

of metric. We showed a combination of average pLDDT scores from AlphaFold2 and 

Rosetta ΔΔGs was most successful in differentiating tolerated versus non-tolerated deletions 

(Figures 3B and 5G–H, SI Figures S5C–F). While Rosetta ΔΔGs easily assessed stabilizing 

or non-stabilizing effects on the protein by using the exact values, ΔpLDDT reference values 

remain hard to define, which substantially lowered the predictive power of the metric, e.g. 

in the GFP and Ricin dataset. Often, while average pLDDT scores may be similar between 

single deletion mutants and wildtype, one might be able to gain more insight in looking at 

per-residue pLDDT scores in the core of the protein. Differences at the termini may decrease 

average pLDDT but not have as much of an impact on the general structure. delT52 and 

delM71, for example, have similar average pLDDT, 87.0 and 87.6 respectively (SI, Figure 

S5A,B). If we break that down to the per-residue pLDDT, delT52 has a decrease in the core 

of the protein while delM71 has a decrease in the C-terminus, which reflects the observed 

changes in the chemical shift data (Figure 1D). In all datasets, it can further be found that 

average pLDDT are less able to differentiate tolerated versus non-tolerated mutations than 

Rosetta’s ΔΔGs. Overall, this might not be unsurprising, as Rosetta’s energy function is 

biophysically driven and has been shown to correlate with estimations of folding energy and 

protein stability.43 Interestingly, it was the de novo folding protocol that correlated best with 

measured melting temperatures from the SAM domain. Melting temperatures as measured 

in this study for the SAM domain, although describing the protein stability, are only a 

surrogate for the free energy of folding. However, the determination of the free energy of 

folding requires set-ups such as differential scanning calorimetry which are time and protein 

intensive, which might not be realizable for all deletion mutants.

The WCN metric reported by Jackson et al.17 and predictive when analyzing GFP deletion 

mutants was less reliable when using it on the α-helical SAM domain. Again, this might 

be due to the fact that protein formed by β-strand rely on long range hydrogen bond 

networks, while α-helical proteins contain more local hydrogen bonds to maintain the 

α-helix formation. Overall, we conclude that WCN is not a good metric to predict deletion 

mutation tolerance in structurally diverse proteins.

When evaluating our protocol in the blind modeling of deletion mutants using a set of 

known deleterious deletion mutations, we observed our protocol predicted higher scores for 

most deletions than the respective wildtype protein, suggesting mutations were unstable. 

The recovery in unfavorable areas of our metric indicates that our protocol and workflow 

is suitable to identify deletion mutations that impair the protein structure and may lead 

to misfolding, aggregation, instability or non-expression. Also reassuring is the fact that 
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Rosetta ΔΔG classifies non-tolerated deletions almost always correct. It misclassifies some 

tolerated deletion mutations as not-tolerated in all three test cases, however, this behavior 

is more favorable for real-life cases. Computational tools such as this, are typically used to 

narrow down a large list of variants of unknown significance to a smaller list of potential 

pathogenic variants to investigate further with other tools. In that case it would be preferred 

to predict a deletion to be not-tolerated that is not impairing the structure, but not the 

other way around. However, if this was to be used closer to the end point in clinical 

genetic setting, the user needs to be aware of the limitations in classifying tolerated deletion 

mutations as not-tolerated.

In summary, the described work represents a state-of-the-art modeling protocol for deletion 

mutations that captures α-helical and structurally diverse protein geometries. With a 

combination of average pLDDT scores from AlphaFold2 and Rosetta ΔΔG calculations, we 

identified a suitable metric for the evaluation of deletion mutations also for such that have 

not been reported yet. It showed to hold some predictive power for all three test cases in this 

study, which was not true for the recently reported metric WCN17. Predictive power may 

be improved by further optimizing the protocol presented here by either combining metrics 

through machine learning methods such as linear regression or adapting new structure 

prediction tools as they become available.

Effects of deletion mutations on protein structure have not been well characterized in 

the past. There are only a handful of determined structures, naturally only on tolerated 

deletions. In addition, previous systematic deletion analyses on single proteins have only 

tested functional impact. With our dataset of deletion mutants of a small α-helical protein, 

we add a structurally investigated deletion mutant dataset for further studies.

