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Summary
Background Poor sleep is associated with an increased risk of infections and all-cause mortality but the causal
direction between poor sleep and respiratory infections has remained unclear. We examined if poor sleep
contributes as a causal risk factor to respiratory infections.

Methods We used data on insomnia, influenza and upper respiratory infections (URIs) from primary care and
hospital records in the UK Biobank (N ≈ 231,000) and FinnGen (N ≈ 392,000). We computed logistic regression to
assess association between poor sleep and infections, disease free survival hazard ratios, and performed Mendelian
randomization analyses to assess causality.

Findings Utilizing 23 years of registry data and follow-up, we discovered that insomnia diagnosis associated with
increased risk for infections (FinnGen influenza Cox’s proportional hazard (CPH) HR = 4.34 [3.90, 4.83],
P = 4.16 × 10−159, UK Biobank influenza CPH HR = 1.54 [1.37, 1.73], P = 2.49 × 10−13). Mendelian
randomization indicated that insomnia causally predisposed to influenza (inverse-variance weighted (IVW)
OR = 1.65, P = 5.86 × 10−7), URI (IVW OR = 1.94, P = 8.14 × 10−31), COVID-19 infection (IVW OR = 1.08,
P = 0.037) and risk of hospitalization from COVID-19 (IVW OR = 1.47, P = 4.96 × 10−5).

Interpretation Our findings indicate that chronic poor sleep is a causal risk factor for contracting respiratory in-
fections, and in addition contributes to the severity of respiratory infections. These findings highlight the role of sleep
in maintaining sufficient immune response against pathogens.
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Introduction
Insomnia is a condition characterized as the “persistent
difficulty with sleep initiation, duration, consolidation or
quality.”1 Between 9 and 25% of the population suffer
from insomnia at any given time.2–4 In the USA, this has
led to the recognition of insomnia as a critical public
health concern (https://www.cdc.gov/sleep/about_us.
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html) and as an important intervention target in
future clinical studies and public health policy.5

Earlier intervention studies have indicated that acute
sleep loss and sleep disruption are associated with
inflammation6 and a greater risk of viral infection.7,8

Additionally, a systematic review and meta-analysis of
72 studies demonstrated that acute sleep disruption was
niversity of Helsinki, Finland.
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Research in context

Evidence before this study
Epidemiological and sleep deprivation studies suggest that
acute sleep loss and sleep disruption are associated with an
increase in circulating inflammatory cytokines, an increased
risk of viral infection and a poorer vaccine response. Chronic
(long-term) sleep loss is linked to higher rates of all-cause
mortality and infection risk. Several studies have shown the
association between COVID-19 and poor sleep including
insomnia and sleep apnea. Despite the known observational
associations linking poor sleep to infection risk, cause and
effect is still not well understood.

Added value of this study
Here we examine the connection between chronic insomnia
and influenza, upper respiratory infections and COVID-19 in a

population setting. This study provides evidence for the
causal role of insomnia as a risk factor for respiratory
infections.

Implications of all the available evidence
Our findings have two major implications. First, our findings
are in line with earlier experimental sleep deprivation studies
suggesting that poor sleep has a role in infection risk, but we
go on to demonstrate that poor sleep is a causal risk factor for
respiratory infections. Our findings indicate that insomnia
may contribute to public health through affecting
susceptibility to infections. Second, our findings suggest that
safe interventions such as sleep management and treating
individuals with insomnia may have public health impact if
promoted, as they may reduce infections and save lives.
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associated with increase in common indicators for
inflammation–IL-6 and C-reactive protein (CRP). Acute
sleep loss may dampen or delay the development of
vaccination response,9–11 which indicates that a lack of
sleep may have concrete effects on the immune system
and consequently on our ability to fight off infections.
However, the acute effects may be transient, especially if
environmentally driven, and may not reflect the effects
of long-term sleep disruption.

In contrast, large cohort studies have shown that
chronic sleep loss and insomnia are associated with
increase in all-cause mortality12,13 and viral infections.14

More recently, a review of nine small-scale studies that
assessed the effect of chronic short and long sleep on
risk of developing respiratory infections,15 found that
short sleep was associated with an increased overall risk
of respiratory infections (logistic regression OR = 1.30
[1.19, 1.42], P < 1 × 10−5). Evidence collected from a
number of cross-sectional studies also points to
insomnia being associated with an increased prevalence
of respiratory infections.16 However, insomnia has not
yet been ascribed a causal role in respiratory infection
risk due, in part, to the complex bidirectional relation-
ship between sleep and immune function.

