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Abstract  In wheat, a genome-wide association 
study (GWAS) and genomic prediction (GP) analysis 
were conducted for pre-harvest sprouting (PHS) tol-
erance and two of its related traits. For this purpose, 
an association panel of 190 accessions was pheno-
typed for PHS (using sprouting score), falling num-
ber, and grain color over two years and genotyped 
with 9904 DArTseq based SNP markers. GWAS for 
main-effect quantitative trait nucleotides (M-QTNs) 
using three different models (CMLM, SUPER, and 
FarmCPU) and epistatic QTNs (E-QTNs) using 
PLINK were performed. A total of 171  M-QTNs 
(CMLM, 47; SUPER, 70; FarmCPU, 54) for all 

three traits, and 15 E-QTNs involved in 20 first-
order epistatic interactions were identified. Some of 
the above QTNs overlapped the previously reported 
QTLs, MTAs, and cloned genes, allowing delineat-
ing 26 PHS-responsive genomic regions that spread 
over 16 wheat chromosomes. As many as 20 defini-
tive and stable QTNs were considered important for 
use in marker-assisted recurrent selection (MARS). 
The gene, TaPHS1, for PHS tolerance (PHST) associ-
ated with one of the QTNs was also validated using 
the KASP assay. Some of the M-QTNs were shown to 
have a key role in the abscisic acid pathway involved 
in PHST. Genomic prediction accuracies (based on 
the cross-validation approach) using three different 
models ranged from 0.41 to 0.55, which are compara-
ble to the results of previous studies. In summary, the 
results of the present study improved our understand-
ing of the genetic architecture of PHST and its related 
traits in wheat and provided novel genomic resources 
for wheat breeding based on MARS and GP.

Keywords  Wheat · Pre-harvest sprouting 
tolerance · Quantitative trait nucleotides · Genome-
wide association study · Genomic perdition · 
Candidate genes

Introduction

Wheat (Triticum aestivum L.) is an important cereal 
crop and is widely grown in almost every continent 
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around the globe. Approximately 2.5 billion people 
in ~90 countries rely on wheat grain as their staple 
food (http://​wheat.​org). In addition to biotic stresses, a 
range of abiotic stresses including pre-harvest sprout-
ing (PHS) adversely affect wheat grain yield and 
quality, thus limiting farmer’s income. Globally, the 
annual losses due to PHS alone have been estimated 
to be US$ one billion (see review by Ali et al. 2019). 
As is widely known, PHS involves sprouting of grains 
in the mature wheat spikes, while still attached to 
the mother plant (Nyachiro 2012); this occurs, when 
there is high humidity or prolonged rainfall in fields 
during physiological maturity of the crop.

In the past, PHS tolerance (PHST) has generally 
been evaluated using one or more of the following 
traits: sprouting index and/or sprouting score (SS), 
grain color (GC), falling number (FN), germina-
tion index, seed dormancy and alpha-amylase activ-
ity (Rasul et al. 2009; Knox et al. 2012; Kumar et al. 
2015; Martinez et al. 2018; for reviews, see Ali et al. 
2019 and Gupta et al. 2020). Among these traits, SS 
and FN have been shown to be more important (DeP-
auw et  al. 2012; Martinez et  al. 2018). It has also 
been recognized that the coat color of wheat grain is 
associated with tolerance to PHS, such that the wheat 
cultivars with red GC are generally more resistant 
to PHS relative to white-grained wheats (Himi et al. 
2002; Lin et al. 2016; Zhou et al. 2017a, b). However, 
white grained-wheat genotypes with tolerance to PHS 
have been reported, both in natural populations as 
well as in pre-bred lines developed using molecular 
markers (Warner et al. 2000; Himi et al. 2002; Shao 
et al. 2018; Gautam et al. 2021).

PHST is an ordinal trait because no continuous 
scale (required for quantitative traits) is available for 
recording data; a scale of 1–5 or 1–10 is often used 
for recording the SS data (DePauw et al. 2012). The 
genetic studies on PHST have suggested that the trait 
is polygenic in nature (Moore et  al. 2017; Liu et  al. 
2021; for recent reviews see Gupta et  al. 2020; Tai 
et  al. 2021). Many studies involving either linkage-
based interval mapping or linkage disequilibrium 
(LD) based GWAS have already been conducted 
for PHST in wheat. As a result, at least 250 QTLs 
through interval mapping and an equal number of 
MTAs using GWAS have already been reported 
(Singh et  al. 2021) with many more QTLs/MTAs 
reported during the past two years; these QTLs/
MTAs are distributed on all 21 wheat chromosomes. 

More than half a dozen genes for PHS tolerance have 
also been cloned and characterized, which include 
the following: TaMFT, TaMKK3-A, TaVp1, TaQsdr1, 
TaDOG1, TaSdr, TaPHS1, TaMF, and Tamyb10 
(reviewed in Ali et  al. 2019; Gupta et  al. 2020; Tai 
et  al. 2021). Meta-QTL analyses for this trait have 
also been undertaken, which included the latest study 
conducted by Tai et al. (2021), where 188 valid QTLs 
from 40 studies and 28 characterized genes were uti-
lized leading to identification of 66 meta-QTL distrib-
uted on all 21 wheat chromosomes. The other studies 
on meta-QTLs for PHST included studies from our 
own laboratory (Tyagi and Gupta 2012; Tyagi et  al. 
2015).

For traits like PHST that are each controlled by 
hundreds of genes, genomic selection (GS), first pro-
posed more than two decades ago, has also been rec-
ommended as an alternative approach (Meuwissen 
et  al. 2001). GS makes use of a training population 
for estimation of genomic estimated breeding values 
(GEBVs), which are then used for selection of supe-
rior individual plants in a segregating population, 
without phenotyping (Meuwissen et al. 2001; Sandhu 
et al. 2021b, c). Moore et al. (2017) studied the poten-
tial of GS for predicting PHST in wheat by using dif-
ferent values of fixed effects, marker density; the pre-
diction accuracy in their study was 0.49–0.62.

Development of PHS tolerant wheat cultivars is 
a useful strategy to deal with the problem of PHS. 
However, marker-assisted selection (MAS) for such 
polygenic traits each controlled by hundreds of QTLs 
(each QTL with a small effect), may not be very 
effective (Bernardo 2016), although examples of 
some success are available (Kumar et al. 2010; Gau-
tam et  al. 2021). Therefore, while still working on 
the genetics of the trait using interval mapping and 
GWAS, one should also explore the possibilities of 
using genomic prediction (GP) for developing PHS 
tolerant wheat cultivars. GP associated with GWAS 
has also been attempted for traits such as Septoria 
tritici blotch (STB), grain protein percent stability, 
agronomic, physiological, and grain quality traits 
(Odilbekov et  al. 2019; Sandhu et  al. 2021a; Alemu 
et al. 2021).

