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Abstract
The paper deals with two interrelated topics: (1) identifying transient amplifiers in
an iterative process, and (2) analyzing the process by its spectral dynamics, which
is the change in the graph spectra by edge manipulation. Transient amplifiers are
networks representing population structures which shift the balance between natural
selection and random drift. Thus, amplifiers are highly relevant for understanding the
relationships between spatial structures and evolutionary dynamics.We study an itera-
tive procedure to identify transient amplifiers for death–Birth updating. The algorithm
starts with a regular input graph and iteratively removes edges until desired structures
are achieved. Thus, a sequence of candidate graphs is obtained. The edge removals are
guided by quantities derived from the sequence of candidate graphs. Moreover, we are
interested in the Laplacian spectra of the candidate graphs and analyze the iterative
process by its spectral dynamics. The results show that although transient amplifiers
for death–Birth updating are generally rare, a substantial number of them can be
obtained by the proposed procedure. The graphs identified share structural properties
and have some similarity to dumbbell and barbell graphs. We analyze amplification
properties of these graphs and also two more families of bell-like graphs and show
that further transient amplifiers for death–Birth updating can be found. Finally, it is
demonstrated that the spectral dynamics possesses characteristic features useful for
deducing links between structural and spectral properties. These feature can also be
taken for distinguishing transient amplifiers among evolutionary graphs in general.
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1 Introduction

Evolution occurs by natural selection and genetic drift. Thus, if a mutant arises in a
population of residents, its evolutionary dynamics is affected by the mutant’s fitness
(as this influences the mutant’s chances in natural selection) and drift (which basi-
cally is understood as a random process). The balance between natural selection and
random drift may vary over different spatial population structures. There are some
spatial structures which amplify natural selection, thus shifting the balance towards
the influence of fitness. Some other spatial structures suppress natural selection, thus
reversing the effect. Amathematical understanding of the relationships between spatial
structures and evolutionary dynamics is highly relevant for real biological processes,
as for instance shown for cancer initiation and progression (Hindersin et al. 2016;
Komarova et al. 2003; Komarova 2006; Nowak et al. 2003; Vermeulen et al. 2013),
ageing of tissues (Cannataro et al. 2016, 2017), spread of infections (Ottino-Löffler
et al. 2017a, b) and microbial evolution of antibiotic resistance (Krieger et al. 2020).

Spatial structures can be interpreted as a network and modelled mathematically as
a graph. Networks amplifying or suppressing selection have been intensively studied
in the past decades (Adlam et al. 2015; Alcalde Cuesta et al. 2017; Allen et al. 2020;
Hindersin and Traulsen 2015; Hindersin et al. 2019; Jamieson-Lane and Hauert 2015;
McAvoy and Allen 2021; Monk 2018; Pavlogiannis et al. 2017, 2018; Tkadlec et al.
2020, 2021). The ability of a network to amplify (or suppress) selection not only
depends on the spatial structure, but also on other factors. One factor is where in the
network and under what circumstances mutation occurs in the first place. Most previ-
ous works (Hindersin and Traulsen 2015; Jamieson-Lane andHauert 2015; Lieberman
et al. 2005;Monk et al. 2014;Möller et al. 2019; Pavlogiannis et al. 2017) have assumed
that heritable mutations mainly occur in adult individuals with the same probability
over time. For the network this means mutations equally likely appear at all vertices,
which is called uniform initialization. As an alternative, we may assume mutations to
occur mainly in new offspring, which means in the network mutations appear more
likely at vertices more frequently replaced, which is called temperature initializa-
tion (Adlam et al. 2015; Allen et al. 2021; Pavlogiannis et al. 2018; Tkadlec et al.
2019). Recently, it has been shown that at least for Birth–death updating amplification
properties vary over initialization (Allen et al. 2021).

Another factor is the updating mechanism by which mutants and/or residents prop-
agate on the graph. Two mechanism frequently studied are Birth–death (Bd) and
death–Birth (dB) updating. For Bd updating many graphs represent population struc-
tures with amplification properties. For instance, by analyzing a large number of
random graphs with N ≤ 14 vertices an extensive numerical study identified a multi-
tude of amplifiers of selection for Bd (Hindersin and Traulsen 2015). More recently,
a systematic study checking all graphs up to N ≤ 10 vertices found that almost all
graphs have amplification properties (Allen et al. 2021).

For dB updatingwe find the opposite. Thementioned study (Hindersin andTraulsen
2015) analyzing a larger number of randomgraphs foundno amplifiers for dBupdating.
This prompted the assumption that either amplifiers for dB are very rare, at least for
graphswith small orders, or even there are none.Meanwhile, theoretical and numerical
works havemodified and partly corrected this view. On the one hand, it has been shown

123



Spectral dynamics of guided edge removals and… Page 3 of 39 3

that for dB updating universal amplification is not possible (Tkadlec et al. 2020). At
most, an evolutionary graph can be a transient amplifier (meaning the amplification
only takes place for a certain range of fitness). In addition, a method has been devised
which allows computingwith polynomial time complexity if forweak selection a graph
is a (tangential) amplifier (Allen et al. 2020). The method is based on calculating the
coalescence times of random walks (Allen et al. 2017) on the graph and finding the
vertexwith the largest remeeting time. If a single edge from this vertex is removed,with
some likelihood the resulting graph is a transient amplifier. The method also implies
identifying transient amplifiers for dB updating by edge removals from regular graphs
taken as an input to the method. Recent results have shown that for a small but non-
negligible fraction of all pairwise non-isomorphic regular graphs with certain order
and degree transient amplifiers are obtained by such a single edge removal (Richter
2021).

However, the resulting graphs are close to the regularity of the input graphs and
typically only for cubic and quartic regular graphs transient amplifiers have been iden-
tified. In this paper we study how transient amplifiers for dB updating can be obtained
by multiple edge removals embedded in an iterative algorithmic process. As this gives
a larger variety of transient amplifiers, particularly with a stronger perturbation to the
regularity of the input graphs, amore profound analysis of structural and spectral prop-
erties of amplification can be done. A main tool in this analysis is spectral dynamics,
which is concerned with changes in the graph spectra over graph manipulations (Chen
and Zhang 2017; Zhang et al. 2009). We here study the spectral dynamics of the nor-
malized (and standard) Laplacian spectra over edge removals. Our main result is that
although transient amplifiers for dB updating are relatively rare, a significant number
of them can be identified by the iterative method. For instance, for graphs on N = 11
and N = 12 vertices, for all existing degrees there are regular input graphs which
can be disturbed into amplifiers by guided edge removals. This also applies for graphs
on N = {14, 20, 26} vertices with degree k = N − 3. The results also show that
transient amplifiers for dB updating identified by the iterative process share certain
structural properties. They mainly consist of two cliques of highly (frequently com-
pletely) connected vertices which are joined by bridges of one or two edges. Thus,
these graphs have some similarity to barbell and dumbbell graphs (Ghosh et al. 2008;
Wang et al. 2009). The analysis of the spectral dynamics also reveals shared spectral
characteristics. Interlacing results state that the Laplacian spectra generally shrink by
edge removals (Atay and Tuncel 2014; Chen et al. 2004; van den Heuvel 1995). By
analyzing the algebraic connectivity as well as the smoothed spectral density of the
whole spectrum, it can be shown that edge removal processes leading to transient
amplifiers can be distinguished from processes not leading to amplifiers. This opens
up the possibility to link structural and spectral properties of transient amplifiers. The
results also add to answering a fundamental mathematical question in graph theory
which is the relationships between graph spectra and graph structure.
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2 Methods

2.1 Identifying transient amplifiers

We study an evolving population of N individuals whose spatial structure is described
by an undirected (and unweighted) graph G = (V , E). Each individual is associated
with a vertex vi ∈ V and an edge ei j ∈ E indicates that the individuals placed on vi
and v j are neighbors (Allen et al. 2017; Lieberman et al. 2005; Ohtsuki et al. 2007;
Pattni et al. 2015; Richter 2017). The graph G is simple and connected, and each
vertex vi has degree ki . Thus, there is no self-replacement and an individual on vi has
ki neighbors.

With residents and mutants there are two types of individuals. Residents have a
constant fitness specified to unity, while mutants’ fitness is r > 0. An individual’s type
can go from resident to mutant (and back) by a fitness-dependent selection process.
We study a death–birth (dB) process, e.g. (Allen et al. 2017, 2020; Pattni et al. 2015).
An individual is chosen uniformly at random and dies, thus vacating the vertex it
occupied. One of the neighbors is selected to give birth with a probability depending
on its fitness. The neighbor selected transfers its type and thus replaces the dead
individual. To indicate that birth in such an updating process is fitness-dependent, but
death is not, we write dB updating, as suggested by (Hindersin and Traulsen 2015).

We consider uniform initialization and define the fixation probability �G as the
expected probability that for a singlemutant appearing at a vertex uniformly at random
finally all vertices of the graph G become the mutant type. We are particularly inter-
ested in how the fixation probability �G(r) is related to the fixation probability �N (r)
of the complete graph with N vertices for varying fitness r . We categorize the graphs
as follows (Adlam et al. 2015; Allen et al. 2020; Hindersin and Traulsen 2015; Pavlo-
giannis et al. 2017). A graph G is called an amplifier of selection if �G(r) < �N (r) for
0 < r < 1 and �G(r) > �N (r) for r > 1. A suppressor of selection is characterized
by �G(r) > �N (r) for 0 < r < 1 and �G(r) < �N (r) for r > 1. Finally, we have a
transient amplifier if �G(r) < �N (r) for rmin < r < 1 and r > rmax, and also there
is �G(r) > �N (r) for 1 < r < rmax and some 0 < rmin < 1 < rmax < ∞.

The structural and spectral analysis as well as the iterative procedure is based
on three recent results on amplifiers for dB. First, it has been shown that universal
amplification is not achievable for dB updating and only transient amplification is
possible (Tkadlec et al. 2020). Second, a numerical test has been proposed for weak
selection (where r = 1+δ and δ → 0). The test can be executed with polynomial time
complexity and allows to detect if a graph G is a (tangential) amplifier (Allen et al.
2020). Third, the test has been applied to checking all regular graphs up to a certain
order and degree. It was shown that a single edge removal produces transient amplifiers
for a small but non-negligible number of cubic and quartic regular graphs. Moreover,
a spectral analysis has demonstrated that there is a close relationship between the
Laplacian spectra and amplification (Richter 2021).