With the best performing AlphaFold2-RosettaRelax protocol, we provide a method that can 

be easily applied when trying to predict the impact of a deletion mutation on a protein that 

has not been structurally resolved. In this study, all test cases were structurally resolved. 

The results might be different for proteins with structurally flexible regions. This study was 

focused on modeling single deletion mutations, it will have to be investigated whether it will 

also hold for deletions of multiple residues or insertions. Thus, we present a study using 

structural and thermodynamic data compared to computational modeling to understand 

deletion mutations.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for reagents may be directed to, and will 

be fulfilled by the Lead Contact Clara T. Schoeder (clara.schoeder@medizin.uni-leipzig.de).

Materials Availability—Primers used to generate SAM domain deletion mutants can be 

found in Table S2.

Data and Code Availability

• All data reported in this paper will be shared by the lead contact upon request.
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• The Rosetta software is free for academic use (www.rosettacommons.org). All 

original code used in this work can be found in the Supplemental information.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

BL21(DE3) cells were used for protein expression. After plasmid transformation, overnight 

cultures were produced in lysogeny broth (LB) media (10 mL per 1L of total target 

culture). The overnight cultures were transferred to 1L LB media and grown at 37 °C, 

230 rpm to an OD600 of 0.6–0.8 before inducing protein expression with 1M Isopropyl-β-

D-thiogalactopyranosid (IPTG). The cultures were incubated for 3–5 hours at 37 °C and 230 

rpm.

METHOD DETAILS

Site-directed mutagenesis—Site-directed mutagenesis was performed using the Agilent 

QuickChange Lightning Site directed Mutagenesis kit according to the instruction of the 

supplier using the gene of the SAM domain on an expression vector (pET11a). Sequences 

were confirmed using Sanger Sequencing.

Expression and purification—Once sequencing was confirmed the plasmids were 

transformed into BL21(DE3) cells for protein expression. Conditions for cell growth and 

protein expression are described above. Cells were harvested by centrifugation at 6500 rpm 

for 20 minutes at 4 °C in an Avanti JXN26 (Beckmann, Brea, CA, USA). Subsequently, 

the supernatant was discarded and cell pellets stored at −80 °C. Cells were thawed, lysed 

in 25 mM Tris buffer, 240 mM NaCl, 20 mM imidazole, and 1 mM DTT, pH 8.0 using a 

homogenizer and sonication (10 min, amplitude 60%). The lysate was centrifuged at 20,000 

rpm for 20 min at 4 °C and supernatant added over a column containing Ni-NTA resin 

(Qiagen, Venlo, Netherlands). Immobilized protein was washed with 10 column volumes 

and eluted with buffer containing 25 mM Tris buffer, 240 mM NaCl, 250 mM imidazole, pH 

8,0. The protein was concentrated to 1 mL for further purification using Amicon filter tubes 

(Merck KGaA, Darmstadt, Germany) and processed using size exclusion chromatography 

(SEC) with a Superdex 75 column in 25 mM, 150 mM NaCl, and 1 mM DTT, pH 8.0. 

Fractions containing a single band of the protein of interest were pooled and concentrated.

Circular Dichroism (CD) spectroscopy—CD wavelength and temperature scans were 

performed using a Jasco J-810 instrument. The wavelength range covered 190–280 nm. 

Each deletion mutant was buffer exchanged into 10 mM potassium phosphate, pH 7.4 

at a concentration of 0.18–0.21 mg/mL prior to recording CD spectra. Three scans were 

performed per deletion followed by three melting experiments through increasing the 

temperature in steps of 1°C per minute from 20 °C to 90 °C.

Nanoscale Differential Scanning Fluorimetry (nanoDSF)—NanoDSF runs were 

completed using the Nanotemper Prometheus Panta instrument. Similar to CD spectroscopy 

measurements, the protein solution contained 10 mM potassium phosphate buffer at a 

pH of 7.4 and a concentration of 1.0 mg/mL. Two replicates of temperature scans were 
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completed using a temperature increase of 0.1 °C per minute covering a range of 20–90 

°C and subsequently from 90–20 °C to probe protein refolding. Melting temperatures were 

calculated using the MoltenProt online tool, fitting with a two-state equilibrium model.52,54

Expression of 15N-labeled deletion mutants—Deletion mutants were expressed and 

purified as described above with the following modifications for the preparation of NMR 

samples. Transformed BL21(DE3) cells were grown overnight in 50 mL of LB-medium at 