Despite the availability of an enormous amount of 
literature on the genetics of PHST, every new study 
on the genetics of PHST leads to identification of a 
few novel QTLs/MTAs, suggesting that the genetics 
of PHST has not been fully worked out and that there 
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is always a scope for discovery of new loci. Keeping 
this in view, the present GWAS was planned, where a 
new association panel comprising 190 spring wheat 
accessions was used. Three different models (CMLM, 
SUPER, and FarmCPU) for detection of main-effect 
QTNs and PLINK for detection of epistatic QTNs, 
were employed; of these models, FarmCPU also has 
the merit of providing multi-locus analysis with built 
in facility for addressing the problem of multiple test-
ing. Apparently, GWAS along with GP based on three 
traits, (SS, FN, and GC) has not been undertaken so 
far for PHST. As expected, the present study resolved 
many novel and/or common genomic regions 
involved in PHST. Novel, epistatic interactions were 
also detected.

Materials and methods

Genetic materials

A panel of 190 diverse accessions (with similar phe-
nology) was utilized that was selected from a world-
wide collection of 330 spring wheats (a Spring Wheat 
Reference Set, described as SWRS) procured from 
CIMMYT, Mexico (Table  S1). In our own labora-
tory, the SWRS or its subsets have earlier been used 
for GWAS for drought tolerance, grain quality, grain 
morphology, yield and yield related traits (Kumar 
et  al. 2018; Gahlaut et  al. 2019, 2021; Malik et  al. 
2021, 2022).

A set of 17,937 polymorphic SNP markers gener-
ated on the above accessions using DArTseq at Diver-
sity Array Technology Pvt. Ltd., Australia, under the 
“Seed for Discovery” project of CIMMYT, Mexico 
was used. Of these as many as 8637 SNPs were 
physically mapped on all 21 wheat chromosomes 
(Table  S2); the remaining 9300 SNPs could not be 
assigned to any wheat chromosome and were desig-
nated as chromosome unknown (ChrUn). Among the 
physically mapped SNPs, 2973 SNPs belonged to the 
A sub-genome, 4505 belonged to the B sub-genome, 
and 1159 belonged to the D sub-genome. DArT-
seq SNPs with 20% missing values (3782), ≤ 5% 
minor allele frequency (2729), and wheat acces-
sions with more than 10% missing calls (1522) were 
excluded from whole SNP dataset. Finally, a total of 
9904 (mapped + unmapped) high quality SNPs were 
used in GWAS analysis (Table  S2). However, after 

eliminating SNPs with ≤ 5% minor allele frequency, 
as many as 15,208 polymorphic SNPs were utilized 
for GP.

Field trials and phenotyping for three PHS‑related 
traits

The field trials were conducted in alpha-lattice 
design with two replications at Agriculture Research 
Farm, Chaudhary Charan Singh University, Meerut 
(28.984644°N and 77.705956°E), India, over two 
consecutive years (2018 and 2019; referred to as E1 
and E2, respectively). Each experimental line was 
seeded in a 2  m plot comprising three rows 20  cm 
apart. Space between plots was 50 cm.

The sprouting score (SS) and two other related 
traits (FN and GC) were used for recording phenotyp-
ing data using the following procedures, (i) Sprout-
ing Score (SS): five random spikes of each genotype 
per replication were hand-harvested from the field at 
physiological maturity (when 50% glumes in a plot 
turned yellow) and allowed to dry (after-ripening) 
at room temperature for 5 days, avoiding direct sun-
light or high-temperature. Spikes were then stored 
at –20  °C to maintain dormancy (Mares 1983) until 
tests were conducted (within 1–3  months). Once 
spikes of all the accessions were collected and stored, 
spike-wetting tests were performed in an artifi-
cial rain simulator (mist chamber). The spikes were 
misted for 30 min every 6 h for seven days. The rare 
spikes infected with mold, if any, were discarded. 
Data on SS on each spike of individual accessions 
were recorded on a scale of 1 to 9 (Fig. S1), where 
a value of 1 represented no visible sprouting and a 
value of 9 represented complete sprouting (modi-
fied after McMaster and Derera 1976). (ii) Falling 
Number (FN): ten random spikes of each accession 
per replication were hand-harvested at physiologi-
cal maturity and were artificially weathered for 48 h 
to enhance the activity of alpha-amylase in sam-
pled spikes. The weathered spikes were dried up 
to 12% moisture and the seeds were threshed gen-
tly. Dried grain samples were ground to flour using 
FOSS Labtech CT410 Sample Mill and mixed with 
water to form slurry following ICC standard No. 
107/1 (1995) and the AACC Method 56–81.03A 
(1999). The slurry was transferred in a glass test tube 
and then placed in a water bath with boiling water 
(100  °C) to gelatinize the starch. The FN apparatus 
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monitors a plunger (or nozzle) as it falls through the 
flour slurry in the test tube and calculates the time in 
seconds (s) that plunger takes to move to the bottom 
of the test tube. Thick (viscous) slurry takes longer 
time for the plunger to move down to the bottom of 
the test tube. Therefore, by evaluating the difference 
in thickness between flour slurry made from weath-
ered and non-weathered grains, FN indirectly deter-
mines alpha-amylase activity. This method quantifies 
the variation in FN among wheat accessions. (iii) 
Grain color (GC): seeds from matured spikes were 
threshed by hand and stored at room temperature till 
further use to estimate seed coat color. To determine 
the GC, Petri plates were first washed by liquid deter-
gent, rinsed thoroughly with tap water, and then air-
dried. A solution was prepared by dissolving 25 g of 
NaOH in 500 ml (5% w/v) of distilled water in a volu-
metric flask and then stored in a polyethylene bottle. 
Each Petri plate was filled with 10 ml 5% NaOH solu-
tion. Approximately 20 seeds for each accession were 
soaked in a Petri plate containing 5% NaOH solution 
for 45  min at room temperature. Data on coat color 
of NaOH soaked seeds was recorded visually on a 
scale of 1 to 5 (1 = white, 2 = amber, 3 = light red, 
4 = medium red and 5 = dark red) (Fig. S2).

Statistical analysis of the phenotypic traits

Phenotypic data were recorded on SS, FN, and GC 
for two years (E1 and E2). The data of E1 and E2 
was separately pooled for three independent traits, 
and pooled data were denoted as PE. The data of E1, 
E2, and PE were separately used for all the statistical 
analyses, including GWAS.

The SPSS v16.0 software was used for calculat-
ing mean, median, range, standard deviation (SD), 
and coefficient of variation (CV) for each of the 
three traits. Pearson’s correlation coefficient, fre-
quency distribution and scatter plots were depicted 
in a correlation chart generated using Performance 
Analytics Package in R (https://​cran.r-​proje​ct.​org/​
web/​packa​ges/​Perfo​rmance.​pdf). Best linear unbi-
ased estimates (BLUEs) of two replicates under 
each environment and across environments were 
estimated using META-R (Alvarado et  al. 2015) 
and the values were used for GWAS analysis. Her-
itability was estimated separately for each environ-
ment using the R package lme4 (Bates et al. 2015) 
treating genotypes as a random effect with the 

model equation: H2 = σ2
g / (σ2

g  + σ2
e), where H2 

is the broad-sense heritability, σ2
g is the genotypic 

variance, and σ2
e is the residual variance (Bates 

et al. 2015).

Marker‑trait associations (MTAs)

Single locus main‑effect MTAs  MTAs for each of 
the three traits were worked out using each of the fol-
lowing three models: (i) Compressed Mixed Linear 
Model (CMLM; Zhang et  al. 2010), (ii) Settlement 
of MLM Under Progressively Exclusive Relation-
ship (SUPER; Wang et al. 2014), and (iii) Fixed and 
random model Circulating Probability Unification 
(FarmCPU; Liu et  al. 2016). All three models were 
implemented in R using GAPIT software package 
(Lipka et al. 2012). The CMLM and SUPER allowed 
single-locus analysis while the FarmCPU allowed 
multi-locus analysis.