The numerical test identifying transient amplifiers considers coalescing random
walks (Allen et al. 2017) and requires computing the effective population size Neff
from the relative degreeπi = ki/

∑
j∈G k j and the remeeting time τi of vertexvi (Allen
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et al. 2020). The coalescence times τi j are obtained from solving a system of
(
N
2

)

linear equations

τi j =
{
0 i = j
1 + 1

2

∑
k∈G(pikτ jk + p jkτik) i �= j

, (1)

where pi j = ei j/ki are the step probabilities pi j = 1/ki , if ei j = 1 and pi j = 0,
otherwise. From these coalescence times τi j the remeeting time τi is calculated by

τi = 1 +
∑

j∈G
pi jτi j . (2)

Remeeting times obey the identity condition
∑

i∈G
π2
i τi = 1. (3)

A graph G is an amplifier of weak selection if (Allen et al. 2020)

Neff =
∑

i∈G
πiτi > N . (4)

An amplifier of weak selection can be identified by the following perturbationmethod.
For a k-regular graph G, we have ki = k and πi = 1/N for all i = 1, 2, . . . , N . Thus,
with the identity condition (3), we obtain from Eq. (4):

Neff =
∑

i∈G
τi/N = N

∑

i∈G
π2
i τi = N . (5)

The equality Neff = N in Eq. (5) indicates that k-regular graphs cannot be amplifiers
of weak selection, which is also a consequence of the isothermal theorem (Lieberman
et al. 2005). But disturbing the regularity may possibly change the equality to Neff >

N . Moreover, such a perturbation is most promising if we remove an edge from the
vertex vi . This is the vertex of the k-regular graph to be testedwith the largest remeeting
time τi , that is max(τi ) = maxi∈G τi . The argument is as follows. If we take a regular
graph and cause a small perturbation by removing an edge, the relative degree πi and
the remeeting time τi undergo small deviations Δπi and Δτi . The perturbation for the
effective population size, Eq. (4), is

ΔNeff =
∑

i∈G
Δ(πiτi ) ≈

∑

i∈G
(Δπiτi + πiΔτi ), (6)

while from the identity condition (3) we obtain
∑

i∈G
Δ

(
π2
i τi

)
≈

∑

i∈G

(
2πiΔπiτi + π2

i Δτi

)
≈ 0. (7)

Since for the unperturbed regular graph πi = 1/N holds, we get from Eq. (7)

1/N
∑

i∈G
Δτi ≈ −2

∑

i∈G
Δπiτi . (8)
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Inserting Eq. (8) into Eq. (6) and still observing πi = 1/N for the unperturbed regular
graph yields

ΔNeff ≈ −
∑

i∈G
Δπiτi . (9)

The relationship (9) suggests that a positive perturbation of the effective population
size (and thus the possibility to get Neff > N ) can be achieved if for a large τi the
perturbation entails a decrease of the relative degree πi , which means a negative Δπi .
Thus, Eq. (9) can be interpreted as a procedure to identify transient amplifiers.We need
to find the vertex vn1 , n1 = argmaxi∈G τi , with the largest remeeting time and proceed
by removing each of the k edges adjacent to the vertex, thus obtaining k candidate
graphs. Possibly there is a transient amplifier among these candidate graphs, which
can be tested by condition (4).

We may repeat this perturbation by removing another edge and thus introduce sec-
ond (subsequent) deviationsΔ2πi andΔ2τi to the relative degree πi and the remeeting
time τi . Analogously to Eqs. (6) and (7) we obtain for the identify condition (3) and
the effective population size (4) the following second perturbations:

∑

i∈G
Δ2

(
π2
i τi

)
≈

∑

i∈G

(
2πiΔ

2πiτi + 2 (Δπi )
2 τi + 4πiΔπiΔτi + π2

i Δ2τi

)
≈ 0.

(10)
and

Δ2Neff =
∑

i∈G
Δ2 (πiτi ) ≈

∑

i∈G

(
Δ2πiτi + 2ΔπiΔτi + πiΔ

2τi

)
. (11)

Combining these equations and using πi = 1/N yields

Δ2Neff ≈ −
∑

i∈G

([
Δ2πi + 2N (Δπi )

2
]
τi + 2ΔπiΔτi

)
(12)

with Δτi = τi (1) − τi (0). Also this equation can be interpreted as a calculating
instruction to obtain a transient amplifier with a positive Δ2Neff , but in addition to
the effect of τi (as in Eq. (9)), we now also have the influence of Δτi . In other words,
we may remove another edge from the vertex vn1 with the largest τi . But the effect
of a negative Δ2πi is countered by 2N (Δπi )

2 > 0, which means we need |Δ2πi | >

2N (Δπi )
2 for the largest τi to become effective. Alternatively, or even additionally,

we may remove an edge from the vertex vn2 , n2 = argmaxi∈G Δτi , with the largest
Δτi .

For the perturbation procedure repeated a third time, we get

Δ3Neff ≈ −
∑

i∈G

( [
Δ3πi + 6NΔ2πiΔπ

]
τi

+
[
3Δ2πi + 6N (Δπi )

2
]
Δτi + 3ΔπiΔ

2τi

)
(13)

withΔ2τi = τi (2)−2τi (1)+τi (0). The instruction for identifying transient amplifiers
associated with the third perturbation involves either to remove another edges from
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vn1 and/or vn2 , or to remove an edge from vn3 , n3 = argmaxi∈G Δ2τi , with the largest
Δ2τi , or any combination of removals from the edge set (vn1, vn2 , vn3).

We may continue to perturb the graph by further edge removals and obtain for the
( j + 1)-th perturbation of Neff caused by removing the ( j + 1)-th edge from a regular
graph

Δ j+1Neff ≈ −
∑

i∈G

⎛

⎝
j−1∑

p=0

(
cp(N ,Δqπi ) · Δpτi

) + ( j + 1)ΔπiΔ
jτi

⎞

⎠ (14)

with the coefficients cp(N ,Δqπi ) depending on N and Δqπi , 0 ≤ q ≤ j , Δ0τi = τi

and Δ jτi = ∑ j
p=0(−1) j−p

( j
p

)
τi (p) is the forward difference, see Eqs. (12) and

(13) for j = 1 and j = 2. Such a general calculating instruction suggests an iterative
procedure to identify transient amplifiers starting with a regular input graph. The
iterative procedure is presented in Algorithm 1. Its basic form is an enumerative,
brute-force search. Additional steps for an approximative, greedy search are denoted
in italics and parenthesis. We next discuss features and properties of the algorithm.

The input to Algorithm 1 is a regular graph Gin with degree k. It can be taken
from the set of all simple connected pairwise non-isomorphic k-regular graphs on N
vertices with degree k ≥ 3, whose number of known for small N , see e.g. (Meringer
1999; Richter 2021; WolframMathWorld 2022). As discussed in the Sect. 3, not all
regular graphs can be disturbed into transient amplifiers. In Algorithm 1 a graph is
denoted by G and may belong to a set of graphs G with |G| indicating the number
of graphs in the graph set. The “remaining graphs” in the for-loops of line 6–8 and
line 21–23 are the graphs created by the edge removals minus the graphs that became
disconnected by the removal or are isomorphic to another graph in the set. From the
regular input graph k edges can be removed from each vertex which gives k candidate
graphs for the next iteration. After the first edge removal any given vertex has κ ≤ k
edges, which gives κ candidate graphs.

If from a given regular graph we repeat to remove edges, then sooner or later the
graph will become disconnected. Thus, an important parameter of the algorithm is the
number of allowed edge removal repetitions �. A regular graph has kN

2 edges and a
connected graph has at least N − 1 edges, which gives us an upper bound of edge
removals: 1+ (k−2)N

2 . Consequently, the number of edge removals �may vary between

1 ≤ � ≤ 1+ (k−2)N
2 . This bound is for the total number of edges to be removed from

the graph. From a given vertex at most k edges can be removed before the vertex is
no longer connected to the remainder of the graph. If an edge removal disconnects the
graph, Algorithm 1 discards the graph. In other words, in order to keep a graph as a
potential structure to be perturbed into a transient amplifier, we should not disconnect
it by a needless edge removal. Although suggested by Eqs. (12)–(14) as a possibility,
we thus should sparsely (if at all) remove additional edges from the vertex vn1 , which is
the vertex with the largest initial remeeting time. In the implementation of Algorithm
1, additional edges from vn1 are only removed if there is vn j = vn1 for 1 < j ≤ �.
The same constraint (reducing the number of instances where edges are removed from
the same vertex) also applies to the edge set (vn2 , vn3 , . . . , vn j−1). Thus, the vertex
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Algorithm 1: Iterative procedure to identify transient amplifiers from a regular
graph.
Basic form: enumerative, brute-force search.
(Additional steps: approximative, greedy search.)
Input : Regular graph Gin with degree k, for instance from the set of all non-isomorphic regular

graphs;
Output: Set of transient amplifier graphs Gout (if successful);

1 Calculate remeeting times τi of Gin by Eq. (2) and store in T (0);
2 Find vertex vn1 with largest remeeting time n1 = argmaxi∈Gin

τi ;
3 Create k graphs by removing each one of the k edges from vertex vn1 ;
4 Discard graph if it became disconnected by the edge removal;
5 Remove isomorphic graphs;
6 for All remaining graphs do
7 Calculate remeeting times τi by Eq. (2) and effective population size Neff by Eq. (4) to test

amplification;
8 end
9 Store remaining graphs in G(0), |G(0)| ≤ k and mark amplifiers;

10 Store remeeting times τi of the remaining graphs in T (1);
11 Set the number of edge removal repetitions �;
12 Set j := 1;
13 (Set upper limit (filter size) #lim 	 k of graphs to be included in the next edge removal repetition);
14 while ( j ≤ � or |G( j − 1)| > 0) do
15 for Each graph G of the graph set G( j − 1) do
16 Calculate remeeting time difference Δ j τi using the remeeting times stored in

{T (0),T (1), . . . ,T ( j)};
17 Find vertex vn j with largest remeeting time difference n j = argmaxi∈G Δ j τi ;

18 Create κ ≤ k graphs by removing each one of the κ edges from vertex vn j ;

19 Discard graphs which became disconnected by the edge removal;
20 Remove isomorphic graphs;
21 for All remaining graphs do
22 Calculate remeeting times τi by Eq. (2) and effective population size Neff by Eq. (4) to

test amplification;
23 end
24 Store remaining graphs in set G( j), |G( j)| ≤ k j and mark amplifiers;
25 Store remeeting times τi of the remaining graphs in T ( j);
26 end
27 (Calculate spectra and other graph measures of all graphs in G( j));
28 (Discard graphs exceeding the filter size #lim depending on a filter criteria derived from

spectral graph measures);
29 Remove isomorphic graphs from the graph set Gout = {G(0),G(1), . . . ,G( j)};
30 Set j := j + 1;
31 end
32 Return Gout consisting of the remaining graphs marked as amplifiers;

vn j from which the j-th edge is removed by Algorithm 1 is solely determined by
n j = argmaxi∈G Δ jτi .