The ongoing COVID-19 pandemic has had a docu-
mented effect on sleep with a subset of individuals
suffering from poor sleep, nightmares and changes in
circadian rhythms.17–19 Sleep disruption is also a com-
mon sequela of SARS-CoV-2 infection. A recent meta-
analysis of 66 studies reported that sleep disturbances
including post-viral insomnia were common and
COVID-19 severity was a predictor for sleep disrup-
tion.20 What is less clear, however, is the effect of pre-
infection sleep disruption on the risk of developing
COVID-19 and subsequent severity of the infection.

Motivated, in part, by the ongoing SARS-CoV-2
pandemic, our aim was to assess if chronic insomnia
causally increases the risk for respiratory infections
including upper respiratory tract infections and the
known severe pathogens influenza and SARS-CoV-2.
We tested the hypothesis that insomnia is a risk factor
for influenza, upper respiratory infections and COVID-
19 using longitudinal data from over 558,000 study
participants across two cohorts. We employed methods
from genetic epidemiology to infer the one-directional
causal associations of sleep disruption on influenza,
upper respiratory tract infections and COVID-19 sus-
ceptibility, severity, and hospitalization.
Methods
Cohorts
FinnGen (www.finngen.fi/en) is a study of a population-
based cohort of Finnish residents, from newborn to 104
years old at baseline recruitment, that have consented to
participate in regional biobanks in Finland. The study
combines genetic data with electronic health record data
derived from primary care registers, hospital in- and out-
patient visits and prescription information. The data (R9)
contains health and genetic data on up to 392,396 partic-
ipants. When a study participant is recruited, their entire
medical record is linked into the FinnGen database
allowing a detailed understanding of their medical history.

The UK Biobank is a prospective study of over
500,000 participants, aged between 37 and 73 at
recruitment, from the mainland UK population.21 Elec-
tronic health records, consisting of Hospital Episode
Statistics in-patient (HES; max. N = 440,512) and pri-
mary care (GP; max. N = 231,364) were later linked up to
provide longitudinal data on disease diagnosis, opera-
tions, medications, and deaths.22

Phenotype/endpoint definitions
For insomnia, upper respiratory infection (URI), and
influenza endpoints we used the pre-existing FinnGen
endpoint definitions, which utilize secondary care
www.thelancet.com Vol 93 July, 2023
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(hospital inpatient and outpatient, and death records) to
determine endpoint cases and controls. To complement
these data, we also included diagnoses from primary
care (health center/doctor visits). Study participants
were classed as endpoint cases if they had at least one
record with a relevant ICD-8, ICD-9, or three-digit ICD-
10 code assigned to it. The relevant codes were:

• insomnia: “F51.0”, “G47.0” (ICD-10)
• upper respiratory infection (URI): “J06”, “J06.0”,
“J06.9” (ICD-10) or “465” (ICD-9 and ICD-8)

• influenza: “J09”, “J10”, “J10.0”, “J10.1”, “J10.2”,
“J10.8”, “J11”, “J11.0”, “J11.1”, “J11.2”, “J11.8” (ICD-
10) or “487” (ICD-9) or “470”, “471”, “472”, “473”,
“474” (ICD-8).

For each endpoint, we excluded participants if they
had diagnoses of other sleep conditions, non-acute up-
per airway infections and pneumonia for insomnia, URI
and influenza respectively: a list of these codes is pro-
vided in the Supplementary Methods. Of 392,396
FinnGen R9 participants, there were 17,489, 90,447 and
12,057 with insomnia, URI and influenza endpoints
respectively (Supplementary Table S1), of which
approximately 83%, 77%, and 30% (respectively) were
from primary care records (Supplementary Table S2).

To define equivalent endpoints in the UK Biobank,
we used diagnostic information from the EHR data. We
included individuals as a case for the endpoint if they
had at least one of the same ICD-10 or ICD-9 diagnosis
codes used for FinnGen. In the primary care data, di-
agnoses were coded using the NHS-specific Read v2 or
CTV3 codes. We used the following Read codes to
define the respective endpoints:

• insomnia: “1B1B0”, “1B1B1”, “1B1B2”, “E2742”,
“Eu510”, “Fy00.”, “R0052”, “X007s”, “X007u”,
“X76AF”, “X76AG”, “Xa7wV”, “XaIv5”, “XE1Yg”,
“XE2Pv” (Read CVT3) or “Eu510”, “Fy00.”, “R0051”,
“R0052” (Read v2)

• URI: “H0 … ”, “H050.”, “H05z.”, “H0z.”, “X1003”,
“Xa1sb”, “XaDcC”, “XE0Xq” (Read CVT3) or “H0 … ”,
“H050.”, “H05z.”, “H0z.”, “X1003” (Read v2)