37°C, centrifuged at 4,000 rpm for 10 min and the pellet subsequently transferred to 1L 

of M9 minimal medium containing 1 g of 15N-labelled ammonium sulfate (15NH4)2SO4 

(Cambridge Isotope Laboratory, Tewksbury, MA, USA), 4 g of glucose, 1 ml of a 1:1000 

sodium ampicillin solution, 10 ml of MEM-vitamins, and a final concentration of 0.1 mM 

CaCl2, 0.1 mM ZnCl2, 1 mM MgSO4, 42 mM Na2HPO4, 22 mM KH2PO4 and 8.5 mM 

NaCl. After culturing in M9 medium until cell density reached an OD600 of > 0.8, protein 

expression was induced by adding IPTG to a final concentration of 50 μM. Cells were 

harvested and processed as described above. The final sample was prepared in NMR buffer 

containing 50 mM imidazole, 50 mM NaCl, 0.2 mM EDTA, and 7% D2O (pH 6.5).

Nuclear Magnetic Resonance (NMR)—NMR spectra were collected on uniformly 

labeled 15N-wildtype and 15N-deletion mutants. All samples were spiked with 5% D2O to 

lock the signal. All 2D-HSQC NMR experiments were performed on a 600 MHz Bruker 

AV-III spectrometer at 25°C equipped with an inverse broad-band probe (5 mm BBI 1H/D-

BB Z-GRD) and a sample jet. All spectra were processed using the software TopSpin 3.6.2 

(Bruker, Billerica, MA, USA) and analyzed using the program NMRViewJ55,56. Spectra 

were aligned with the assigned spectrum of 15N-wildtype using the D22 signal. Signals of 

deletion mutants were manually inspected and recorded. CSP values were calculated using 

the following equation with a scaling factor of 0.106:

CSP = 0.5*( δ1H wt − δ1H del
2 + 0.106* δ15N wt − δ15N del

2)

Modeling deletion mutants—Four different modeling approaches were tested for 

modeling SAM domain deletions. Protocols Relax and Hybridize are based in 

Rosetta Scripts.57 De novo protocol is a command line application from Rosetta.36–39 

AlphaFold2+RosettaRelax combines AlphaFold2 modeling and FastRelax, a command line 

application from Rosetta.41,51,58 All Rosetta protocols used the ref2015 score function.43 A 

description of each protocol is included below with full protocol captures in the supplement 

(Methods S1).

For both RosettaScript protocols, Relax, and Hybridize, the preparation included 

downloading the PDB file and cleaning the PDB to remove any HETATM records. 

Clashes are removed by running Rosetta Fast Relax on the structure, producing 100 

output structures. The lowest scoring structure was then used as the starting structures for 

Minimize, Relax, and Segment Hybridize protocols.

The Relax protocol starts by deleting all atoms of the deleted residue followed by a gradient 

based minimization to close the gap left by the deleted residue. After the minimization, a 
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dual space relax move is performed. The Hybridize protocol uses fragment-based sampling 

on a section 10 residues before and after the deletion to close the gap left by the deleted 

residue, followed by a dual space relax move. For each of these protocols, the same 

sampling is done with the starting structure, without deleting a residue to calculate the 

score for the wild-type structure.

Rosetta de novo protocol starts from a fasta file containing the sequence. Three and 

nine residue long fragments are picked based on secondary structure predictions from 

PSI-BLAST and JUFO9D. 1000 output structures are generated for both the deletion and 

starting sequences. The lowest three scoring models are averaged to calculate the score for 

both deletion and wild-type.

AlphaFold2 was also tested for its ability to model deletion mutations. AlphaFold2 was 

ran with both the wild-type sequence and the deletion mutant sequence. Each AlphaFold2 

ran output five models. Each model was used as the input for a Rosetta relax, that output 

ten models, for a total of 50 models for each. The lowest three scoring models from the 

relax were averaged to calculate the score. The average pLDDT was calculated from all five 

AlphaFold2 output models.

Calculating ΔΔG values—The magnitude of Rosetta scores is dependent on the number 

of residues present. Therefore, the reduction in residue number for deletion mutants was 

taken into account for calculating the ΔΔG value. ΔΔG values were calculated with the 

following equation:

ΔΔG = n scoredel
n − 1 − scorewt

where n is the number of residues in the wildtype protein, scoredel is the Rosetta score for the 

deletion and scorewt is the Rosetta score for the wildtype protein.