Algorithm 1 in its basic form is a breadth-first search with a brute-force enumera-
tion of all possible (non-isomorphic) graphs resulting from iterative edge removals. It
also relies substantially upon identifying isomorphic graphs. Roughly speaking, iso-
morphism means that two graphs are structurally alike and merely differ in how the
vertices and edges are named. More precisely, two graphs are isomorphic if there is a
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bijectivemapping between their verticeswhich preserves adjacency (Bondy andMurty
2008), pp. 12–14. Unfortunately, the computational problem of finding out whether
or not two finite graphs are isomorphic is not solvable in polynomial time (Arvind
and Torán 2005; Babai 2019), which is a major limitation to the applicability of Algo-
rithm 1. Therefore, we substitute detecting isomorphic graphs by detecting cospectral
graphs, which is computationally less expensive. The rationale of using cospectral
as a proxy for isomorphic is that all isomorphic graphs are cospectral. On the other
hand, cospectral graphs can be non-isomorphic. Thus, we might discard graphs which
could possibly have been additional sources of transient amplifiers. However, numer-
ical studies suggest that non-isomorphic pairs of graphs with the same spectrum are
not very frequent and the effect of mistaking cospectral for non-isomorphic can be
minimized by using the spectrumof the normalizedLaplacian (Butler andGrout 2011).

Another limitation of Algorithm 1 in its basic form is the exponential growth of the
number of candidate graphs produced by iterative edge removals, which restricts the
applicability to small k and �. However, the transient amplifiers produced for small
k and � mostly have only a small perturbation to their input regularity and degree
distribution. Thus, if we also want to study transient amplifiers with possibly stronger
perturbations to their regularity and more unbalanced degree distributions, larger k
and � would be desirable. To counter the growth of the number of candidate graphs
and achieve practical computability, we need to modify the basic form of Algorithm
1. Therefore, we set a limit #G 	 k to the number of graphs to be included in the
next iteration. This restricts the number of graphs taken as an input to the subsequent
repetition of edge removals and thus bounds the exponential growth of the number of
candidate graphs. In this paper it is suggested to evaluate spectral graph measures to
decide which graphs (if the limit #G is exceeded) are included in the next iteration. In
some sense, themodifications to the basic formof the algorithmwork like a filterwhich
passes only a limited number of graphs selected by their spectral properties. Thus, we
call the limit #G the filter size. The modified Algorithm 1 is a kind of approximative,
greedy search for finding transient amplifiers of death–Birth updating. In Algorithm
1 the additional steps augmenting the basic form are given in italics and parenthesis.

2.2 Graph spectra and edge removals

An (undirected and unweighted) graph G = (V , E) is specified algebraically by a
symmetric adjacency matrix A = {ai j } with ai j = a ji = 1 indicating that the vertices
vi and v j are connected by the edge ei j ∈ E . With the vertex degree ki = ∑N

j=1 ai j ,
we additionally get a degree matrix D = diag (k1, k2, . . . , kN ). For the spectral
analysis of an evolutionary graph G we take A and D, and consider the standard
Laplacian LG = D− A and the normalized Laplacian ΛG = I − D−1/2AD−1/2. The
spectrum of the standard Laplacian is denoted by μ(G) and consists of N eigenvalues
0 = μ1 ≤ μ2 ≤ · · · ≤ μN , while for the spectrum of the normalized Laplacian we
have λ(G) with 0 = λ1 ≤ λ2 ≤ · · · λN ≤ 2. The second smallest eigenvalues μ2
and λ2 are frequently called algebraic connectivity. From the Laplacian eigenvalues
a spectral distance d can be defined which is useful for comparing two families (or
classes) of graphs (G) and (G′). If each family only contains a single member, we can
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3 Page 10 of 39 H. Richter

also compare two graphs G andG′. Therefore, we consider a smoothed spectral density
which convolves the eigenvalues λi with a Gaussian kernel with standard deviation
σ (Banerjee and Jost 2009; Banerjee 2012; Gu et al. 2016)

ϕG(x) = 1

N

N∑

i=1

1√
2πσ 2

exp

(
(x − λi )

2

2σ 2

)

. (15)

We set σ = 1/(3N ). From this continuous spectral density we can define a pseudo-
metric on graphs by the distance (Gu et al. 2016)

d(G,G′) =
∫ 2

0
|ϕG(x) − ϕG′(x)|dx . (16)

Equations (15) and (16) are defined for the normalized Laplacian spectrum λ(G). The
spectrum is bounded in the interval [0, 2] for any graph order and degree and can thus
be easily compared for variable order and degree. However, the spectral density and
the spectral distance can also be defined for the standard Laplacian spectrum μ by
replacing λi by μi in Eq. (15), albeit with a variable upper integration limit in Eq.
(16).

Suppose we have a graph G = (V , E) and remove one of its edges. Thus, the
vertex set is preserved but the edge set is changed. We use (G − ei j ) for denoting
the graph resulting from the edge ei j ∈ E being removed from G. As discussed in
the previous section, for the greedy algorithm we need spectral measures for deciding
which graphs should be included in the subsequent repetition of edge removals. We
next review some results about edge removals and spectral characteristics useful for
directing the greedy algorithm towards finding transient amplifiers.

Several interlacing results connect graph spectra with edge removals (Atay and
Tuncel 2014; Chen et al. 2004; van den Heuvel 1995). For the spectra of the standard
Laplacian there is μi−1(G) ≤ μi (G − ei j ) ≤ μi (G), i = 2, 3, . . . , N . This particu-
larly means for the algebraic connectivity (the second smallest eigenvalue), we have
always a positive spectral shift μ2(G) − μ2(G − ei j ) = α with α ≥ 0. For the nor-
malized Laplacian, the eigenvalue interlacing is λi−1(G) ≤ λi (G − ei j ) ≤ λi+1(G),
i = 2, 3, . . . , N−1. Consequently, eigenvalue interlacing differs between the standard
Laplacian and the normalized Laplacian. The eigenvalues of the standard Lapla-
cian decrease or remain unchanged if an edge is removed, while for the normalized
Laplacian the eigenvalues may in fact also increase. Decreasing or increasing of
the algebraic connectivity associated with the normalized Laplacian is bounded by
0 < λ2(G−ei j ) ≤ λ3(G). The increase of λ2 related to an edge removal is also known
as Braess’s paradox (Eldan et al. 2017).

123



Spectral dynamics of guided edge removals and… Page 11 of 39 3

3 Results

3.1 Computational setup

In the previous section an algorithmic process has been derived and analyzed which
identifies transient amplifiers of death–Birth updating by employing an iterative design
procedure. We next discuss an application of the algorithm. The algorithm has two
variants. It can be either an enumerative, brute-force search or an approximative,
greedy search. Due to the exponential growth of the number of candidate graphs
produced, the enumerative search is numerically feasible only in exceptional cases
of some low values of N and k. Therefore, the focus of the numerical investigations
is on the approximative search. For this variant we need to specify the filter size #G
and the filter criteria. Best results were obtained with low values of the algebraic
connectivity λ2 derived from the normalized Laplacian as filter. We also discuss why
the algebraic connectivity μ2 derived from the standard Laplacian is not likely to be a
successful option. According to the filter criteria, the graphs with the lowest #G values
of λ2 are included in the next iteration. If there are less than #G graphs, all are taken.
Throughout the study we use the filter size #G = 500 as preliminary experiments
suggested that such a setting is a good compromise between algorithmic performance
and computational effort. The algorithm uses the remeeting time difference Δ jτi for
selecting the vertex from which edges are removed. Further preliminary experiments
have shown that a moving difference Δ jτi = τi ( j) − τi ( j − 1) gives best results and
thus is used. This is interesting as a moving difference is a rather rough approximation
of the forward difference in Eq. (14). A possible explanation is that Eq. (14) itself is just
an approximation of the effect which an edge removal has on the effective population
size Neff indicating a transient amplifier. Thus, the moving difference may possibly
describe the effect which step-wise edge removals have on changes of Neff better than
the forward difference. In addition, only Δ jτi is evaluated to determine from which
vertex edges are removed, while Eq. (14) additionally shows contributions of Δqτi
with q < j . Future work should be done to clarify the effect.

Studying the algorithm we have the following performance objectives. First of all,
we are interested in the number of transient amplifiers identified. Apart from the actual
number of graphs, it is also relevant how many of these graphs are non-isomorphic,
which implies they are structurally different. Additionally, our objective is to identify
transient amplifiers with small and large Neff as this implies different amplification
properties. However, the algorithm is not explicitly optimizing for large or small Neff
by pruning graphs as has been shown byMöller et al. (2019) using a genetic algorithm
(see also an application to finding amplifiers of Bd updating by Allen et al. 2021).
Finally, we intend to identify transient amplifiers with different structural properties,
as for instance expressed by the mean degree k̄. With respect to the behaviour of the
algorithm we are mainly interested in how the spectral dynamics generally relates to
edge removals and how graph evolutions leading to transient amplifiers differ from
evolutions not doing so.
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Fig. 1 4 non-isomorphic graphs on N = 11 vertices which are transient amplifiers of death–Birth updating
and have maximum degree Δ(G) = 4. a Neff = 11.0008, δ(G) = 3, k̄ = 3.8182, λ2 = 0.0567. b
Neff = 11.0128, δ(G) = 2, k̄ = 2.9091, λ2 = 0.0399. c Neff = 11.0056, δ(G) = 2, k̄ = 3.0909,
λ2 = 0.0451. d Neff = 11.0952, δ(G) = 2, k̄ = 2.9091, λ2 = 0.0481. This graph can be obtained by
removing the edge depicted in red of the graph in Fig. 1c

Table 1 Results of Algorithm 1
(approximative, greedy search)
for N = 11 and k = (4, 6, 8)

k Lk Ak #tot #noniso

4 265 5 6 2

6 266 228 937 4

8 6 5 15 1

Lk is the total number of simple, connected, pairwise nonisomorphic
k-regular graphs on 11 vertices. Ak is the proportion of these regular
graphs from which transient amplifiers of death–Birth updating are
obtained. #tot is the total number of transient amplifiers found, #noniso
is the number of pairwise non-isomorphic transient amplifiers for each
k. From all graphs with N = 11 and k = (4, 6, 8) 4 non-isomorphic
are obtained, see Fig. 1

3.2 Regular input graphs on N = {11, 12} vertices

We start with considering regular graphs on N = 11 and N = 12 vertices. For these
two graph orders all regular graphswith all occurring degrees have been testedwith the
numerical resources available in this study. For regular graphswith N ≤ 10 vertices no
transient amplifiers of death–Birth updating were found using the method discussed
in this paper. Results of Algorithm 1 (approximative, greedy search) for N = 11 and
k = (4, 6, 8) are given in Fig. 1 and Table 1.