The problem of population structure was addressed 
using principal component analysis (PCA), where the 
first three components of PCA were used as covari-
ate in FarmCPU. The FarmCPU eliminates con-
founding issues arising due to population structure 
(Q matrix), kinship (K matrix), and multiple testing, 
etc. The Q and K matrices are automatically gener-
ated (VanRaden 2008; Lipka et al. 2012) using geno-
typic data with the help of a default set of parameters. 
Bonferroni-correction for eliminating false positives 
due to multiple testing is built-in with FarmCPU and 
SNPs with p ≤ 0.001 {-log10(p) ≥ 3} were declared 
significantly associated markers. For the remaining 
two single-locus models (CMLM and SUPER) also, 
the above threshold p-value was used to declare sig-
nificant MTAs with the confidence that false posi-
tives will not be identified in these two models also. 
The MTAs identified following the multi-locus model 
FarmCPU are described as main effect quantitative 
trait nucleotides (M-QTNs) as is the usual practice; 
however, for convenience, the MTAs identified by 
CMLM, and SUPER are also described as M-QTNs 
during the present study. Circular Manhattan plots 
were generated using the QQMAN R package in R 
3.4.1 (https://​www.r-​proje​ct.​org/). The chromosome 
map showing the physical positions of QTNs associ-
ated with PHST for comparing the positions between 
interval mapping and GWAS was constructed using 
MapChart v2.2 (Voorrips 2002).

https://cran.r-project.org/web/packages/Performance.pdf
https://cran.r-project.org/web/packages/Performance.pdf
https://www.r-project.org/
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Two‑locus epistatic interactions  Pair-wise epi-
static interactions were analyzed using PLINK v1.07 
(Purcell et  al. 2007). Significant interactions were 
filtered at p-value < 1 × 10–8 (Purcell et  al. 2007; Jan 
et al. 2019). The QTNs involved in epistatic interac-
tions were described as E-QTNs.

Comparison of QTNs with known MTAs/QTLs/
cloned genes

Sequence tags of QTNs identified in the present study 
were subjected to BLASTN against the latest release 
of IWGSC RefSeq v2.1 (EnsemblPlants database) to 
obtain their physical coordinates on the chromosomes. 
Physical coordinates of the previously known MTAs/
QTLs/genes related to PHST were also obtained in a 
similar manner. The sequences of simple sequence 
repeats (SSRs) were retrieved from GrainGenes web-
site (https://​wheat.​pw.​usda.​gov/​cgi-​bin/​GG3/​browse.​
cgi?​class=​marker) and those for DArT markers were 
retrieved from Diversity Array Technology website 
(https://​www.​diver​sitya​rrays.​com/​techn​ology-​and-​
resou​rces/​seque​nces/). Using the chromosomal coordi-
nates, the QTNs identified in the present study and the 
previously reported MTAs/QTLs/cloned genes associ-
ated with PHS tolerance related traits were projected 
using MapChart v2.3 (Voorrips 2002). The linkage 
disequilibrium (LD) decay in wheat genome has been 
reported at an average distance of 5 mega base pair 
(Mbp) (Ladejobi et  al. 2019). Therefore, any two or 
more loci (including QTNs detected in the present and/
or previously known QTLs/MTAs/cloned genes) were 
considered co-localized if they were mapped within 
the 5 Mbp physical region.

Prediction of candidate genes (CGs) underlying the 
QTNs

Sequence tags of SNP markers associated with the 
three different traits were subjected to BLASTN 
analysis against Chinese Spring reference genome 
sequences version 2.1 (IWGSC RefSeq v2.1) avail-
able at EnsemblPlants sequence database (http://​
www.​ensem​bl.​org/​info/​docs/​tools/​vep/​index.​html). 
The physical coordinates of each SNP tag were used 
as input in EnsemblPlants database, and the chro-
mosomal regions were each extended to –300  kb 
and +300  kb around the positions of the QTN. This 
600  kb region of a chromosome was searched for 

potential CGs involved in the processes of seed ger-
mination and dormancy. The information for proteins 
encoded by the genes was obtained from the inter-
pro description using the Biomart tool available at 
EnsemblPlants database. The annotations of identi-
fied CGs were verified from the published reports to 
determine their putative roles in controlling the tar-
geted PHS traits.

Kompetitive allele‑specific PCR (KASP) assay

For KASP assays, 20 prioritized QTNs were selected. 
For each QTN, two allele-specific forward prim-
ers and one common reverse primer were designed 
using PolyMarker (Ramirez-Gonzalez et al. 2015). The 
primer sequences are given in Table  S3. KASP assays 
were setup in StepOnePlus™ Real-Time PCR System 
(Applied BioSystems); KASP reaction mix with a final 
volume of 10 μl containing 50 ng/μl DNA, and 0.17 μm 
KASP assay mix (allele‐specific primers and common 
primer) were used for PCR amplification. The profile for 
KASP assays included the following cycles: 95  °C for 
15 min, followed by a 10-cycle touchdown of 94 °C for 
20 s and 65–57 °C (dropping 0.8 °C per cycle) for 2 min, 
and 35 cycles of 94 °C for 20 s and 57 °C for 1 min. The 
fluorescence detection of the amplified products was ana-
lyzed using the allelic discrimination plot function.

Genomic prediction models

Three GP models (rrBLUP, Bayes B and Bayes 
LASSO) were used to predict the significant values 
of SS, FN, and GC using a cross-validation approach 
for each environment. These three models use differ-
ent assumptions during model training and prediction 
(Crossa et  al. 2017). The BLUE values for the 190 
genotypes were used to train the models, which were 
genotyped using 15,208 DArT-seq SNP markers; pre-
diction accuracies are reported as Pearson’s correla-
tions observed between the true observations and the 
predicted GEBVs. Results were reported separately 
for each of the two environments (E1 and E2).

Five-fold cross-validation was used for 
assessing the performance of each model, where 
80% of the data was used for model training, and 
20% of the data for model testing. Two hundred 
replications were performed to obtain the aver-
age prediction accuracy of the model. Each rep-
lication consisted of five iterations; during each 

https://wheat.pw.usda.gov/cgi-bin/GG3/browse.cgi?class=marker
https://wheat.pw.usda.gov/cgi-bin/GG3/browse.cgi?class=marker
https://www.diversityarrays.com/technology-and-resources/sequences/
https://www.diversityarrays.com/technology-and-resources/sequences/
http://www.ensembl.org/info/docs/tools/vep/index.html
http://www.ensembl.org/info/docs/tools/vep/index.html
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iteration, the dataset was split into five groups, 
and each group was used as a testing set for each 
iteration (Sandhu et al. 2021d). Due to the com-
putational burden of these GP models, the whole 
analysis was performed over cloud computing 
using the high-speed computing platform avail-
able at Washington State University, Pullman, 
USA (https://​hpc.​wsu.​edu/). Following are the 
details for each of three GP models used in the 
present study:

(i) Ridge regression best linear unbiased pre‑
dictor (rrBLUP): rrBLUP is the most commonly 
used GP model due to its low computational 
demand, equivalent to traditional BLUPs in the 
context of mixed models, and estimation of all 
marker effects using the shrinkage approach (Rut-
koski et  al. 2016; Sandhu et  al. 2021c). rrBLUP 
assumes homogenous variances for each marker 
and shrinks them equally toward the zero. GEBVs 
were calculated by estimating the genome-wide 
marker effects using the R package rrBLUP 
(Endelman 2011; R core team 2020). The follow-
ing mixed model was used for calculation

y = μ + Zu + e,

Where y is the N × 1 for the BLUEs for the asso-
ciated phenotypic value from the 190 genotypes for 
each environment, μ is the overall mean, Z is the 
incidence matrix of dimensions N x M, linking each 
marker to the associated genotype, μ is the vector 
of normally distributed random marker effects, as 
μ ~ N(0, Iσ2

u) where I is the identity matrix, σ2
u is 

the variance for marker effects, and e is the residual 
error with e ~ N(0, Iσ2

e). Variance components were 
estimated using the restricted maximum likelihood 
function of the rrBLUP package (Kang et al. 2008).

(ii) Bayes B: The assumption of rrBLUP that all 
the marker effects are evenly distributed across the 
genome is not satisfactory for some traits. There-
fore, Meuwissen et al. (2001) proposed a Bayes B 
model to relax the assumptions of rrBLUP. This 
model assumes that some markers have no effect 
on a particular trait and should not be included for 
model training (Pérez and de los Campos 2014). 
The model assumes the marker specific shrinkage 
for estimating their effects with a unique variance 
for each marker and can be represented as follows:

g
(
xi
)
=

P∑

k=1

xik�k�k

Fig. 1   A diagrammatic representation of frequency distribu-
tions (middle diagonal, top left to bottom right), correlations 
(upper panel), and relationships among three traits [sprout-
ing score (SS), falling number (FN) and grain color (GC)] 

across environments (E1 = Meerut 2018; E2 = Meerut 2019 
and PE = pooled environments) (lower panel). The X-axis and 
Y-axis indicate values of each trait. ***, **, and * indicates the 
significant levels at p ≤ 0.001, 0.01, and 0.05, respectively

https://hpc.wsu.edu/


Mol Breeding (2023) 43:14	

1 3

Page 7 of 26  14

Vol.: (0123456789)

Where g
(
xi
)
 is the sum of p marker effects, xik is 

the value of kth marker in the ith individual, �k is 
the kth marker effect, and �k is the indicator vari-
able associating the presence or absence of a par-
ticular marker in the model. The model assumes 
a mixture distribution with mass at zero, and the 
prior distribution for the variance is represented as

Var(�k) = 0 (with probability π), and Var(�k) ∼ �−2(v, s) (with probability 1 − π)

The Bayes B can be reduced to Bayes A by setting 
π = 0 in the above model. The prior distribution for the 
�−2(v, s) is the inverse chi-squared distribution �−2 , 
where v is the degree of freedom and s is the scaling 
parameter. The complete analysis for Bayes B was per-
formed in the BGLR package implemented in R using 
cross-validation approaches using prior specified for 
each model (Pérez and de los Campos 2014). A total of 
40,000 iterations were performed, with 10,000 excluded 
as burn-in.

(iii) Bayes LASSO: The Bayes LASSO (least 
absolute shrinkage and selection operator) is 
related to rrBLUP, but it shrinks marker effects 
strongly relative to rrBLUP with some of the 
marker coefficients driven to zero, creating 
a spare model (Tibshirani 1996). The Bayes 
LASSO assigns a double exponential prior dis-
tribution to all the marker effects, with a centre 
at zero and marker’s specific variance (de los 
Campos et al. 2009). The likelihood function of 
the model used for Bayes LASSO can be written 
as follows:

Where y is the vector for phenotype, � is the 
overall mean, x is the design matrix for assessing 
markers to the genotypes, m is the vector of marker 
effects, N

(
� + xm, �2I

)
 denotes the model distribu-

tion with mean � + xm and variance �2I . The prior 
distribution for estimating marker effects were dou-
ble exponential. The whole analysis was performed 
using the BGLR package with 40,000 iterations 
(including 10,000 burn-in iterations) as reported in 
Sandhu et al. (2021d).

f
(
y|�, x,m, �2

)
∼ N

(
� + xm, �2I

)
,

Results

Descriptive statistics

The values of means, range, coefficients of vari-
ation (CVs, %) and broad-sense heritability (H2) 
for the three traits in E1, E2, and PE (pooled data 

over environments) are presented in Tables S4. The 
frequency distribution for the SS, FN, and GC was 
continuous and was similar in pattern in E1, E2, and 
PE. However, the distribution patterns for the indi-
vidual traits differed. For SS and GC the distribu-
tion was largely bimodal, whereas for the FN it was 
skewed toward low FN.

Correlation coefficients among the SS, FN, and GC

The details of 36 possible Pearson’s correlation coef-
ficients among values of three traits (SS, FN, and GC) 
each in E1, E2, and PE are presented in Fig.  1; the 
correlations were generally significant and ranged 
from 0.74 to 0.99. Among the three traits, signifi-
cant negative but moderately high correlations were 
noted between SS and FN (r = –0.56 to –0.70) and 
between SS and GC (r = –0.57 to –0.69); the correla-
tion between FN and GC were positive but only mod-
erately significant (r = 0.35 to 0.52).

Identification of QTNs for three PHS‑related traits 
using GWAS

PCA revealed first three PCs explaining 6.82, 3.82, 
and 3.33% variation (total variation of 13.97%; 
Fig.  S3). Utilizing these three PCs, the data is pre-
sented in three separate two dimensional plots 
showing no more than two sub-groups of the geno-
types (Fig.  S3). Based on the LOD threshold 
(–log10(p) ≥ 3), a total of 171 significant QTNs for 
three PHS-related traits (SS, FN, and GC) were iden-
tified using the phenotypic data of E1, E2, and PE. 
This included 47 QTNs due to CMLM, 70 QTNs 
due to SUPER, and 54 QTNs due to FarmCPU 
(Table S5). Manhattan plots along with Q-Q plots of 
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the GWAS results for CMLM, SUPER, and Farm-
CPU are presented in Fig. 2A–C.

A comparison of single locus main-effect QTNs 
(M-QTNs) for three PHS-related traits and three 
GWAS models suggest that 86 unique M-QTNs were 
detected in different combinations (individually and 
jointly) of PHS-related traits as well as GWAS mod-
els (Table 1); 32 M-QTNs were detected by each of 
the three models (Table 1 and Table S5). The physi-
cal positions of only 76  M-QTNs (located on 19 
wheat chromosomes; leaving out 4B and 4D) could 
be determined using IWGSC RefSeq v2.1 (Fig.  5); 
the remaining 10  M-QTNs could not be assigned 
to any chromosome and are, therefore, described as 
ChrUn (chromosome unknown) (Table  S5). The A 
sub-genome harbored maximum number of M-QTNs 
(34), followed by B (25) and D (17) sub-genomes. A 
total of 11 M-QTNs were each found to be associated 
with more than one trait in one or more environments. 
Among these, nine M-QTNs {M8876 (3B), M2654 
(5A), M8514 (2B), M11378 (ChrUn), M10484 (5A), 
M12953 (ChrUn), M2207 (7A), M11590 (1A), and 
M9692 (6B)} were found to be associated with both 
FN and GC. The remaining two M-QTNs, namely 
M6844 (3B) and M10913 (1B), were associated with 
both SS and GC (Table 1 and Table S5).