QUANTIFICATION AND STATISTICAL ANALYSIS

Three independent experiments were performed for CD and nanoDSF analysis and reported 

as means and respective standard deviation using GraphPad Prism 9.0. Statistical analysis on 

computational modeling is reported in the respective method sections and protocols.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Experimental investigation of in-frame deletion mutations in an α-helical 

protein

• Biomolecular NMR and stability tests to characterize tolerated deletion 

mutations

• Comparison of computational protocols to model deletion mutations

• A combination of Rosetta ΔΔG’s and AlphaFold2 pLDDT predicts solubility
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Figure 1: Deletion mutants of a SAM domain.
A. Structural composition of the SAM domain. B. Soluble deletion mapped onto the 

structure of the SAM domain labeled, shown in blue and insoluble shown in orange. C. 

Melting temperature difference ΔTM for deletion mutants mapped onto the SAM domain 

structure (from nanoDSF measurements). D. NMR data (chemical shift perturbation plots); 

grey indicating regions where no CSP value could be determined because the corresponding 

peak could not be reliably identified in the spectrum. Gray spheres indicate the deleted 

residue.
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Figure 2: 1H-15N-HSQC spectra of the wildtype protein and respective deletion mutants, 
grouped by observed structural clusters.
A. N-terminal deletion mutants del2, 3, 5, B. Loop IV deletion mutants del50-52, C. 
Structurally diverse helix V deletion mutants del62-64 and D. C-terminal deletion mutants 

del66-72.
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Figure 3: Computational protocols for the prediction of deletion mutants of the investigated 
SAM domain.
A. Distribution of ΔΔG calculated from four different computational protocols of deletions 

mutants that were soluble verses insoluble. Blue indicates soluble and orange indicates 

insoluble mutants. Stars indicate p-values calculated from Mann-Whitney test. DeNovo 

p-value: 4.91×10−8, Hybridize p-value: 3.28×10−4, Relax p-value: 6.12×10−3, AlphaFold 

p-value: 2.27×10−7. B. Average pLDDT values from AlphaFold2 verses average ΔΔG of 

AlphaFold2+Rosetta Relax three lowest scoring models for soluble (blue) and insoluble 

(orange) deletions. Vertical black line indicates wildtype average pLDDT. Horizontal 

black line drawn at 0 REU. Error bars depict standard error. C. Distribution of 

weighted contact number for soluble vs insoluble deletion mutants. P-value: 1.22×10−4. 

D. Melting temperatures measured with nanoDSF versus ΔΔG calculated from tested 

computational protocols. Higher melting temperatures indicate higher thermostability; 

therefore a negative correlation is expected between ΔΔG and ΔTm E. PerResidue ΔΔG 

scores AlphaFold2+RosettaRelax for deletion 52 and deletion 71 mapped onto the lowest 

scoring structures from the AlphaFold2 protocol.
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Figure 4: RMSD and Per Residue Scores on SAM Domain Deletion Structures.
A. Per-Residue RMSD from starting structure of SAM deletion mutants mapped onto 

structure. B. Per-Residue Rosetta ΔΔG calculated from difference of lowest scoring mutant 

and lowest scoring wildtype models from AlphaFold2+RosettaRelax protocols. Negative 

(blue) values indicate mutant has a lower, more stable, score; positive (red) values indicate 

mutant has a higher, less stable, score.
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Figure 5: Performance of computational protocols on GFP and Ricin dataset.
A. Tolerated deletion mutations in blue and non-tolerated in orange mapped on GFP 

structure17; B. Deletion mutants with remaining Ricin activity in orange and deletion 

mutations without activity in blue21,23; C. Distribution of ΔΔG values from AlphaFold2-

RosettaRelax protocol from tolerated and non-tolerated deletion mutants in GFP; stars 

indicate p-values calculated from Mann-Whitney test with a p-value of 2.12×103 and D. for 

Ricin with a p-value of 1.8×103. E. Distribution of WCN for tolerated and non-tolerated 

deletion mutations in GFP with a p-value of 6.84×105 and F. in Ricin with a p-value of 0.26. 
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G. ΔΔG values plotted against average pLDDT values from AlphaFold2 for GFP and H. for 

Ricin. Black lines represent values obtained for GFP and Ricin wildtype respectively. Error 

bars depict standard error.
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Figure 6: Modeling known pathogenic deletion mutants.
Average ΔpLDDT values from AlphaFold2 versus ΔΔG from AlphaFold+RosettaRelax for 

pathogenic deletion mutations listed in Table S4. Gray lines drawn at 0 to indicate how far 

from the wildtype value each mutant is. Error bars depict standard error.
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Table 1:

Deletion mutants of a SAM domain.