Figure1 shows 4 non-isomorphic graphs on N = 11 vertices identified as transient
amplifiers of death–Birth updating. The graph in Fig. 1a has the lowest effective popu-
lation size Neff = 11.0008, the graph in Fig. 1b has the highest value Neff = 11.0128.
All 4 graphs have a maximum degree Δ(G) = 4; the minimum degree is δ(G) = 3 for
the graph in Fig. 1a and δ(G) = 2 for the remaining graphs. Note that the mean degree
k̄ and the algebraic connectivity λ2 scale inversely to the effective population size Neff .
All graphs share some structural similarities as they all consist of two cliques of highly
connected vertices joined by a bridge, which is a path of one or more edges. Thus,
the graphs can be seen as intermediate forms between a dumbbell graph and a barbell
graph (Ghosh et al. 2008; Wang et al. 2009), also see the discussion in Sect. 3.4.
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Table 1 gives results about the algorithmic process for N = 11 and k = (4, 6, 8).
Lk(N ) denotes the total number of simple, connected, pairwise nonisomorphic k-
regular graphs on N vertices. Ak(N ) is the proportion of these regular graphs from
which transient amplifiers of death–Birth updating are obtained. A first result is that
there are instances of quartic as well as sextic as well as octic regular graphs which can
be disturbed into transient amplifiers, but their numbers vary. Whereas for 6-regular
graphs A6 = 228 graphs out of the L6(11) = 266 and for 8-regular graphs A8 = 5
graphs out of theL8(11) = 6 produce transient amplifiers, the percentage of 4-regular
graphs is much lower (5 out of 265). Moreover, we know that the result for k = 4 is not
specific for the approximative search with filter size #G = 500 as for the L4 = 265
quartic graphs a complete enumeration has been possible and brought exactly the
same result. A second finding is that although the total number of transient amplifiers
found varies substantially between the graph degrees (there are 937 for k = 6, but
only 6 for k = 4), the number of non-isomorphic graphs is more stable. Overall, 4
non-isomorphic transient amplifier graphs have been found for N = 11, see Fig. 1.
All 4 graphs are obtained for k = 6, but the graph in Fig. 1a is also identified for
k = 4 and k = 8 and the graph in Fig. 1b we also get for k = 4. In other words, for
all degrees of regular graph with N = 11 used as an input to Algorithm 1, there is a
certain convergence toward graph structures having amplification properties.

Further insight into the algorithmic process can be obtained by analyzing the behav-
ior of some quantities connected to finding transient amplifiers over the run time of
the algorithm. Figure2a shows the effective population size Neff , Eq. (4), over edge
removal repetitions � for all 4 non-isomorphic transient amplifiers according to Fig. 1
and produced by taking 4 specific 6-regular graphs as input. In other words, each curve
in Fig. 2a can be interpreted as a trajectory accounting for Neff over graphs experienc-
ing repeated edge removals at iterations �. As for regular graph the equality Neff = N
applies, the curves start at Neff = 11, fall to some lower values 10 < Neff < 11,
before rising up and ending at specific values Neff > 11. These values are marked by
black dots for each of the graphs. The graph in Fig. 1a with Neff = 11.0008 is obtained
for the lowest � as it requires the lowest number of edge removals, and thus has the
highest mean degree k̄ = 3.8182. The graphs obtained for the highest � (shown in
Fig. 1b, d) have the lowest mean degree k̄ = 2.0991. The connected black dots of a
trajectory between � = 17 and � = 18 indicate that the two transient amplifier graphs
differ in just one edge. By removing a single edge (depicted in red) the graph in Fig. 1c
can be turned into the graph in Fig. 1d.

Figure2b illustrates a different aspect of the same process. Here, the effective pop-
ulation size Neff is shown over edge removal repetitions � only for the graph with
highest Neff = 11.0128, Fig. 1b, but for all initial sextic regular graphs which can be
disturbed into this transient amplifier. We obtain that 33 out of the A6 = 228 graphs
have this property. Moreover, we get 99 different trajectories along � as for the 33 ini-
tial 6-regular graphs there are up to 5 different ways edge removal sequences can lead
to the same graph. Whereas basically the same shape of the curves can be observed as
in Fig. 2a, it is also worth mentioning that about halfway through the process (about
� ≈ 10) a rather large range of Neff can be seen which merges in a steep increase of
Neff before finally reaching Neff = 11.0128. This result can be interpreted as starting
from the initial regular graphs, after 2 or 3 edge removal repetitions there emerges a
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Fig. 2 Behaviour of the approximative search of Algorithm 1 for order N = 11, degree k = 6. a The
effective population size Neff over edge removal repetitions � for each of the 4 non-isomorphic transient
amplifiers depicted in Fig. 1. The black dots mark the final values Neff > 11. b Neff over � for the graph
with the highest final Neff , Fig. 1b, for all 33 sextic regular graphs which can be disturbed into this transient
amplifier. c The algebraic connectivity λ2 over � for all 4 non-isomorphic transient amplifiers according to
Fig. 1 and produced by taking 6-regular graphs as input. d Scatter plot of algebraic connectivity λ2 and μ2
derived from the normalized and standard Laplacian, respectively, for different edge removal repetitions
�. Black dots � = 0, red dots � = {3, 4}, green dots � = {7, 8}, blue dots � = {11, 12}, cyan dots
� = {16, 17, 18}

substantial structural diversity of graphs by the edge removal process which finally
converge to the transient amplifier.

The curves of the effective population size Neff over the run time of the algorithm
expressed by �, Fig. 2a, b, are typical for all N and k tested, compare to Figs. 4a and
7a, c, e. These curves suggest that taking Neff as a filter criteria for searching transient
amplifiers most likely is not a viable option. While we aim at high values of Neff with
finally Neff > N , we have transients where subsequent edges removals yield values
of Neff which temporarily are substantially lower. We may interpret the search for
transient amplifiers by edge removals from a regular input graph as an optimization
problem with an associated fitness landscape. Doing so we would obtain a barrier
landscape. Such barrier landscapes are known to be difficult to search as they require
valley crossings (Richter andEngelbrecht 2014; vanNimwegen andCrutchfield 2000).

The occurrence of structural diversity of graphs is supported by the results given in
Fig. 2c which shows an aspect of spectral dynamics with the behaviour of the algebraic
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connectivity λ2 over � for all 4 non-isomorphic transient amplifiers according to Fig. 1
and produced by taking 6-regular graphs as input. Again, the values obtained for the
final transient amplifiers are marked by black dots. The blue error bars indicate the
range between largest and smallest λ2 in the whole ensemble of candidate graphs at
iteration �.We see that the values of λ2 leading to transient amplifiers aremostly below
the mean algebraic connectivity λ̄2 over all candidate graphs, but not the smallest. The
values of λ2 are mostly falling for � getting larger. The interlacing result of normalized
Laplacian is 0 < λ2(G − ei j ) ≤ λ3(G) which implies that λ2 may also increase if
an edge is removed. In fact, this can be observed, albeit rarely, for instance at � = 9.
However, for most edge removals, λ2 is falling or stays constant. Also note that the
range of λ2 as indicated by the error bars initially increases and takes the largest range
at 5 ≤ � ≤ 10 before shrinking for the final edge removals prior to eventually obtaining
a transient amplifier. The transient amplifiers reached at the end of the process have
similar λ2 and these values are also taken if the number of edge removals required is
smaller as to be seen for the graph in Fig. 1a which occurs for � = 11.

Finally, we analyze how the algebraic connectivity λ2 and μ2 derived from the
normalized and the standard Laplacian, respectively, evolve for the edge removal pro-
cess, see Fig. 2d. The setting is the same as for Fig. 2c, that is for all 4 non-isomorphic
transient amplifiers according to Fig. 1 and produced by taking 6-regular graphs as
input. Figure2d shows a scatter plot of λ2 and μ2 over edge removal repetitions �,
where black dots are for � = 0, red dots for � = {3, 4}, green dots for � = {7, 8},
blue dots for � = {11, 12} and cyan dots for � = {16, 17, 18}. This means in addition
to the edge removals also the relationship between λ2 and μ2 for the sextic regular
input graphs is shown (as black dots). As for regular graphs the normalized Laplacian
is ΛG = I − 1/k · A and the standard Laplacian is LG = k I − A, we have a linear
relation kλ2 = μ2 for � = 0, which can be seen as the line of black dots in Fig. 2d.
However, for � getting larger, edges getting removed and the regularity of the candidate
graphs being disturbed, the linear relationship collapses. This is particularly visible
for � = {3, 4}, see the cloud of red dots in Fig. 2d. This effect gets less profound for �

getting larger and almost vanishes for � ≥ 16. The result can be interpreted as follows.
Particularly in the initial phase of the edge removals both types of algebraic connec-
tivity λ2 and μ2 account for different aspects of the graph structure, and thus might
be differently suitable for guiding the search process. The spectrum of the normalized
Laplacian capturing geometric and structural properties differently to the spectra of
the standard Laplacian or the adjacency matrix has been already noted (Banerjee and
Jost 2008, 2009; Banerjee 2012; Gu et al. 2016). Belowwe come back to this property
and discuss more details.