Epistatic interactions among the QTNs

First order (two-locus) epistatic interactions included 
20 pairs of significant (P < 10–8) QTN x QTN inter-
actions (SNP-SNP interactions), which included three 
pairs for SS, seven pairs for FN, and ten pairs for GC; 
five pairs were common for FN and GC, thus resulting 
in 15 unique SNP pairs (Fig. 3 and Table S6). None 
of these epistatic QTNs (E-QTN) involved M-QTNs. 
E-QTNs were distributed on 16 of 21 wheat chromo-
somes (excluding 2D, 4D, 5A, 5B, and 6D. The chro-
mosome 7B carried two pairs of interacting E-QTNs 

[SNPs M3515 (626.5 Mb) and M6976 (10.1 Mb) for 
FN and GC, and interaction between SNPs M5158 
(509.5) and M11451 (650.6 Mb) involved only GC]. 
Another SNP locus M11451 on 7B was involved in 
an interaction with SNP M5538 (486.1 Mb) on chro-
mosome 7D for only GC (Fig. 3 and Table S6).

QTNs colocalized with previously reported QTLs/
MTAs/cloned genes within 5 Mbp genomic regions

The above 76 M-QTNs and 30 E-QTNs were physi-
cally mapped along with the 26 known QTLs (based 
on interval mapping), 51 MTAs (based on GWAS), 
and 19 known genes for PHST (Table S7). As many 
as 29  M-QTNs and the two E-QTNs were mapped 
with the previously reported nine QTLs, 24 MTAs, 
and five known genes within 26 genomic regions 
(GRs) distributed on 16 wheat chromosomes (Fig. 4). 
Since, LD decays at an average distance of ~5 Mbp 
in wheat (Ladejobi et al. 2019), we assume that PHS-
associated loci within each of these 26 GRs are in 
LD. We like to call these GRs PHS responsive GRs 
(PRGRs 1–26). These physically mapped and pre-
viously reported loci belong to the following eight 
PHS-related traits: (i) SS/sprouting index (ii) germi-
nation index, (iii) germination ratio, (iv) percent ger-
mination, (v) FN, (vi) GC, (vii) ABA responsiveness, 
and (viii) late maturity alpha amylase (LMA). Five of 
the M-QTNs associated with SS, FN, and GC were 
co-localized with one PHS tolerance gene each within 
the five individual PRGRs (Table  2). The remain-
ing 14 reported genes were mapped outside the 26 
PRGRs.

Two E-QTNs were also co-located with known 
QTLs/MTAs. E-QTN M6934 was co-localized with 
two MTAs (IWB13172 and IWB64868) for SS within 
the PRGR5 on chromosome 1B. Similarly, E-QTN 
M3464 was co-localized with one QTL (associ-
ated with Xgwm637) and an MTA (associated with 
IWB23723) each for SS within the PRGR15 on chro-
mosome 4A (Fig. 4).

Novel QTNs for three PHS‑related traits

As many as 47  M-QTNs and 28 E-QTNs detected 
during the present study were novel, because these 
were not co-localized with any of the previously 
reported QTLs/MTAs/genes. Among these novel 
QTNs, 12 QTNs (9 M-QTNs and 3 E-QTNs) for FN, 

Fig. 2   Circular Manhattan plots obtained from CMLM (A), 
SUPER (B), FarmCPU (C) for the significant associations of 
9904 SNPs with three pre-harvest sprouting tolerance traits 
(SS, FN, GC) distributed on 21 wheat chromosomes and chro-
mosome unknown (shown by numbers 1–22). In each circular 
plot, inner, middle and outer plots are representing E1 (Meerut 
2018), E2 (Meerut 2019), and PE (pooled) environments, 
respectively. The LOD threshold value—log10(p) ≥ 3 is indi-
cated as red-colored dotted circle. For each case, multi-track 
Q-Q plots are shown below the circular Manhattan plots

◂
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SS, GC, and FN + GC were mapped in pairs within 
six 5 Mbp regions (excluding the PRGRs) on six dif-
ferent chromosomes (1B, 1D, 2A, 2B, 6D, and 7A) 

of wheat (Fig. 5). For example, M-QTN M5740 was 
2.1 Mb away from the E-QTN M6179; each signifi-
cantly associated with FN on chromosome 1D.

Table 1   Summary of unique main-effect quantitative trait nucleotides (M-QTNs) identified for three parameters of pre-harvest 
sprouting tolerance using single- and multi-locus GWAS models

GWAS, genome-wide association study; SS, sprouting score; FN, falling number; GC, grain color; CMLM, compressed mixed linear 
model; SUPER, settlement of MLM under progressively exclusive relationship; FarmCPU, fixed and random model circulating prob-
ability unification. *Does not include QTNs detected for more than one trait

Trait GWAS method Total

CMLM SUPER FarmCPU CMLM + SUPER CMLM + Farm-
CPU

SUPER + Farm-
CPU

CMLM + SUPER + Farm-
CPU

SS 1 9 2 4 1 3 6 26*

FN 0 13 4 0 1 5 6 29*

GC 4 0 0 1 3 3 9 20*

SS + GC 0 0 0 0 0 0 2 2
FN + GC 0 0 0 0 0 0 9 9
Total 5 22 6 5 5 11 32 86

Fig. 3   Epistatic interaction 
among three traits, namely 
sprouting score (SS), falling 
number (FN), and grain 
color (GC) of pre-harvest-
ing sprouting tolerance. 
The names of chromo-
some are shown within the 
circle. The SNPs involved 
in epistatic interactions on 
respective chromosomes 
are shown outside the circle 
and their positions (Mb) are 
given along the chromo-
somes. Inner curved color 
lines indicate SNP–SNP 
interactions. The interac-
tions for SS, FN, and GC 
are represented by green, 
red, and blue curved lines, 
respectively
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Identification of CGs associated with QTNs

A set of 176 PHS-related CGs were detected, 
which were associated with 52  M-QTNs (out of 
76  M-QTNs) and included 14  M-QTNs for SS, 
20  M-QTNs for FN, 15  M-QTNs for GC, and 
3 M-QTNs for FN + GC. No CGs relevant to PHST 
were identified for the remaining 24  M-QTNs. 
Detailed information of CGs and their functional 

annotations are presented in Table  S8. These 176 
CGs encoded proteins that contained 33 differ-
ent types of domains (Fig.  5). Some of the impor-
tant domains include the following: (i) leucine-rich 
repeat (LRR) superfamily, (ii) NAC domain super-
family, (iii) serine/threonine protein kinase, (iv) 
F-box domain, (v) WRKY domain, (vi) APETALA2 
(AP2)/EREB (ethylene responsive element bind-
ing factor)  domain, (vii) MADS-box transcription 