• influenza: “H2 … ”, “H27.”, “H270.”, “H2700”,
“H270z”, “H271.”, “H2710”, “H2711”, “H271z”,
“H27y.”, “H27y1”, “H27z.”, “H2y.”, “H2z.”, “XaQQp”,
“XE0YK”, “XM0rz” (Read CVT3) or “H2 … ”, “H27.”,
“H270.”, “H2700”, “H270z”, “H271.”, “H2710”,
“H2711”, “H271z”, “H27y.”, “H27y1”, “H27z.”
(Read v2)

The same diagnosis-based sample exclusions were
made as with FinnGen (see Supplementary Methods).
The date of diagnosis for an endpoint was taken as the
date of the first identified visit with any of the included
ICD-9, ICD-10, Read v2, or Read CTV3 codes and thus
the first diagnosis could be either a hospital inpatient or
www.thelancet.com Vol 93 July, 2023
primary care visit. As primary care data is only available
in a subset of participants, unlike hospital inpatient
data, we limited endpoint definition and therefore
subsequent analyses to those with both hospital inpa-
tient and primary care data. Of 231,364 participants
with both HES and GP records available, there were
8,693, 55,250, and 12,948 with diagnoses of insomnia,
URI and influenza, respectively, in the UK Biobank
(Supplementary Table S1).

COVID-19 diagnoses
Diagnoses of SARS-CoV-2 infection (COVID-19) in
Finland are recorded in the Infectious Disease Register,
from which the COVID-19 diagnoses have been
extracted and linked to FinnGen participants. In release
9 of FinnGen, diagnoses were available until 2022/05/
22, at which point there were 57,333 unique individuals
with a positive lab-confirmed COVID-19 diagnosis.
Laboratory testing was primarily done using PCR
(N = 56,394), with a small proportion of samples tested
through antigen testing (N = 730) or antibody testing
(N = 7), and 202 samples with a missing test type.

In the UK Biobank, COVID-19 diagnosis derived
using linked data collected by Public Health England
(PHE), Public Health Scotland (PHS) and SAIL Data-
bank for England, Scotland and Wales, respectively. We
used diagnosis data with a cut off of 2020/10/02 and had
data on 1713 unique samples with a positive COVID-19
diagnosis, of which 733 had both HES and GP data
available. All samples were diagnosed through PCR
testing (https://biobank.ndph.ox.ac.uk/ukb/exinfo.cgi?
src=COVID19).

Genetic data and analyses
To undertake the Mendelian randomization analyses for
the influenza and URI outcomes, we performed
genome-wide association analyses of these phenotypes
in FinnGen release 9 (R9). Cases were those participants
with at least one of the above (case-inclusion) diagnosis
codes and controls were those who were not cases and
had no records of the respective (control-exclusion)
diagnosis codes listed above. Diagnoses were captured
from both primary and secondary healthcare records. A
total of 20,175,454 imputed genotypes were available in
392,651 participants. In the GWAS of influenza, there
were 12,091 cases and 310,746 controls whereas for the
URI GWAS there were 102,100 cases and 240,562
controls. These GWA analyses were performed using
REGENIE23 v2.2.4 and in the model-building step (step
1) were adjusted for sex, genotyping batch, the first 10
genetic principal components and age at follow-up end
(2021/10/11) or death, as the FinnGen endpoint diag-
nosis data extends beyond the initial recruitment visit.

Survival analyses
We performed endpoint-to-endpoint survival analyses,
which compare the risk of developing an outcome
3
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endpoint if subject to diagnosis of a prior endpoint and
accounting for the time taken to be diagnosed with the
outcome. We performed this analysis using the Python
module “lifelines” (v0.26.0)24 with Python (v3.8.11 for
FinnGen, v3.7.11 for UK Biobank), applying a Cox
Proportional Hazards model.

Briefly, study start and end dates were chosen in each
study based on the availability of records for the majority
of participants (see below). Participants who were preva-
lent cases of the outcome endpoint (those with an
outcome diagnosis before the study start date) were
removed (see Supplementary Table S2 for sample exclu-
sion counts). Prior endpoint cases whose first diagnosis
occurred before the study start were given a diagnosis date
of the study start date. Prior endpoint cases whose first
diagnosis occurred after the study start date were sepa-
rated into two entries corresponding to their time as
controls (from date of study entry to diagnosis date) and as
cases (from diagnosis date to date of study exit). These
individuals are each treated as two separate participants,
the control who “leaves” the study on the diagnosis date
and the case who “enters” the study on the diagnosis date.