The next set of results is for N = 12, see Fig. 3 and Table 2. We obtain 39 non-
isomorphic transient amplifier graphs on N = 12 vertices. Figure3 shows 4 examples
selected by the largest and smallest effective population size (Neff = 12.2209 for the
graph in Fig. 3a and Neff = 12.0028 for the graph in Fig. 3d), and the largest and
smallest mean degree (k̄ = 4.1666 for the graph in Fig. 3b and k̄ = 2.6666 for the
graph in Fig. 3c). Againmost of the transient amplifier graphs on N = 12 vertices have
structures where two cliques are connected by a single bridge (also compare to the
graphs on N = 11 vertices, see Fig. 1), but there are also 4 graphs where the cliques
are connected by two bridges, see an example in Fig. 3d. For this graph structure the
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Fig. 3 4 examples of 39 non-isomorphic graphs on N = 12 vertices which are transient amplifiers of death–
Birth updating. a Neff = 12.2209, Δ(G) = 4, δ(G) = 3, k̄ = 3.8333, λ2 = 0.0455. b Neff = 12.0390,
Δ(G) = 5, δ(G) = 3, k̄ = 4.1666, λ2 = 0.0466. c Neff = 12.0666, Δ(G) = 3, δ(G) = 2, k̄ = 2.6666,
λ2 = 0.0326. d Neff = 12.0028, Δ(G) = 4, δ(G) = 3, k̄ = 3.6666, λ2 = 0.1134

Table 2 Results of Algorithm 1
(approximative, greedy search)
for N = 12 and
k = (3, 4, . . . , 9)

k Lk Ak #tot #noniso
¯̄k

3 85 1 1 1 2.8333

4 1.544 226 303 26 3.3141

5 7.848 7.473 43.974 29 3.2931

6 7.849 6.376 63.693 37 3.4595

7 1.547 935 11.989 21 3.6190

8 94 79 557 4 4.0000

9 9 3 23 1 4.1666

Lk is the total number of simple, connected, pairwise nonisomorphic
k-regular graphs on 12 vertices. Ak is the proportion of these regular
graphs from which transient amplifiers of death–Birth updating are
obtained. #tot is the total number of transient amplifiers found, #noniso
is the number of pairwise non-isomorphic transient amplifiers for each

k, and ¯̄k is the mean degree averaged over these non-isomorphic ampli-
fiers for each k. From all graphs with N = 12 and k = (3, 4, . . . , 9)
overall 39 structurally different transient amplifiers are obtained, see
Fig. 3 for examples

algebraic connectivity is λ2 = 0.1134, which is substantially higher than the value of
the graphs in Fig. 3a–c. In fact, the mean value for the 35 transient amplifier graphs
with just one bridge is λ̄2 = 0.0405, while for the 4 graphs with two bridges it is λ̄2 =
0.1088. The values of the algebraic connectivity λ2 are generally known to express
some structural properties. Small values of λ2 point to largemixing times, bottlenecks,
clusters and low conductance (Banerjee and Jost 2008, 2009; Hoffman et al. 2019;
Wills and Meyer 2020). Additionally, a low algebraic connectivity indicates path-like
graphs which can rather easily be divided into disjointed subgraphs by removing edges
or vertices. These are exactly the characteristics we see in the graphs in Fig. 3. The
graphs which can be disconnected by removing a single edge (one bridge, Fig. 3a–c)
have even lower values of λ2 than the graphs where two edges must be removed (two
bridges, Fig. 3d).

Table 2 summarizes further results about identifying non-isomorphic transient
amplifier graphs on N = 12 vertices. As for regular graphs on N = 11 vertices, com-
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pare Table1, for all degrees k = (3, 4, . . . , 9) instances of graphs can be perturbed
into transient amplifiers, but again the number of amplifiers differs substantially. Par-
ticularly for k = 5 and k = 6 a considerable number of k-regular input graphs have
the property to produce amplifiers. For example, of the 39 structurally different graphs
identified, 37 are associatedwith degree k = 6.Of the remaining 2, one can be obtained
from k = {3, 4, 5} and the other just from k = {4, 5}. Comparing the results for N = 11
and N = 12, we see that for a middle range of degrees k ≈ N/2 the percentage of
non-isomorphic (i.e. structurally different) transient amplifiers falls by one order of
magnitude. While for N = 11 and k = 6 we have #noniso

#tot
= 4

937 = 4.3 · 10−3, for

N = 12 there is #noniso
#tot

= 29
43.974 = 6.6·10−4 for k = 5 and #noniso

#tot
= 37

63.693 = 5.8·10−4

for k = 6. It suggests that for increasing the order from N = 11 to N = 12, the
algorithmic process constructs roughly 10 times more transient amplifiers which are
structurally alike. For several reasons this might appear to be surprising. The total
number of pairwise non-isomorphic regular graphs Lk increases by more than a mag-
nitude, for instance for k = 6 from L6(11) = 266 for N = 11 to L6(12) = 7.849
for N = 12. This would suggest an increased structural diversity of input graphs
from which amplifier graphs could emerge. At the same time the number of edges of
a regular graph (kN/2) increases linearly with N , which additionally broadens the
possibilities to remove edges and thus for obtaining different structures. At least in
principle these possibilities should induce divergence in edge removing trajectories
and thus potentially enhance structural diversity in transient amplifiers. However, the
results show the contrary. The number of structurally different transient amplifiers
increases just about linearly.

There are several possible explanations. A first is that although the search space
of possible graph structures increases massively with the graph order N rising, tran-
sient amplifiers of dB updating are most likely subject to severe structural restrictions
which to some extent constrain the feasible search space of candidate graphs, see
also the discussion about barbell, dumbbell and other bell-like graphs in Sect. 3.4.
Although the algorithmic search discussed in this paper identifies transient amplifiers,
they are still relatively rare as compared to the total number of non-isomorphic graphs.
Another possibility is that the search process guided by the spectral measure algebraic
connectivity λ2 actually narrows the search to just a subsection of the overall search
space. This certainly is plausible and suggests possible directions for future work on
algorithmically identifying transient amplifiers by edge removing procedures, see the
discussion in Sect. 4. A third possibility is that the approximative search, and particu-
larly the setting of the filter size #G , is responsible for the solely linear increase and a
higher number of #G would yield more amplifiers. However, additional experiments
with varying #G showed that there is no clear relationship between increasing #G and
performance, and higher filter size sometimes even gets worse results. This algorith-
mic behaviour is a consequences of the iterative process and the fact that small values
of λ2 point to amplification properties but strictly pursuing only smallest values is not
the best option.

Figure4 illustrates further aspects of the algorithmic process. Figure4a shows the
effective population size Neff over edge removal repetitions � for the amplifier depicted
in Fig. 3b. This amplifier can be obtained by taking input graphs with 4 different
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Fig. 4 Behaviour of the approximative search of Algorithm 1 for input graphs with order N = 12 yielding
the amplifier with Neff = 12.0390 depicted in Fig. 3b and all degrees k = {6, 7, 8, 9}. a The effective
population size Neff over edge removal repetitions �. b Spectral shift in algebraic connectivity λ2 induced
by removing an edge ei j depicted as scatter plot of λ2(G − ei j ) over λ2(G)

degrees k, which is the maximal range of input degrees obtained in the experiments
with k-regular graphs with N = 12 and #G = 500. By taking input graphs with
any degree from k = {6, 7, 8, 9}, we see that for each input degree the final value of
Neff = 12.0390 is obtained after a specific number of edge removals � = �end with
k = 6 needing the smallest �end and k = 9 needing the largest. The curves for each
k resemble each other with setting out at Neff = 12 and experiencing a prolonged
decline to values Neff < 12. Afterwards, they spread out to a larger range of Neff
reflecting structural diversity, before the different paths of edge removal trajectories
sharply rise and merge before ending at Neff = 12.0390 > 12. The actual amount of
edge removals required for different input degrees k mainly influences the length of
the curves, but not their shape.

These shape similarities point at underlying similarities in the way edges are
removed from the input graph. They also becomes noticeable in the graph spectra,
see Fig. 4b which shows the spectral shift over edge removals. The spectral shift is
depicted as a scatter plot of the algebraic connectivity λ2(G − ei j ) over λ2(G) for the
candidate graphs G before and after an edge ei j is deleted. The different colors of
the dots indicate different edge removal repetitions �. The different sizes and light-
ness of the dots label different input degrees k. To compensate for the different �end
for each k = {6, 7, 8, 9}, the plot gives the spectral shift for different phases in the
edge removing process. The plot in Fig. 4b shows the spectral shift from the regular
input graphs experiencing their first edge removal (� = 0, black dots), an initial phase
(� = {4, 5, 6}, red dots), an intermediate phase (� = {�end/2, �end/2± 1}, green dots)
and a final phase (� = {�end − 3, . . . , �end}, blue dots). We particularly see that for
the initial edge removal (� = 0, depicted as black dots) almost all value lie on the
diagonal λ2(G − ei j ) = λ2(G). In other words, there is hardly any spectral shift. This
is interesting as the algorithmic search sets #lim 	 k, and with just k possibilities to
remove a first edge from a k-regular graph, all graphs resulting from the first edge
removal are kept as candidate graphs. The filter of the approximative search has no
influence on the first step. Therefore, all first edge removals on the trajectory to a tran-
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sient amplifiers cause no or just a tiny spectral shift. For the number of edge removals
� increasing this ceases to be the case, although there are still instances of a small or
zero spectral shift. There are even rare instances where λ2(G − ei j ) > λ2(G), which
is known as Braess’s paradox (Eldan et al. 2017). But mostly we have spectral shifts
which decrease the algebraic connectivity λ2. The majority of values are along a band
below the diagonal. The band becomes slightly smaller for � getting larger which
indicates that the magnitude of the spectral shift lowers. With respect to the different
degrees k of the input graphs we see that only for the initial phase (� = {4, 5, 6}, red
dots) clearly separable clouds of dots occur while for rising � the values are more over-
lapping. These results support the notion that the edge removing trajectories resemble
each other in shape even if their duration differs. We may conclude that the spectral
shift along the edge removing process leading to the transient amplifier depicted in
Fig. 3b with Neff = 12.0390 follows some characteristic patterns. These patterns can
similarly be found for the other amplifiers with N = 12 and analogously for other
graph orders N as well. The notion of the spectral shift of λ2 following characteristic
patterns appears to be rather self-evident, giving the fact that the approximative search
explicitly selects for graphs with small λ2. We next generalize the notion of spectral
shifts in three directions, thus studying the spectral dynamics of edge removals. First,
we now consider all edge removal repetitions � and not only some selected phases,
which is expressed as a sum of edge removal

∑
ei j . Second, all trajectories leading to

transient amplifiers are recorded and not just those leading to selected amplifiers, and
third, we not only account for the algebraic connectivity λ2 but for the whole spectrum
ΛG = {λi (G − ∑

ei j )}.
Thus, with Fig. 5 we take a broader and more global look at the algorithmic process

and examine the dynamics of the whole Laplacian spectra over edge removals from
regular input graphs. We consider the spectral density φG as defined by Eq. (15) which
convolves all eigenvalues λi , i = 1, 2, . . . , N , with a Gaussian kernel. Thus, the
spectral density φG can be seen as a smoothed curve over the eigenvalue distribution.
Furthermore,φG averages for each � over the graph set yielding all transient amplifiers.
For instance, for � = 0we average over all input graphswhich finally lead to a transient
amplifier. Note that for � = 0 the number of graphs in the graph set is explicitly
specified by Ak , see Tables 1 or 2. For � = 1, the graph set comprises of all graphs
after the first edge removal which subsequently yield a transient amplifier, and so on
for � > 1. Figure5a shows φG for input graphs with k = 8 for all trajectories leading
to transient amplifiers. Thus, for � = 0 the graph set consist of A8 = 79 out of the
L8 = 94 input graphs. The results for the other degrees k are depicted in the Appendix,
see Fig. 12.