Fig. 4   Distribution 
of main-effect QTNs 
(M-QTNs) and epistatic 
QTNs (E-QTNs) for three 
pre-harvest sprouting 
(PHS)-related traits with the 
previously reported QTLs, 
MTAs, and cloned genes 
within 26 PHS responsive 
genomic regions (PRGR1-
26) denoted by the thick 
black vertical line on the 
left of each chromosome. 
The markers name is shown 
on the right and their 
physical positions (Mbp; 
mega base pair) are on the 
left of each chromosome. 
For each mapped locus, 
the associated trait is given 
in parenthesis as follows: 
SS for sprouting score, FN 
for falling number, GC for 
grain color, GI for germina-
tion index, and LMA for 
late maturity amylase. The 
QTNs detected during the 
present study and those 
reported in the previous 
studies are shown in dif-
ferent colors as follows: 
(i) M-QTNs detected in 
the present study (simple 
black); (ii) previously pub-
lished QTLs (red), MTAs 
(blue), specific known 
genes (green) and E-QTNs 
are underlined. The QTNs 
detected during the present 
study and mapped in pairs 
within a 5 Mbp region 
(excluding the PRGRs) are 
highlighted in light orange 
color
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factors, (viii) aspartic peptidase A1 family, etc. 
A total of 19 of the 33 protein/domain types were 
related to the ABA signaling pathway. A summary 
of the M-QTNs for three different traits and asso-
ciated CGs encoding two major classes of proteins 
containing two different domains is presented in 
Table 3. A set of 43 CGs underlying 18 M-QTNs (6 
each for SS and FN, 3 for GC, and 3 for FN + GC) 

located on 11 different wheat chromosomes 
encoded proteins that contained LRRs (Table  3). 
Similarly, 27 CGs associated with 13  M-QTN (3 
for SS, 7 for FN, 2 for GC, and 1 for FN + GC) on 
nine different chromosomes encoded proteins that 
contained serine/threonine-protein kinase domain. 
A few M-QTN regions contained only one or a 
few important genes, which encoded proteins with 

Fig. 4   (continued)

Table 2   Main-effect QTNs (M-QTNs) for the three parameters and five cloned genes for pre-harvest sprouting tolerance co-local-
ized within five PRGRs (Fig. 4)

SS, sprouting score; FN, falling number; GC, grain color; M-QTN, main effect-quantitative trait nucleotide; PRGRs, PHS responsive 
genomic regions

PRGR number (chromosome); 
parameter

M-QTN (position, Mbp) Cloned gene (starting position, 
Mbp)

Reference

3 (1B); SS M9786 (425.0) TaABI4 (429.7) Xiao et al. 2021
13 (3D); SS M1459 (524.3) TaVP1 (526.1) Dale et al. 2017
14 (4A); SS M10478 (611.3) Phs-A1 (606.8) Shorinola et al. 2017
12 (3B); FN M381 (772.8) Tamyb10 (773.2) Zhou et al. 2017a, b
11 (3A); GC M8896 (2.5) TaPHS1/TaMFT (7.4) Nakamura et al. 2011
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unique domains involved in grain germination and 
dormancy (Table S8).

KASP assay for 10 prioritized QTNs

KASP assays in 96 wheat accessions were conducted 
for 10  M-QTNs prioritized for MARS. However, 
nine of these KASP assays failed to discriminate 
alternative SNP alleles (Fig.  S4 a-i). However, the 
KASP assay for TaPHS1 gene known for PHS tol-
erance, closely associated with an M-QTN (M8896) 
discriminated two separate SNP alleles, associated 
with PHS tolerance and susceptibility (Fig. 6).

Genomic prediction for SS, FN, and GC

In the present study, GP for three traits ranged from 
0.41 to 0.55 with highest prediction accuracy being 
0.55 for GC due to Bayes B, 0.49 for FN due to 
rrBLUP and 0.50 for SS due to rrBLUP (Fig. 7 and 
Table S9). Higher prediction accuracy for GC with 
Bayes B suggested that few QTLs control this trait. 
On the other hand, FN and SS were more accu-
rately predicted with the help of rrBLUP, but the 
difference was minor relative to those due to Bayes 
LASSO and Bayes B (Table  S9). The range/distri-
bution of prediction accuracies for each model and 
trait are shown in Fig. 7.

Fig. 5   Frequencies of candidate genes (with functions related to pre-harvest sprouting tolerance) encoding proteins with each of the 
33 domains. In parenthesis, SS, FN, and GC refer to sprouting score, falling number, and grain color, respectively
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Discussion

During the past few decades, the genetic architecture 
of PHST in wheat has been studied using both linkage-
based interval mapping and LD-based association map-
ping. These extensive studies suggested that PHST is a 
complex trait controlled by many QTLs/genes distrib-
uted on all 21 wheat chromosomes (Kumar et al. 2015; 
He et al. 2021; Liton et al. 2021; Li et al. 2021; Dhari-
wal et  al. 2021; Khumalo et  al. 2022; for reviews see 
Gupta et al. 2020 and Tai et al. 2021). A recent survey 
on interval mapping and GWAS for PHST suggested 
that 575 QTLs/MTAs are already known in wheat 
(Singh et  al. 2021); this number is still growing, sug-
gesting that additional studies are warranted using 
novel material for the discovery of new QTLs/MTAs 
for PHST. A large number of loci controlling PHS has 
made it rather difficult to suggest a package of molecu-
lar markers for MAS (or even marker assisted recur-
rent selection or MARS) for improvement of PHST in 
wheat, although some efforts have been made in this 
direction (Kumar et  al. 2010; Gautam et  al. 2021). 
Therefore, GS (particularly one based on markers asso-
ciated with QTLs/MTAs) may eventually prove to be 
superior to MAS, although its routine effective use in 
wheat is yet to be demonstrated.

Efforts were also made during the present study to 
estimate genomic prediction (GP) accuracy for pos-
sible use in GS; three different models that were used 
for this purpose included rrBLUP, Bayes B and Bayes 
LASSO, although many more models are available. 
For instance, in a recent study, 11 different genomic 
prediction models were evaluated for their relative 
merit in prediction accuracy for two different traits in 
three different crops, namely maize, rice, and soybean 
(Kaler et al. 2022). Bayes B was found to be the most 
suitable model in their study; and therefore Bayes B 
model was used in the present study. However, in the 
present study rrBLUP was found to be the best model 
(see later).

Genetic variation for SS and two related traits of 
PHST

Characterization of PHS using multiple traits (as 
done in the present study) allows detection of many 
more QTLs relative to those detected using a single 
trait (Knox et  al. 2012; Singh et  al. 2014; Kumar 
et  al. 2015). Fairly large variation was observed for 

all three traits in the present study and the broad-
sense heritability for three traits ranged from 0.59 to 
0.85. These estimations of the heritability indicate 
only a marginal role of the environment effects on the 
expression of the three traits; however, the SS seemed 
to be relatively more affected by the environment. 
The pattern of distribution, however, differed for the 
three traits, although the pattern for individual traits 
over the environments was similar. The dispersion of 
phenotypic values for three traits did not follow nor-
mal distribution; instead, it had a bimodal distribution 
for SS and GC and skewed distribution for FN. Simi-
lar patterns of distribution for the three traits were 
also reported in some earlier studies (Martinez et al. 
2018; Zuo et al. 2019).