The survival model used in this analysis can be
written as:

Surv (time_in_study, outcome_endpoint) ∼
prior_endpoint + birth_year + sex

where “prior_endpoint” and “outcome_endpoint” were
binary variables representing their case-control status
and “time_in_study” was calculated (in years) from
date of study entry to date of study exit. For sensitivity
analyses, untransformed body mass index (BMI) was
added as an extra term in the additive model and those
without a BMI measurement were excluded in these
analyses (exclusion counts provided in Supplementary
Table S2).

For FinnGen (release 9), study start and end dates
were set as 1998/01/01 and 2020/12/31, respectively, as
the dates from which inpatient, outpatient and death re-
cords were available from and to for all participants. In
the UK Biobank, the GP data is maintained in four
distinct databases by three providers (see https://biobank.
ndph.ox.ac.uk/showcase/showcase/docs/primary_care_
data.pdf). To minimize the bias in UK Biobank-based
analyses, we calculated a median primary care registra-
tion date in each database and selected a follow-up start
date of 2002/03/01, the latest of these four median dates,
ensuring that the majority of participants were already
registered in each of the four databases. The study end
date was identified as 2019/08/18 for the UK Biobank,
the date of the latest available record from the primary
care data (at the time of analysis).

Logistic regression
Logistic regression was used to test whether insomnia
diagnoses were enriched in participants with each of the
outcome endpoints (URI, influenza, and COVID-19),
regardless of which occurred first. The model we
applied can be formulated as:

outcome_endpoint ∼ prior_endpoint +
age_end_followup + sex + BMI

where “prior_endpoint” and “outcome_endpoint” were
binary variables representing their case-control status
for these endpoints. We imposed a follow-up end date,
as the registries contained within both FinnGen and UK
Biobank were right-censored at different dates with
imposed cut-offs of 2020/12/31 and 2019/08/18 for
FinnGen and UKB, respectively, except for COVID-19
diagnosis (2021/05/27 and 2020/10/02, respectively).
In these models, age at end of follow-up was measured
in years and BMI was untransformed.

Mendelian randomization
Single-exposure two-sample Mendelian randomization
was performed in R (v3.6.3) using the package Two-
SampleMR25,26 (v0.5.6) and multivariable MR (MVMR)
was performed using the package MendelianRandom-
ization27 (v0.5.0). For our exposures, we used summary
statistics from the most recent genome-wide association
meta-analysis (GWAMA) of insomnia in over 2.3
million 23andMe and UK Biobank individuals28

(593,724 insomnia cases vs. 1,771,286 controls), from
earlier GWAS of frequent insomnia symptoms in UK
Biobank4 (237,627 participants; 129,270 cases vs.
108,357 controls) and from the largest GWAS of
habitual short sleep in 411,934 UK Biobank partici-
pants29 (106,192 cases vs. 305,742 controls). In our
MVMR sensitivity analysis, we included two additional
exposures: BMI and smoking. We accessed BMI GWAS
summary statistics published online by the Neale lab
(http://www.nealelab.is/uk-biobank/). The BMI GWAS
was performed on ∼337,000 unrelated white British
participants of the UK Biobank on the inverse-
normalized BMI measure collected at the UK Biobank
baseline visit and we identified the lead variants by us-
ing PLINK30 v1.90b6.21 to first LD-clump the results
before selecting the most significant variant at each lo-
cus (Supplementary Methods). The smoking exposure
was represented by the “lifetime smoking behaviour”
measure from a recent GWAS in 462,690 European-
ancestry UK Biobank participants,31 which captures a
combination of smoking duration, heaviness and
cessation. We used the published lead variants for life-
time smoking behaviour, which were selected through
LD-clumping with the TwoSampleMR package with
P ≤ 5 × 10−8, LD r2 threshold of 0.001 and a distance of
10 Mb. To avoid sample overlap in our two-sample
design, we used GWAS summary statistics from Finn-
Gen (release 9) for the influenza and URI outcomes.
With the COVID-19 outcomes, we obtained publicly
available summary statistics from freeze 6 of the GWAS
www.thelancet.com Vol 93 July, 2023
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meta-analyses32 that excluded both UK Biobank and
23andMe for the A2 (“very severe” COVID-19 vs. pop-
ulation controls), B2 (“hospitalized” COVID-19 vs.
population controls) and C2 (COVID-19 infection vs.
population controls) phenotypes to avoid sample
overlap.

For all exposures, we selected all reported indepen-
dent lead variants (with association P ≤ 5 × 10−8) in the
discovery GWAS as instruments (see Supplementary
Methods) and used the same study for both instru-
ment selection and effect size determination
(Supplementary Table S3). To help harmonize the ex-
posures with the outcomes, we lifted the COVID HGI
and FinnGen summary statistics from genome build 38
to build 37 and then constructed a unique variant ID
using the chromosome, position and alleles (lowest
alphabetical allele first).