There are two interesting features in the spectral dynamics shown in Fig. 5a. The
first is that the algebraic connectivity λ2 getting progressively smaller and smaller
can be seen as a kind of single travelling peak setting out at λ(G − ∑

ei j ) ≈ 0.9 for
� = 0 and ending at λ(G − ∑

ei j ) ≈ 0 for � = 25. Over all graphs the decrease
in λ2 caused by repeated edge removals is narrowly bounded and almost continuous.
This is in contrast to random edge removals which do not exhibit such a behavior.
The second important feature is a kind of standing peak at λ(G − ∑

ei j ) ≈ 1.1 which
becomes prominent at � ≈ 10 and continuously increases thereafter for � ≤ 25. Such
an increase in φG indicates a multiplicity of eigenvalues which additionally points at
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Fig. 5 Spectral dynamics of the approximative search of Algorithm 1 for order N = 12, degree k = 8.
Comparison of the graph set G (candidate graphs leading to transient amplifiers) with the G′ (candidate
graphs not leading to transient amplifiers). a The spectral density φG describing graph evolutions leading
to transient amplifiers. b The spectral density φG′ describing graph evolutions not leading to transient
amplifiers. c The quantity |φG − φG′ | describing the difference. d The spectral distance d(G,G′), Eq. (16)
for any k = {3, 4, . . . , 9} for which input graphs on N = 12 vertices produce transient amplifiers. See
Appendix, Figs. 12, 13, and 14, for φG , φG′ and |φG − φG′ | of the remaining k

doubling of motifs in the graph (Mehatari and Banerjee 2015). These results can be
contrasted with the spectral density of graph evolutions which do not lead to transient
amplifiers. Figure5b shows the spectral density φG′ of the graph set G′ over � and
λ(G′ − ∑

ei j ). The graph set G′ consists of all candidate graphs produced on the
edge removing trajectory which are not finally leading to a transient amplifier. Thus,
G′ can be seen as complementary to G. For instance, for � = 0 is comprises of the
remaining Lk − Ak input graphs, and so on. Comparing the spectral density φG of
the graph set leading to transient amplifiers, Fig. 5a, with φG′ not leading to transient
amplifiers, general similarities can be noted. Also in Fig. 5b we see the travelling peak
indicating decreasing λ2 over � and the standing peak indicating increasing eigenvalue
multiplicity. However, the difference |φG − φG′ |, see Fig. 5c, also reveals significant
differences in the graph sets.

A first is the difference |φG − φG′ | showing that the travelling peak has a kind of
notch which makes the peak appear split and twofold. The geometrical interpretation
is that the travelling peak of φG is more narrow than the one of φG′ . In other words, the
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Table 3 Results of Algorithm 1
(approximative, greedy search)
for N = {14, 20, 26} and
k = (11, 17, 23)

N k Lk (N ) Ak (N ) #tot #noniso
¯̄k

14 11 13 4 1.597 9 5.2540

20 17 49 2 4.212 43 8.4163

26 23 130 13 58.355 55 11.6154

Lk (N ) is the total number of simple, connected, pairwise noniso-
morphic k-regular graphs on N vertices. Ak (N ) is the proportion of
these regular graphs from which transient amplifiers of death–Birth
updating are obtained. #tot is the total number of transient ampli-
fiers found, #noniso is the number of pairwise non-isomorphic transient

amplifiers for each k, and ¯̄k is the mean degree averaged over these
non-isomorphic amplifiers for each k

range of progressively decreasing values of λ2 is smaller for graphs evolving towards
transient amplifiers than for graphs which do not lead to amplifiers. A second is that
while in the initial and intermediate phase of edge removals the differences remain
within a certain range of λ(G − ∑

ei j ), they spread out in the final phase, particularly
for � > 20. This means that in the final phase of edge removals the λi for graphs
evolving towards transient amplifiers are more dispersed than those for graphs not
doing so. This most likely indicates that on average graphs evolving towards transient
amplifiers build up characteristic structural features which entail certain values and
multiplicities inλi . These features becomevisible in the spectral densityφG . Candidate
graphswhich donot evolve towards amplification properties do not specifically possess
these features. In the spectral density φG′ the resulting variety of structural features
cancels off, leading to differences as compared to φG . For the other degrees k, we find
similar characteristics, see Figs. 12, 13, and 14 in the Appendix. An exception is k = 3
for which there is only a single edge removal from input graph to transient amplifier
and not the same characteristic curves. However, to some extend for k = 4 and clearly
for k > 4 the features described become visible.

For an overall comparison between the spectral densities, the spectral distance
d(G,G′), Eq. (16) can be used. Figure5d shows this quantity for any k = {4, . . . , 9}
for which input graphs on N = 12 vertices produce transient amplifiers. The degree
k = 3 is omitted as there is only a single edge removal from input graph to transient
amplifier and thus no meaningful comparison over �. We see that although the number
of required edge removals varies for different k, the spectral distance starts at large
values for � = 0, before dropping for a certain amount of time but increasing again for
the graph evolution about to finish towards transient amplifiers. In other word, at the
beginning and at the end of the edge removal process, the graph set connected with
amplifiers and the graph set not connected with amplifiers have clear differences in
their normalized Laplacian spectra.

3.3 Regular input graphs on N = {14, 20, 26} vertices

As shown in the previous section, for regular graphs on N = 11 and N = 12 vertices
it has been possible with the available computational resources to treat inputs from
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Fig. 6 Examples of non-isomorphic graphs on N vertices which are transient amplifiers of death–Birth
updating. a–d: N = 14, which have maximum degree Δ(G) = 6. e–h: N = 20, which have maximum
degree Δ(G) = 9. i–l: N = 26, which have maximum degree Δ(G) = 12 except j, which has Δ(G) = 13.
The values of the effective population size Neff , the minimum degree δ(G), the mean degree k̄ and the
algebraic connectivity λ2 are

(a) (b) (c) (d) (e) (f) (g) (h)

Neff 14.0986 14.0073 14.0247 14.0533 20.1978 20.0013 20.0021 20.0831
δ(G) 3 3 4 3 5 8 8 2
k̄ 5.1429 5.1429 5.4286 5.1429 8.2000 8.9000 8.8000 7.9000
λ2 0.0331 0.0329 0.0350 0.0313 0.0172 0.0383 0.0330 0.0113

(i) (j) (k) (l)

Neff 26.1747 26.0019 26.0092 26.0170
δ(G) 9 6 11 3
k̄ 11.5385 11.3077 11.9231 11.2308
λ2 0.0110 0.0108 0.0227 0.0086

all structurally different graphs with all existing degrees. For N ≥ 14 this has not
been feasible due to the massive growth of the number of potential input graphs
Lk(N ) (Meringer 1999; Richter 2021; WolframMathWorld 2022). For nevertheless
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studying a closed set of graphs covering a complete structural range, we next consider
inputs on N = {14, 20, 26} vertices with degree k = N −3. Thus, we have a complete
structural variety for the given N and k, while the total number of input graphs remains
computationally manageable, see Table 3 and Fig. 6.

With increasing order of the considered input graphs also a rising number of
transient amplifiers has been identified. Figure6 gives 4 examples each for N =
{14, 20, 26} out of the #noniso = {9, 43, 55} non-isomorphic amplifiers according to
Table 3. The examples are again selected by the largest and smallest values of the
effective population size Neff and the mean degree k̄. In addition, the maximum and
minimum degree, Δ(G) and δ(G), as well as the algebraic connectivity λ2 are given.
By comparing the obtained graphs we once more observe characteristic structural fea-
tures favoring amplification.We find again exclusively graphs consisting of two highly
connected cliques. They are mostly joined by a single bridge of one or two edges, but
there are also rare instances with two bridges. Next to these structural similarities there
are also differences for a varying number of vertices. For the order of input graphs
going up also the maximum, minimum and mean degree (Δ(G), δ(G), and k̄, respec-
tively) increase with an approximately linear ratio. For transient amplifiers with fixed
order N we see no or very little variance in the maximum degree Δ(G), which also
applies for the mean degree k̄. The largest variance can be found for the minimum
degree δ(G), which can be as low as δ(G) = 2 for bridges with two or more edges,
but also as high as δ(G) = Δ(G) − 1 for amplifiers with two bridges, see for instance
Fig. 6f, k. Similarly to the results for N = 12, the algebraic connectivity λ2 of transient
amplifiers has very small values, while the examples with two bridges have largest.

Figure7a, c, e gives the behavior of the effective population size Neff over edge
removal repetitions � for N = {14, 20, 26}. The results are generally similar to
N = 12, compare to Fig. 4a. Though, for N = 20 and N = 26 we frequently
find graph trajectories with consecutive transient amplifiers. This means for a certain
� we have a transient amplifier graph and by removing an edge from this graph, we
get another transient amplifier. The effective population size Neff may vary for con-
secutive transient amplifiers, and we find successively increasing values as well as a
parabolic succession. Figure7b, d, f shows the spectral dynamics expressed by spec-
tral densities φG . Again there is a general similarity to N = 12, compare to Fig. 5a.
Particularly, the two geometrical features already discusses, the travelling peak of λ2
progressively getting smaller and the standing peak indicating eigenvalue multiplic-
ity can be found in almost the same manner. Thus, it can be concluded that they are
features independent of the considered N and k. For the spectral density φG′ and the
difference |φG − φG′ |, see Appendix, Fig. 15.