# deletion Average TM (CD)
[°C]

Average TM (nanoDSF)
[°C]

WT WT 58.9 +/− 0.2 60.2 +/− 0.4

1 delF2 59.2 +/− 0.5 61.3 +/− 0.1

2 delS3 58.5 +/− 0.2 61.9 +/− 0.7

3 delV5 58.5 +/− 0.1 59.6 +/− 0.0

4 delA50 55.5 +/− 1.1 56.6 +/− 0.3

5 delI51 58.1 +/− 2.5 60.6 +/− 0.2

6 delT52 62.2 +/− 0.1 56.0 +/− 2.6

7 DelD59 59.2 +/− 0.2 59.5 +/− 0.0

8 delD62 58.7 +/− 1.1 60.5 +/− 2.6

9 delQ63 56.1 +/− 0.3 54.2 +/− 0.3

10 delI64 58.8 +/− 0.63 60.4 +/− 0.2

11 delH66 58.7 +/− 0.52 59.3 +/− 0.2

12 delD67 61.4 +/− 1.1 61.4 +/− 0.1

13 delF68 57.2 +/− 1.1 57.8 +/− 0.2

14 delI69 57.8 +/− 1.3 58.8 +/− 1.5

15 delD70 58.7 +/− 0.5 60.4 +/− 0.0

16 delM71 57.7 +/− 0.8 59.2 +/− 0.0

17 delH72 58.7 +/− 0.3 59.3 +/− 0.1

The deletion mutants were purified and evaluated for their stability and biophysical properties (n = 2–3). The standard deviation of the difference 
from the mean in circular dichroism (CD) measurements for each variant is 0.74 and for nano differential scanning fluorimetry (nanoDSF) 
measurements is 0.69. (Full melting curves for CD and nanoDSF in Supplementary Data, Figure S2, S3 respectively)
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

BL21(DE3) Agilent Technologies (formerly 
Stratagene)

product number: 200131

Chemicals, peptides, and recombinant proteins

15N-labelled ammonium sulfate (15NH4)2SO4 Cambridge Isotope Laboratory NLM-713-1

D2O Cambridge Isotope Laboratory DLM-4-99-1000

SAM domain deletion mutant protein This paper N/A

15N-labeled SAM domain deletion mutant protein This paper N/A

Critical commercial assays

QuickChangeLightning Site directed Mutagenesis kit Agilent #210519

Oligonucleotides

Primers to generate deletion mutants, see Table S2 This paper N/A

Recombinant DNA

pET11a_1b0x_BDBV Schoeder et al.34 N/A

Plasmid DNA of deletion mutants This paper N/A

Software and algorithms

Rosetta software suite 3.13 version r280 
8ee4f02ac5768a8a339ffada74cb0ff5f778b3e6

RosettaCommons www.rosettacommons.org

AlphaFold2 Jumper et al.51 https://github.com/deepmind/alphafold

TopSpin 3.6.2 Bruker https://www.bruker.com/de/products-
and-solutions/mr/nmr-software/
topspin.html

NMRViewJ SBGrid https://sbgrid.org/

PyMOL SBgrid https://sbgrid.org/

GraphPad Prism 9.1 GraphPad Software Inc. https://www.graphpad.com/scientific-
software/prism/

MoltenProt Kotov et al.52 https://spc.emblhamburg.de/app/
moltenprot

PSI-BLAST National Center for 
Biotechnology Information 
(NCBI)

https://blast.ncbi.nlm.nih.gov/Blast.cgi

Python 3 Anaconda https://www.anaconda.com/

Jupyter notebook Anaconda https://www.anaconda.com/

JUFO Koehler-Leman et al.53 www.meilerlab.org

Computational Protocol Captures This paper N/A

Other

Prometheus Standard Capillaries Nanotemper PR-C002
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