In both the univariate and multivariate MR analyses,
we used the random effects inverse-variance weighted
(IVW)33,34 MR estimate as the primary causal estimate
and weighted median (WM)35 MR and MR Egger36 as
sensitivity analyses. We considered there to be evidence
of a causal association if the IVW estimate was signifi-
cant at a Bonferroni-adjusted threshold of P ≤ 0.05/
15 = 3.3 × 10−3 and if the less well-powered, but
pleiotropy-robust, WM and MR Egger estimates were
directionally consistent with the IVW estimate. A sta-
tistically significant MR Egger intercept term (P < 0.05)
was considered as evidence of directional pleiotropy.

Ethics
FinnGen
All FinnGen participants provided informed consent for
biobank research based on the Finnish Biobank Act
(FBA). Prior to the FBA coming into effect (September
2013), participants recruited into the individual research
cohorts provided study-specific consent for research.
These consent permissions were transferred to the
Finnish biobanks, at the conception of FinnGen in
August 2017, after approval by Fimea (the Finnish
Medicines Agency), the National Supervisory Authority
for Welfare and Health. The recruitment protocols fol-
lowed the biobank protocols approved by Fimea. The
Coordinating Ethics Committee of the Hospital District
of Helsinki and Uusimaa (HUS) statement number for
the FinnGen study is Nr HUS/990/2017.

The FinnGen study is approved by the Finnish
Institute for Health and Welfare (THL) under permit
numbers THL/2031/6.02.00/2017, THL/1101/5.05.00/
2017, THL/341/6.02.00/2018, THL/2222/6.02.00/2018,
THL/283/6.02.00/2019, THL/1721/5.05.00/2019, THL/
1524/5.05.00/2020, and THL/2364/14.02/2020, by the
Digital and Population Data Service Agency (DVV) un-
der permits VRK43431/2017-3, VRK/6909/2018-3,
VRK/4415/2019-3, the Social Insurance Institution
(KELA) under permits KELA 58/522/2017, KELA 131/
522/2018, KELA 70/522/2019, KELA 98/522/2019,
www.thelancet.com Vol 93 July, 2023
KELA 138/522/2019, KELA 2/522/2020, KELA 16/522/
2020, the Finnish Social and Health Data Permit Au-
thority (Findata) under permit THL/2364/14.02/2020
and by Statistics Finland (Tilastokeskus) under permits
TK-53-1041-17 and TK/143/07.03.00/2020 (formerly
TK-53-90-20).

For freeze (release) 7 of the FinnGen study, the
biobank access decisions include: THL Biobank
BB2017_55, BB2017_111, BB2018_19, BB_2018_34,
BB_2018_67, BB2018_71, BB2019_7, BB2019_8,
BB2019_26, BB2020_1, Finnish Red Cross Blood Ser-
vice Biobank 7.12.2017, Helsinki Biobank HUS/359/
2017, Auria Biobank AB17-5154 and amendment #1
(August 17 2020), Biobank Borealis of Northern
Finland_2017_1013, Biobank of Eastern Finland 1186/
2018 and amendment 22 § /2020, Finnish Clinical
Biobank Tampere MH0004 and amendments
(21.02.2020 & 06.10.2020), Central Finland Biobank 1-
2017, and Terveystalo Biobank STB 2018001.

UK Biobank
The UK Biobank has received approval as a Research
Tissue Bank from the North West Multi-centre Research
Ethics Committee (MREC) under MREC permits 11/
NW/0382 (2011–2016), 16/NW/0274 (2016–2021) and
21/NW/0157 (2021–2026). Researchers with approved
applications are covered by these permits and are not
required to seek additional approval, except in specific
cases (see section B7 of the UK Biobank Access Pro-
cedures document: https://www.ukbiobank.ac.uk/
media/omtl1ie4/access-procedures-2011-1.pdf). All par-
ticipants of the UK Biobank study provided consent, at
the baseline visit, for their personal data and biological
samples to be collected and stored for research pur-
poses. Participants are given the option to withdraw
their consent at any time; any samples that have with-
drawn their consent at the time of analysis were
excluded from this study. A print version of the elec-
tronic consent form is stored as UK Biobank
Resource 100252.