The transient amplifiers discussed up to now have been identified using as filter
the algebraic connectivity λ2 derived from the normalized Laplacian. A result worth
mentioning is that contrary to using λ2 as filter, taking the algebraic connectivity μ2
derived from the standard Laplacian does not yield amplifiers, at least not for the tested
input graphs on N = {11, 12, 14, 20, 26} vertices and filter sizes from #G = 500 up
to #G = 2.500. In the discussion about using input graphs on N = 11 vertices and
degree k = 6, it has been observed that the quantities λ2 and μ2 behave differently for
edges being removed from a regular graph, see Fig. 2d. This is the case for all N and
k tested. Using the example N = 14 and k = 11 this behaviour is now analysed by
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Fig. 7 Behaviour of the approximative search of Algorithm 1 for N = {14, 20, 26} and k = {11, 17, 23}.
The effective population size Neff and the spectral density φG describing graph evolutions leading to
transient amplifiers over edge removal repetitions �. a,b N = 14, k = 11. c, d N = 20, k = 17. e, f
N = 26, k = 23. See Appendix, Fig. 15, for the spectral density φG′ and the difference |φG − φG′ |

their spectral dynamics. It is furthermore argued that such an analysis offers a possible
explanation as to why λ2 as filter leads to amplifiers while μ2 does not.

We compare for subsequent edge removal repetitions � how graph evolutions lead-
ing to transient amplifiers guided by low values of λ2 would be evaluated if the filter
were using low values of μ2. The setup of the analysis is this. We take a single input
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Fig. 8 Spectral dynamics of guided edge removals. Comparing between graph evolutions leading or not
leading to transient amplifiers evaluated and filtered by spectral graph measures. a Algebraic connectivity
λ2 derived from the normalized Laplacian. bAlgebraic connectivityμ2 derived from the standard Laplacian

graph from the pool of input graphs finally leading to transient amplifiers. The results
given in Fig. 8 are for a graph with N = 14 and k = 11 which yields in total 530
amplifiers of which 9 are pairwise non-isomorphic. For other input graphs, also with
other N , similar results have been obtained. Using this input graph we track the values
of λ2 and μ2 for these 530 trajectories leading to amplifiers in the process guided by
λ2, see the blue dots in Fig. 8a, b. Then, we rerun the edge removal process taking
the same input graph and the graphs on the trajectory towards transient amplifiers,
but filter and select for each � according to μ2. In other words, we track the values
of λ2 and μ2 for the graph evolution leading to amplifiers for each consecutive � as
if the graphs were to be evaluated and filtered by μ2, see the red dots in Fig. 8a, b.
The results show that for λ2, see Fig. 8a, the values of graphs leading to amplifiers are
mostly below the values for graphs that would have been taken if they were filtered by
μ2. As the filter selects for small values, graphs leading to amplifiers actually remain
in the pool of candidate graphs. There is an interval in edge removals 20 < � < 30
where the values of λ2 for graphs selected according to μ2 are lower than those on the
trajectory towards amplifiers, but if the filter size is large enough this does not lead to
an exclusion of candidate graphs needed to finally obtain amplifiers.

If we look at the spectral dynamics from the perspective of μ2, we get different
results, see Fig. 8b. Here the values of μ2 leading to transient amplifiers are mostly
above the values of those filtered by μ2, particularly for � > 10. Thus, as the filter
selects for small values of μ2 the graphs which would have led to amplifiers are
gradually sorted out of the pool of candidate graphs and thus no transient amplifiers
are identified. It is quite possible that using μ2 as filter would lead to amplifiers if
the filter size #G is larger than some threshold. However, tests with filter sizes up to
#G = 2.500 have brought no results.

3.4 Barbell, dumbbell and other bell-like graphs

Barbell and dumbbell graphs are two families of graphs with a standardized struc-
ture (Ghosh et al. 2008; Wang et al. 2009). Barbell graphs B(a, b) consist of two
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Fig. 9 Barbell, dumbbell and other bell-like graphs. The Barbell graphs B(a, b), dumbbell graphs D(a, b),
Möbius-ladder-bell graphsM(a, b) and antiprism-bell graphsA(a, b) consisting of two complete graph (or
two circle graph, or two Möbius-ladder graphs, or two antiprism graphs) with a vertices each and a bridge
with b edges. The graphs B2(a, b), D2(a, b),M2(a, b) and A2(a, b) have two bridges

complete graphs with a vertices each which are connected by a bridge with b edges,
while dumbbell graphs D(a, b) consist of two circles with a vertices each which are
also connected by a bridge with b edges. According to such a definition a B(a, b)
barbell graph as well as a D(a, b) dumbbell graph has N = 2a + b − 1 vertices,
see the barbell graph B(8, 3) in Fig. 9a and the dumbbell graph D(8, 5) in Fig. 9b. In
addition, we discuss two more families of bell-like graphs, which use two circulant
graphs as building blocks, Möbius ladder graphs and antiprism graphs. A Möbius
ladder graph consists of a cycle graph with a vertices and additional edges connecting
opposite pairs of vertices as rungs, while an antiprism graph involves an antiprism as
its skeleton (Read andWilson 1998).We call themMöbius-ladder-bell graphsM(a, b)
and antiprism-bell graphsA(a, b). They consists of twoMöbius ladder graphs (or two
antiprism graphs) with a vertices each which are also connected by a bridge with
b edges, see the Möbius-ladder-bell M(8, 3) in Fig. 9e and the antiprism-bell graph
A(8, 3) in Fig. 9f. In view of the findings that most, if not all, amplifier graphs iden-
tified using the algorithmic framework discussed in the previous sections resemble
barbell and dumbbell graphs in some way or another, we next discuss amplification
properties of these graphs.

Figure10a gives the quantity Neff/N for barbell graphs B(a, b) with a =
{8, 12, 16, 20} and 1 ≤ b ≤ 400. A ratio Neff/N > 1 indicates transient ampli-
fication properties. We see that for all a and b > 3 transient amplifiers exist. The
ratio Neff/N increases with rising b (and by N = 2a + b − 1 with rising N ) for a
certain interval in b, before reaching a maximum and then slowly falling and finally
converging to a value Neff/N > 1. The larger the value a is (indicating the number
of vertices in the two complete subgraphs) the higher is the maximum Neff/N itself
and the larger the associated number of bridges b. The smallest barbell graph with
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Fig. 10 The quantity Neff/N for barbell graphs B(a, b) and B2(a, b) as well as dumbbell graphs D(a, b)
and D2(a, b) for different a over b. The variable a is the number of vertices in each of the two complete
(or circle) graphs, b is the number of edges in the bridge or the two bridges, see also Fig. 9. Values of
Neff/N > 1 indicate transient amplification properties

amplification properties is B(4, 5), which has N = 12. For dumbbell graph the results
are qualitatively similar, but some details differ, see Fig. 10b for the same values of a
and 1 ≤ b ≤ 200. Also for dumbbell graphs amplification properties can be found,
but the ratio Neff/N is much smaller than for barbell graphs and also the number of
bridges (and thus the order of the graph) needed is higher. The smallest dumbbell
graph with amplification properties is D(3, 12), which has N = 17. Generally speak-
ing, amplification properties of barbell and dumbbell graphs are universal and for other
values of a characterising the number of vertices in the bell-like clique, similar results
are obtained. These results are confirmed by Möbius-ladder-bell graphs M(a, b) and
antiprism-bell graphs A(a, b), see Fig. 11a, b. The smallest Möbius-ladder-bell graph
and the smallest antiprism-bell graph which are transient amplifiers are M(4, 5) and
A(4, 5), which both have (as the smallest barbell graph) N = 12. Generally speaking,
the ratio Neff/N is between barbell and dumbbell graphs (and for Möbius-ladder-bell
graphs smaller than for antiprism-bell graphs) which suggests the speculation that the
higher the degree of the bell-like clique (for a complete graph k = N − 1, for the
antiprism graph k = 4, for the Möbius ladder graph k = 3 and the cycle graph k = 2)
the higher the potential amplification.
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Fig. 11 The quantity Neff/N for Möbius-ladder-bell graphsM(a, b) andM2(a, b) as well as for antiprism-
bell graphs A(a, b) and A2(a, b) for different a over b. The variable a is the number of vertices in each of
the two Möbius-ladder (or antiprims) graphs, b is the number of edges in the bridge or the two bridges, see
also Fig. 9. Values of Neff/N > 1 indicate transient amplification properties

As some of the algorithmically identified transient amplifiers have two bridges (see
for instance, Fig. 3d or Fig. 6f, k), we finally study amplification properties of barbell,
dumbbell and other bell-like graphs with two bridges. Therefore, we define two bridge
barbell graphsB2(a, b) as two complete graphs with a vertices each connected by two
bridges of b edges each. As in a complete graph each vertex is connected to all other
vertices (except itself) it makes no difference which two vertices serve as bridgeheads.
A dumbbell graphD2(a, b), aMöbius-ladder-bell graphM2(a, b) and a antiprism-bell
graphsA2(a, b)with two bridge each is defined likewise, but here the location matters
where the bridges branch off. We define that the two bridgeheads on each side are
directly connected, see Fig. 9c, d, g, h for the examples ofB2(8, 3),D2(8, 4),M2(8, 3)
and A2(8, 4). With respect to transient amplification, we see that most likely neither
B2(a, b) nor D2(a, b),M2(a, b) or A2(a, b) have this properties, see Figs. 10c, d and
11c, d which give the ratio Neff/N for different a over b. We observe that the curves
are always below Neff/N = 1, become lower for a increasing with Neff/N → 1 from
below for b getting large. Also, tests with other a and b have not revealed amplification.
Eventually, minor modification in the bell-like graphs were introduced, for instance
deleting the edge between the bridgeheads of theB2(a, b) barbell graphs or varying the
edge distance between the bridgeheads of the D2(a, b),M2(a, b) or A2(a, b) graphs,
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or having different amounts of vertices in the two bell-like cliques, or connecting the
bridge to two bridgeheads. However, also these graphs have not shown amplification
properties. It remains to be observed that although transient amplifierswith two bridges
have been found, for instance, Fig. 3d or Fig. 6f, k, there should be more subtle rules
as to how barbell, dumbbell and other bell-like graphs must be modified to possess
this property. For instance, the examples of two bridge transient amplifiers have bell-
like cliques which taken as subgraphs are close to regularity, but with a few edges
removed from a regular graph. However, this property, if widespread, makes it not
very likely that regular graphs are directly usable as building blocks for two bridge
transient amplifiers. This may be a topic for future work.