It was also observed in the present study that 
white/amber grain (light color, GC = 1, 2) as well as 
low FN are both often associated with high value of 
PHS (as measured using SS). This distribution pat-
tern is also supported by the inter-se correlations 
between the three traits, where GC and FN showed 
significant positive correlation and each of these two 
traits had negative correlation with SS. These results 

Fig. 6   Allelic discrimination plot, showing clustering of 
wheat accessions for KASP marker for TaPHS1 gene for pre-
harvest sprouting tolerance (PHST). Y-axis, FAM labeled red 
dots represent susceptible genotype allele (AA); X-axis, HEX 
labeled blue dots represent PHS tolerant genotype allele (TT). 
Green dots stand for heterozygous alleles (A/T). The black dots 
represent negative controls (no template)
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also agree with earlier reports, where similar correla-
tions were reported (Rasul et al. 2009; Jimenez et al. 
2017; Martinez et  al. 2018). The data for the three 
traits also had high correlations (0.74 to 0.99) among 
the environments, suggesting a very similar nature of 
the environments and little role of g x e interaction in 
the expression of the three traits in different environ-
ments. This allowed a fair and comparable analysis of 
the three traits over the environments.

The GWAS panel of 190 accessions used in the 
present study also included 19 accessions each with 
known high level of PHST, associated with low SS 
and high FN values. This once again confirmed 
that SS and FN can be used for scoring of PHST 
and that robust QTNs associated with SS, FN, and 
GC can be utilized for molecular breeding. The 19 
genotypes with high PHST levels would serve as an 
excellent genetic resource of PHS tolerance to wheat 
breeders (Table  S10). Three accessions (SWRS176, 
SWRS237, and SWRS325) from the above 19 acces-
sions also had very light red grain color, suggesting 
that these genotypes can be used as parental geno-
types in wheat breeding programs for developing 

PHS tolerant white (or light red grain color) wheats, 
preferred in several parts of the world.

The association panel used during the present 
study showed a low level of population structure 
comprising only two sub-populations. Similar panels 
in earlier studies also showed a low level of popula-
tion structure, with the number of sub-populations 
ranging from three (see Malik et al. 2021; Liu et al. 
2017; Zuo et al. 2019) to five (Zhou et al. 2017a, b). 
The absence or low level of population structure is a 
desirable feature for conducting GWAS; therefore, a 
higher level of confidence can be placed on the QTNs 
identified during the present study.

QTNs for the three models (CMLM, SUPER, and 
FarmCPU)

(Relative merits of GWAS models)

It may be recalled that 21 of the 76 (~27%) M-QTNs for 
the three traits were each detected by at least two of the 
three GWAS models in at least two of the three datasets 
(E1, E2, and PE). The remaining 55 M-QTNs were each 

Fig. 7   Genomic prediction (GP) accuracies for three traits 
for pre-harvest sprouting (PHS) tolerance each using three 
genomic prediction models. Prediction accuracies were cal-

culated using a cross-validation approach and in two separate 
environments. X-axis shows the combination of GP models 
and year, while y-axis depicts the prediction accuracies
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recorded in only one of the three sets of data and such 
M-QTNs were each detected by only one of the three 
models. Together, these observations once again suggest 
a low level of QTN x environment interaction and differ-
ences in the efficiency of the three models.

Also, nearly one third (~38%; 29/76) of the 
M-QTNs were co-localized with earlier reported 
loci for PHS-related traits (see later for more details) 
and remaining (~62%; 47/76) M-QTNs were novel. 
Interestingly, 12 novel M-QTNs, each detected by 
at least two models and in at least two environments 
explained 5.9 to 7.1% phenotypic variation (R2); these 
QTNs are considered definitive and stable (Table 4). 
The QTLs with PVE values of 5.9% to 7.1%, if calcu-
lated using interval mapping, is generally not useful, 
but R2 value of this magnitude obtained from GWAS 
may be useful. The efficiency of three GWAS mod-
els and other available models and the importance of 
definitive and stable M-QTNs in MAS needs further 
discussion (see next).

With the availability of at least nine different mod-
els for GWAS, which became available during the 
past 10–15 years, only three were used in the present 
study, which included CMLM, SUPER, and Farm-
CPU. Their relative merits are known, where Farm-
CPU has been shown to be more efficient relative 
to other available models, as also shown in a recent 
study in soybean and maize involving eight different 
models (Kaler et  al. 2020; for a review, see Gupta 
2021). FarmCPU also has in-built Bonferroni cor-
rection with a view to minimize the number of false 
positive QTNs, which appear due to the multiple test-
ing involved in GWAS. It is also widely known that 
Bonferroni correction also leads to false negatives (an 
undesirable feature). Therefore, it is emphasized that 
the Bonferroni correction is a trade-off (Chen et  al. 
2017). With a view to restrict the false positive QTNs 
(an undesirable feature) in the remaining two single-
locus models (CMLM and SUPER), we used the high 
threshold p-value of the FarmCPU to identify sig-
nificant M-QTNs detected by CMLM and SUPER. 
Therefore, we assume that the M-QTNs detected by 
all three models in the present study are true and free 
from false positives.

QTNs co‑localized with known MTAs/QTLs/genes

Another important observation of the present study 
is the availability of 29 M-QNTs for the three traits, 

which were co-localized with the previously reported 
loci (QTLs, MTAs, and genes) for PHS tolerance 
(Kumar et al. 2015; for review see Gupta et al. 2020; 
Tai et al. 2021; Singh et al. 2021). We are, however, 
conscious of the fact that co-localization does not 
necessarily mean identity between loci but can cer-
tainly help in identification of some hot spots to be 
used in molecular breeding. Identification of hot spots 
for successful implementation of MAS has also been 
discussed, as reported in a recent study in chickpea 
(Barmukh et al. 2022).

It may also be recalled that the above 29 M-QTNs 
are located within the 26 PRGRs identified during 
the present study; each PRGR is 5 Mbp long (aver-
age region in LD; Ladejobi et al. 2019) and thus the 
M-QTNs detected during the present study may be 
considered in LD with the previously reported loci 
and could be used for improvement of PHS tolerance. 
The majority of these PRGRs are located near the tel-
omeres in the gene rich regions reported by Erayman 
et al. (2004).

It is also important to note that five cloned genes 
(out of the 19 identified and characterized genes) 
for PHS tolerance (Tai et  al. 2021) are also located 
one each within the five different PRGRs on chro-
mosomes 1B, 3A, 3B, 3D, and 4A (Table  2). How-
ever, none of these cloned genes carried any M-QTN; 
it is possible that the use of a much greater number 
of SNPs for GWAS analysis could have identified 
causal SNPs within one or more of the five cloned 

Table 4   Twenty novel/co-localized, definitive, and stable 
main-effect QTNs (M-QTNs) for improvement of pre-harvest 
sprouting (PHS) tolerance using MARS (detailed information 
is given in Supplementary Table S4)

MARS, marker-assisted recurrent selection; SS, sprouting 
score; FN, falling number; GC, grain color; R2, Percent pheno-
typic variation explained

Parameter: M-QTN (chromosome) Range of R2

(a) Novel QTNs
SS: M4235 (2B), M12780 (5D), M6492 (7B), 

M1526 (7D); FN: M10792 (1D); GC: M5955 
(1A); SS + GC: M10913 (1B); FN + GC: 
M11378 (1B), M8514 (2B), M10484 (5A), 
M2654 (5A), M2207 (7A)