Role of funders
The funders had no role in the design of this study, data
collection and analysis, interpretation of results, writing
of this manuscript or any other aspects relating to this
publication. No authors were paid to write this article by
a pharmaceutical company or other agency.
Results
Survival analysis in population cohorts
To understand whether there is a discernible impact of
poor sleep on subsequent risk of respiratory infections, we
performed survival analysis by testing the associations
between insomnia and respiratory infections and
computing multivariable adjusted hazard ratios in over
392,000 individuals from FinnGen free of relevant
5
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respiratory infectious diseases (Table 1 and
Supplementary Table S4). We found that a prior diagnosis
of insomnia increased the risk of a later URI diagnosis
(Cox proportional hazard (CPH) HR = 5.80 [5.51, 6.12],
P < 1 × 10−300) and subsequent influenza diagnosis (CPH
HR = 4.34 [3.90, 4.83], P = 4.16 × 10−159). COVID-19 data
was examined from February 2020 to May 2021, but as the
pandemic occurred after the end of available records for
other diagnoses, we instead performed a logistic regres-
sion to test whether those with prior diagnoses of
insomnia were over-represented in COVID-19 patients
(Table 1 and Supplementary Table S5). Our analyses
indicated no significant change in risk of COVID-19
infection for those previously diagnosed with insomnia
(logistic regression (LR) P > 0.99).

To replicate these results, we assessed the same
endpoints in approximately 231,000 UK Biobank par-
ticipants using hospital and primary care records
collected between March 2002 and August 2019. In
concordance with observations in FinnGen, survival
analyses suggested that a prior diagnosis of insomnia
increased the risk of URI by 52% (CPH HR = 1.52 [1.43,
1.61], P = 1.72 × 10−45) and increased the risk of influ-
enza by 54% (CPH HR = 1.54 [1.37, 1.73],
P = 2.49 × 10−13) (Table 2 and Supplementary Table S4).
As with FinnGen, the period in which both primary care
and hospital records were available in the UK Biobank
did not overlap with the COVID-19 diagnosis interval.
Logistic regression did not identify significant enrich-
ment of diagnosed insomnia sufferers within COVID-
positive patients (LR OR = 1.21 [0.82, 1.70], P = 0.311)
(Table 2 and Supplementary Table S5).

Mendelian randomization analysis
We then estimated the causal impact of insomnia on
COVID-19, URI and influenza (Table 3) using genetic
instruments identified for insomnia in a recent large-
scale GWAS meta-analysis.28 We identified that
insomnia was causally associated with an increased risk
of severe COVID-19 symptoms (inverse-variance
weighted (IVW) OR = 1.64 [1.22, 2.21], P = 1.00 × 10−3),
greater risk of hospitalization from COVID-19 (IVW
OR = 1.47 [1.22, 1.77], P = 4.96 × 10−5) and with
increased risk of influenza infection (IVW OR = 1.66
[1.36, 2.02], P = 5.86 × 10−7 and URI (IVW OR = 1.94
[1.73, 2.17], P = 8.14 × 10−31). In the MR sensitivity
analyses, in which we apply methods that are robust to
Outcome Disease free survival analysis (up to
follow-up)

Hazard Ratio (HR) HR 95% CI

Influenza 4.34 [3.90,4.83]
Upper respiratory infection (URI) 5.80 [5.51, 6.12]
COVID-19

Table 1: FinnGen endpoint-to-endpoint survival and logistic regression analy
pleiotropy but statistically less powerful, there was po-
tential evidence of directional pleiotropy in insomnia’s
effect on both COVID-19 severity and hospitalization
risk, with the MR Egger intercept (an estimate of the
total pleiotropic effect) being non-zero (MR Egger
intercept P = 0.013 and 0.019 for severe symptoms and
hospitalization risk, respectively). This suggests that
some of the insomnia instruments may not be affecting
COVID-19 severity and hospitalization risk directly
through insomnia but via other, as yet, unknown path-
ways. We did not, however, see strong evidence of
pleiotropy for COVID susceptibility, URI or influenza
(Supplementary Table S6). Consequently, we tested po-
tential modifying factors including body mass index
(BMI) and smoking in a multivariate mendelian
randomization analysis together with insomnia. We
demonstrated a causal effect from insomnia to URI,
influenza and to COVID-19 infection and hospitaliza-
tion when accounting for BMI and lifetime smoking
behaviour (Supplementary Table S7) suggesting that the
potential pleiotropic factors that contribute to COVID-19
infection and COVID-19 hospitalization are more com-
plex than traditional association with BMI or smoking.