4 Discussion

4.1 Identifying transient amplifiers

In the previous section, results about using an iterative algorithmic process for identi-
fying transient amplifier for dB updating have been presented. We next discuss some
implications of the results obtained. The algorithmhas been tested for all regular graphs
on N = {11, 12} vertices and all degrees, and all regular graphs on N = {14, 20, 26}
vertices and degree k = N −3. It has been shown that although transient amplifiers for
dB updating are rather rare, a substantial number of instances has been identified for
all tested graph orders. For N = 11 and N = 12, most structurally different transient
amplifiers are obtained for middle range k, that is k ≈ N/2. It seems to be reasonable
to assume that this also applies to N = {14, 20, 26} and the amplifiers obtained for
k = N − 3 are just a small subset of all amplifiers. Unfortunately, a direct test of
this assumption was not possible with the available numerical resources due to the
massive growth in structurally different regular input graphs (for instance, there are
L7(14) = 21.609.301 regular graphs for degree k = 7 and order N = 14, L10(20)
and L13(26) are still not exactly known).

Furthermore, all amplifier graphs share certain structural characteristics. They are
graphs consisting of two cliques of highly (frequently completely) connected vertices,
which are joined by a bridge of one or more edges. Occasionally, structures with two
bridges connecting the cliques have amplification properties. Moreover, these struc-
tures resemble those of barbell, dumbbell and other bell-like graphs, which themselves
have amplification properties, see Sect. 3.4. Considering the space of all structurally
different graphs with a given order N , these structures are rather special and conse-
quently rare. This is in agreement with a previous work (Richter 2021) studying the
structural and spectral properties connected with removing a single edges from cubic
(and quartic) regular graphs up to an order of N = 22 (and N = 16). Also these results
showed that transient amplifiers for dB updating exist for all N tested, are really rare
and have certain graph structures. Extending these results, in this study we have been
interested in the transition process from a regular graph to a transient amplifier over
multiple edge removals. Thus, we obtained a larger variety of transient amplifiers with
a stronger perturbation to the regularity of the input graphs. Nevertheless, also this
larger variety is subject to similar structural restrictions. One way of accounting for
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these restrictions is the degree distribution of graphs G expressed by the maximum
degree Δ(G), the minimum degree δ(G) and the mean degree k̄. If we compare over
varying order N , we see that generally the maximum degree Δ(G) is bounded by
1
3N < Δ(G) < 1

2N , while the mean degree k̄ is restricted to 4
5Δ(G) < k̄ < Δ(G).

Only for the minimum degree δ(G) we find a rather large variety, which can be
as low as δ(G) = 2 for transient amplifiers with bridges of two and more edges, or
as high as δ(G) = Δ(G) − 1 for some amplifiers with two bridges. In other words,
transient amplifiers seems to have an upper and lower bound of the maximal and the
mean degree. Such a distribution of the mean degree k̄ differs from random graphs, for
instance Erdös–Rényi or Barabási–Albert graphs, which have a binomial and power-
law distribution with a much larger spread. Furthermore, this means that the degree k
of the regular input graph plays a role in what structure a transient amplifier actually
has only insofar as it bounds the maximum degree Δ(G). This is particularly visible
for input graphs on N = 12 vertices where for all degrees k = {3, 4, . . . , 9} transient
amplifiers have been identified, see Table2. If we compare over varying input degrees
k, we see that the mean degree k̄ slightly increases with increasing k but the transient
amplifiers remain in a rather small range of k̄ (2.6666 ≤ k̄ ≤ 4.1666). In other words,
the input degree k does not matter very much. If the input degree k is much larger
than the upper bound of the range then just more edges need to be removed before
a transient amplifiers appears. Thus, a main result of this study is that many graph
structures resembling barbell, dumbbell and other bell-like graphs with two cliques of
highly connected vertices joined by a bridge are transient amplifier of dB updating.
These structures expand the collection of graph structures already known to have this
property, which are known as fans, separated hubs and stars of islands (Allen et al.
2020). They also complement graph structures known as amplifiers of Bd updating
and called lollipop, balloon, balloon-star graphs (Allen et al. 2021;Möller et al. 2019).

An interesting question is why the iterative algorithmic process does head for graph
structures resembling barbell, dumbbell and other bell-like graphs but not for structures
similar to fans, separated hubs or stars of islands. A main reason most likely is that
the approximative search using as a filter small values of the algebraic connectivity
λ2 particularly promotes such structures. The value λ2 = 0 means a disconnected
graph, and low values of λ2 imply closeness to disconnection, but also bottlenecks,
clusters, low conductance and path-like graphs which can rather easily be divided into
disjointed subgraphs by removing edges or vertices (Banerjee and Jost 2008, 2009;
Hoffman et al. 2019; Wills and Meyer 2020). Fans, separated hubs or stars of islands
are structurally further away from being close to disconnection than bell-like graphs.
It could be an topic of future work if a filter using different spectral or other graph
measures apart from (or in addition to) the algebraic connectivity would be suitable
to identify also these structures.

4.2 Spectral dynamics of guided edge removals

In this study we are equally interested in the performance and the behavior of the
iterative process for identifying transient amplifier for dB updating. While Sect. 4.1
mainly focused on algorithmic performance, we next discuss some aspects of algo-
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rithmic behaviour. A main tool in analyzing the algorithmic behaviour is the spectral
dynamics of guided edge removals from regular input graphs. The search process is
guided by two quantities derived from the graph, the largest remeeting time τi and
the algebraic connectivity λ2 of the normalized Laplacian. Both quantities guide the
search on different levels. The largest remeeting time τi is suitable to compare vertices
and determines from which vertex an edge should be removed. It is not suitable for
comparing graphs, but the algebraic connectivity λ2 is. It determines for the approx-
imative search which graphs remain in the pool of candidate graphs. The decision
to use the quantity λ2 as a filter for candidate graphs is itself a result of prelimi-
nary analysis and previous work. On the one hand, previous results showed that one
edge removals yielding transient amplifiers are connected with low λ2 (Richter 2021).
Moreover, there are applications of graph breeding and graph pruning algorithms in
network science which successfully used spectral properties, particularly algebraic
connectivity, for guiding the search process (Chan and Akoglu 2006; Ghosh and Boyd
2006; Ghosh et al. 2008; Li et al. 2018; Shine and Kempe 2019; Sydney et al. 2013).
Finally, a preliminary analysis revealed that local graphmeasures such as betweenness
or closeness centrality and degree distribution, but also motive and cycle count some-
how correlate to graph evolutions leading to transient amplifiers, but are generally not
promising as filter criteria. The lack of usefulness of another global graphmeasure, the
algebraic connectivity μ2 associated with the standard Laplacian, has been discussed
in Sect. 3.3, see also Fig. 8.

Spectral dynamics generally refers to changes in the graph spectra over graph
manipulations (Chen and Zhang 2017; Zhang et al. 2009). We here consider the graph
manipulations to be repeated edge removals. In Sects. 3.2 and 3.3 several instances are
given of how the algebraic connectivity λ2 as well as the smoothed spectral density φG
changes if we remove edges from a regular input graph and either obtain a transient
amplifiers in the end, or not. These results demonstrate that the spectral dynamics
towards transient amplifiers subtly differs from the spectral dynamics of graph evolu-
tions not doing so. This is particularly visible if we consider the spectral dynamics of
the smoothed spectral density φG representing the whole normalized Laplacian and
focus on the initial and the final phase of the edge removals. The spectral dynamics
towards amplifiers is also substantially different from graph evolutions which are not
guided, for instance randomgraphs and randomedge removals. Thus, the results of this
paper also expand the applications of spectral analysis of evolutionary graphs (Allen
et al. 2019; Richter 2017, 2019a, b) as they link structural with spectral properties and
allow to differentiate between amplifiers and evolutionary graphs in general. More-
over, the findings of this paper underline previous empirical results showing that graphs
with different structures can frequently be distinguished by the shape of their spectral
density (Gu et al. 2016).

5 Conclusions

Wehave studied theperformance and thebehavior of an iterative process for identifying
transient amplifier for dB updating. Transient amplifiers are networks representing
population structures which shift the balance between natural selection and random
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drift. They are highly relevant for understanding the relationships between spatial
structures and evolutionary dynamics. The iterative process implies dynamic graph
structures as we consecutively remove edges from regular input graphs. We use the
concept of spectral dynamics for analyzing the edge removal process connected with
the algorithmic search for transient amplifiers. Our results particularly showed that
the spectral dynamics of edge removals finally leading to transient amplifiers are
distinct and thus enable differentiation. Thus, we add to answering the question of
what structural and spectral characteristics transient amplifier have and how these
characteristics can be achieved by edge deletion from a regular graph. Moreover, the
results of analyzing the spectral dynamics flow back to the algorithmic process as
structural and spectral properties are usable for informing and guiding the process,
particularly as the variety of possibilities for deleting an edge from a graph grows
massively and therefore needs to be pruned due to computational constraints.

As discussed above the problem of identifying and analyzing transient amplifiers
is important for understanding the relationships between spatial structure and evolu-
tionary dynamics. It thus has substantial relevance for real biological processes, as
for instance shown for cancer initiation and progression, ageing of tissues, spread
of infections and microbial evolution of antibiotic resistance. On the other hand, our
topic is also related to a fundamental mathematical question in graph theory which is
the relationships between graph spectra and graph structure. Thus, the problems dis-
cussed in this paper are also interesting from a graph-theoretical point of view. They
contribute to improving our understanding of how edge manipulations are related to
spectral properties and reflect upon similarities and differences between the spectra of
the normalized and the standard Laplacian.
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Appendix

Supplemental figures

See Figs. 12, 13, 14, and 15.

Fig. 12 Spectral dynamics expressed by the spectral density φG describing graph evolutions towards tran-
sient amplifiers for order N = 12 and different k. Supplement to Fig. 5
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Fig. 13 Spectral dynamics expressed by the spectral density φG′ describing graph evolutions not towards
transient amplifiers for order N = 12 and different k. Supplement to Fig. 5
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Fig. 14 Spectral dynamics expressed by |φG − φG′ | describing the difference between φG and φG′ for
order N = 12 and different k. Supplement to Fig. 5
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Fig. 15 Behaviour of the approximative search of Algorithm 1 for N = {14, 20, 26} and k = {11, 17, 23}.
The spectral density φG′ describing graph evolutions not leading to transient amplifiers and the quantity
|φG − φG′ | describing the difference between φG and φG′ . Supplement to Fig. 7
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