To understand whether loss of sleep is an important
factor in insomnia’s causal associations, we tested the
effect of genetically instrumented short sleep, using 27
variants associated with short sleep.29 We found sug-
gestive evidence that habitually short sleeping increased
the risk of COVID-19 infection (IVW P = 0.03), but no
strong evidence that risk of hospitalization with COVID-
19 was affected (IVW P = 0.09). We also found evidence
that habitual short sleep leads to an elevated risk of
infection for influenza and URI (IVW P = 0.019 and
1.21 × 10−3, respectively). As with all statistical tests, a
negative finding in MR analyses could be indicative of
either no true association or lack of statistical power to
detect causal effects. We therefore calculated the avail-
able power to detect the causal effects we identified
(Table 3) and found generally sufficient power to esti-
mate causality across all tested exposure traits
(Supplementary Table S8).

To demonstrate the robustness of the insomnia
findings, we performed sensitivity analysis using 45
genetic variants robustly associated with insomnia in
the UK Biobank cohort.4 Despite the smaller number of
available instruments, we were still able to see the
impact of insomnia on both COVID-19 hospitalization
23 years of Logistic regression

P OR OR 95% CI P

4.16 × 10−159 1.65 [1.53, 1.77] 2.65 × 10−43

<1 × 10−300 2.29 [2.22, 2.36] <1 × 10−300

1.00 [0.96, 1.04] 0.996

ses results for insomnia exposure.
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Outcome Disease free survival analysis (up to 17 years of
follow-up)

Logistic regression

Hazard Ratio (HR) HR 95% CI P OR OR 95% CI P

Influenza 1.54 [1.37, 1.73] 2.49 × 10−13 2.12 [1.98, 2.27] 3.84 × 10−98

Upper respiratory infection (URI) 1.52 [1.43, 1.61] 1.72 × 10−45 2.13 [2.04, 2.23] 9.13 × 10−247

COVID-19 1.21 [0.82, 1.70] 0.311

Table 2: UK Biobank endpoint-to-endpoint survival and logistic regression analyses results for Insomnia exposure.

Articles
(IVW OR = 1.13 [1.03, 1.24], P = 0.011) and URI (IVW
OR = 1.10 [1.05, 1.16], P = 1.62 × 10−4) and saw no
strong evidence of pleiotropy (MR Egger intercept
P > 0.05). The effect sizes were much attenuated in
comparison to the larger set of insomnia instruments
(Supplementary Table S3). No significant association
was seen for COVID severity or influenza susceptibility
(IVW P > 0.05).
Discussion
Here we provide compelling evidence that insomnia
causally impacts the risk of developing respiratory in-
fections including influenza and severe COVID-19.
Leveraging the complex longitudinal health data from
two large independent cohorts, the UK Biobank and
FinnGen, we assessed whether a prior diagnosis of
insomnia led to an increased risk of either influenza or
URI. Results from up to 23 years of follow-up diagnoses
in both cohorts suggested an increase in URI and
influenza infection risk for insomnia sufferers.
Exposure Outcome Nvar

Insomnia (Watanabe et al., 2022) Severe COVID 464

Hospitalized COVID 489

COVID infection 452

URI 472

Influenza 472

Short sleep Severe COVID 24

Hospitalized COVID 24

COVID infection 25

URI 24

Influenza 24

No. of sleep episodes Severe COVID 21

Hospitalized COVID 21

COVID infection 21

URI 19

Influenza 19

Rows with results in bold font are statistically significant after Bonferroni correction and
Bonferroni correction (15 tests; IVW P ≤ 0.05/15 = 3.3 × 10−3). NVar = number of exp

Table 3: Causal analysis results of insomnia, short sleep and a measure of sleep
upper respiratory infection and influenza.

www.thelancet.com Vol 93 July, 2023
We used a framework from genetic epidemiology
called Mendelian randomization through which we
demonstrated that insomnia is causally associated with
an increased risk of URI, influenza, COVID-19 hospi-
talization and COVID-19 severity, and to a lesser extent,
with an increased risk of SARS-CoV-2 infection. These
findings are in line with earlier literature and together
demonstrate the impact that sleep has on immune
function, which then likely has a downstream effect on
the ability to fight off infections.

Interestingly, we saw a stronger association with
COVID-19 severity than with COVID-19 infection,
despite having greater statistical power to detect asso-
ciation with COVID-19 infection than severity. We
conjecture that this may be due to three factors. Firstly,
insomnia may act on the severity of the respiratory in-
fections more strongly than on the risk of initial infec-
tion, as seen with other risk factors like BMI,37–39

obstructive sleep apnea,40–42 fasting blood glucose,43

and high blood pressure.44,45 This would be in line
with evidence that those with severe COVID-19 have
IVW Power

logOR SE P

0.496 0.151 0.001 0.61

0.387 0.095 4.96 × 10−5 0.74

0.075 0.036 0.037 0.14

0.662 0.057 8.14 × 10−31 1

0.505 0.101 5.86 × 10−7 0.75

0.208 0.131 0.113 0.75

0.154 0.091 0.090 0.981

0.078 0.036 0.032 1

0.152 0.047 1.21 × 10−3 1

0.277 0.118 0.019 0.99

0.065 0.174 0.708 1

0.045 0.111 0.688 1

−0.022 0.034 0.525 1

0.134 0.061 0.029 1

0.136 0.108 0.206 1

those in italics are significant (IVW P ≤ 0.05) at the single test level but not after
osure genetic instruments used.

fragmentation of COVID severity, susceptibility and hospitalization risk,
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elevated levels of IL-6 and CRP when compared to non-
severe COVID-19 patients,46 given the relationship be-
tween chronic sleep disruption and higher levels of
circulating inflammatory markers, but remains to be
seen for other respiratory infections.

Secondly, both insomnia and COVID-19 infection
and severity are correlated with demographic measures
and therefore not distributed uniformly in the popula-
tion. For example, socioeconomic factors, occupation,
age, sex and ethnicity are all associated with increased
rates of insomnia and COVID-19 susceptibility and
severity.2,47 While we estimate some of the multifactorial
causal associations through multivariate Mendelian
randomization where we corrected for BMI and lifetime
smoking behaviour, these uncaptured confounders are
likely to affect the estimates from longitudinal analyses
and, for inherited unmeasured factors, may result in
pleiotropy in the causal estimates, more so as GWAS
sample sizes increase.48 For the insomnia exposure that
used instruments from the most recent GWAS meta-
analysis, there was some evidence of pleiotropy in the
causal estimate on COVID-19 severity and hospitaliza-
tion outcomes (Supplementary Table S6), though the
sensitivity analyses using a more restricted set of in-
struments found no evidence of pleiotropy, albeit with
more moderate causal effects on COVID-19 severity and
hospitalization.

Thirdly, we recognize that insomnia itself is a
multifactorial disorder with a variety of potential causes
and presentations, each of which may confer differing
levels of risk for susceptibility to or severity of respira-
tory infections. It is possible that different symptoms of
insomnia have different downstream biological effects
which, when considered separately, would show het-
erogeneous effects on susceptibility, but more homog-
enous effects on respiratory infection severity.

We note the following limitations. Firstly, while we
ensured that the FinnGen endpoints were identified
using both hospital and primary care records, around
30% of influenza, 75% of URI and 83% of insomnia
diagnoses were from primary care. Comparatively, in
the UK Biobank, about 90% of influenza, 99% of URI
and 98% of insomnia diagnoses were captured through
primary care records. Consequently, FinnGen cases
may contain a higher proportion of severe diagnoses. It
is therefore possible that the differences in hazard ratio
we see between the two cohorts represent a) greater
statistical power due to more severe insomnia diagnosis,
b) a real difference in effect of insomnia on more severe
(FinnGen) and less severe (UK Biobank) respiratory
infections, c) differences between the cohort de-
mographics or d) a combination of these factors.

Secondly, while MR is a powerful tool to estimate
causality, there were some noticeable limitations to its
use in this study. We could not produce easily inter-
pretable causal estimate effect sizes due to both expo-
sure and outcomes being binary phenotypes. We
selected our insomnia instruments from the largest
GWAS meta-analysis, to date, of self-report insomnia in
order to maximize statistical power and there was some
evidence of horizontal pleiotropy in these variants as
evidenced by the non-zero MR-Egger intercept
(Supplementary Table S6). It is possible that, due to the
large sample size of the meta-analysis and thus the high
power to detect genetic associations, that a proportion of
the selected instruments may be secondary associations
for insomnia, being associated with a phenotype that
itself influences insomnia risk.

Thirdly, we were unable to provide longitudinal esti-
mates for COVID-19 infection and severity in the context
of a prior insomnia diagnosis, which would have better
contextualized the MR findings. In both cohorts, the
available health records did not overlap the pandemic
period (beginning March 2020) and so there was no
contemporaneous non COVID-19 diagnosis data, mean-
ing that survival analyses were not appropriate.

Finally, the survival analyses and the GWA analyses
used in the MR were performed in entirely (FinnGen,
UK Biobank and 23andMe) or predominantly
(COVID-19 HGI) European-ancestry individuals. The
lack of diverse ancestral representation in large
biomedical cohorts and publicly available GWAS data
remains one of the greatest limitations of the field and
therefore we cannot comment on applicability of our
findings to other ancestries. However, the findings
should be generalizable across other exposure levels
and timings.
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