6.1–7.9

(b) Co-localized QTNs
SS: M9945 (2B), M10224 (2D), M37 (7B); FN: 

M10792 (1D); GC: M1920 (4A), M1442 (5B), 
M4283 (7A); FN + GC: M11590 (1A)

5.9–8.4



	 Mol Breeding (2023) 43:14

1 3

14  Page 18 of 26

Vol:. (1234567890)

genes. Following are some of the details of these five 
cloned genes and the associated M-QTNs, which may 
be useful for further study: (i) TaABI4 (ABSCISIC 
ACID INSENSITIVE 4) encodes an ABA-responsive 
transcription factor having a role in seed germination 
(Xiao et al. 2021); it is co-located with QTN M9786 
for SS (PRGR3 on 1B). (ii) TaPHS1; a MOTHER 
OF FT AND TFL1 (TaMFT)-like gene in PRGR11 is 
co-located with M-QTN M8896 (PRGR11 on 3A). 
TaMFT-A1 is known for strong seed dormancy in 
spring and winter wheats through regulation of ABA 
and GA signal transduction (Nakamura et  al. 2011; 
Lei et al. 2013; Cao et al. 2016; Ahmad et al. 2019). 
Interestingly, the QTL QPHS.wsu-3A.1 for PHS was 
also reported in the same genomic region by Martinez 
et al. (2018), emphasizing the importance of the loci 
in PRGR11. (iii) Phs-A1 is a gene for PHS tolerance 
and is mapped close to the M-QTN M10478 for SS 
(PRGR14 on 4A) (Flintham 2000; Imtiaz et al. 2008; 
Ogbonnaya et  al. 2008; Torada et  al. 2008, 2016; 
Mares and Mrva 2014; Barrero et  al. 2015; Kumar 
et  al. 2015; Shorinola et  al. 2016, 2017). Barrero 
et  al. (2015) and Torada et  al. (2016) independently 
reported tandem duplicated Plasma Membrane genes, 
namely PM19-A1 and PM19-A2 as the leading candi-
dates for Phs-A1. Studies further confirmed that the 
Phs-A1 is also linked to another gene, mitogen-acti-
vated protein kinase kinase 3 (TaMKK3-A) on 4AL. 
(iv) TaVP1 gene is associated with M-QTN M1459 
and with SS (PRGR13 on 3D) (Bailey et  al. 2019; 
Dale et al. 2017). (v) Tamyb10 gene is located close 
to M-QTN (M381) for FN (PRGR12 on 3B) at a dis-
tance of 0.4  Mb. Previously, Tamyb10 transcription 
factor each, which expresses in developing grains, 
were reported to be located in the regions of three 
R loci (Himi and Noda 2005). Later, the Tamyb10-
D was shown to be associated with GC and PHST 
in wheat, and thus was recommended for selecting 
white-grained PHS tolerant wheat cultivars (Lang 
et al. 2021).

Epistatic QTNs

Epistatic QTNs (E-QTNs) representing 15 pairs of 
first order digenic epistatic interactions were also 
identified in the present study. Five of these inter-
actions also had a pleiotropic effect on FN and GC. 
However, the variation explained by M-QTNs seems 
to be more important than that due to epistatic 

interactions for PHS tolerance. Epistatic interactions 
in wheat using GWAS have also been reported for a 
number of traits, including flowering time (Reif et al. 
2011; Langer et  al. 2014), stem rust resistance (Yu 
et  al. 2011), agronomic traits (Sehgal et  al. 2017), 
micronutrients (Kumar et  al. 2018), yield related 
traits (Jaiswal et  al. 2016; Malik et  al. 2021), nitro-
gen use efficiency (NUE) (Ranjan et al. 2021; Singh 
et  al. 2023), and seed longevity (Arif et  al. 2022). 
Examples of the application of epistatic interactions 
in MAS are not available, but the information on epi-
static interactions is important for an understanding 
of the genetic architecture of the traits such as PHS 
that are relevant for wheat improvement. Optimisti-
cally, epistatic QTNs will also be utilized in MAS and 
GS in the future.

Prioritization of QTNs and validation using KASP 
assay for MAS

Based on the results of the present study, we prior-
itized the following two sets of M-QTNs (Table 4): (i) 
Twelve novel M-QTNs, which were not co-localized 
with known M-QTNs, and (ii) Eight M-QTNs, which 
were detected by all three models of GWAS and in 
at least two environments, explaining 5.9% to 8.4% 
phenotypic variation (R2) (Table  4). Both these sets 
of M-QTNs deserve further discussion. Twelve novel 
and eight co-localized M-QTNs (see above) that were 
treated as definitive and stable are good candidates 
for MAS (Tables 4a, b). Seven of these 20 M-QTNs 
were multi-trait QTNs and can be used for simulta-
neous improvement of two of the three PHS-related 
traits.

The validation of the above prioritized M-QTNs 
using KASP assay before their use in MARS was 
largely unsuccessful, indicating the challenges associ-
ated with successful KASP genotyping in allo-hexa-
ploid wheat (Makhoul et  al. 2020). However, in the 
present study, the KASP marker for the gene TaPHS1 
for PHS tolerance (Wang  et al. 2020a), which is 
closely associated with a M-QTN (M8896) for GC on 
chromosome 3A, showed clear separation of two clus-
ters belonging to the alternative  alleles for PHS toler-
ance and susceptibility when used with accessions of 
the GWAS panel (Fig. 6). KASP assays for a variety 
of individual major genes have also been successful 
in wheat (Yu et  al. 2017; Singh et  al. 2019). There-
fore, we propose that in future studies, the KASP 
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assays may be developed for CGs closely associated 
with MTAs/QTNs rather than for MTAs/QTNs per se 
and the same may be validated in multiple bi-parental 
populations because no single mapping population is 
expected to segregate for all the MTAs/QTNs identi-
fied through GWAS.

CGs for PHS‑related traits

All 176 CGs reported during the present study have 
a functional role in controlling various molecu-
lar mechanisms involved in determining seed dor-
mancy/PHS tolerance in wheat and other crop plants. 
These CGs are involved in the following functions, 
as revealed through gene ontology studies (i) ABA 
signaling, (ii) auxin signaling, (iii) GA biosynthesis, 
(iv) dormancy and germination, and (v) starch/carbo-
hydrate degradation. However, a high proportion of 
CGs (119/176) participate in ABA biosynthesis and 
signaling network and thus deserve some discussion 
to understand the molecular basis of PHS tolerance 
in wheat (Table  3). These identified CGs that par-
ticipate in encoding ABA have functions related to 
glucose signaling, metabolism, root growth, defec-
tive embryo development, catalytic activity, deg-
radation (or de-activation) of ABA-signaling, etc. 
(Zhou et al. 2017a, b; Park et al. 2018; Rikiishi et al. 
2021; Wang et al. 2020b). For example, the TraesC-
S2D02G041400 gene underlying M-QTN M10224 
(PRGR10) for SS belong to the LRR domain super-
family on chromosome 2D. This gene regulates ABA 
signal transduction in Arabidopsis thaliana, which 
has been confirmed by knock-out, resulting in ABA 
insensitivity during seed germination (Osakabe et al. 
2005). In general, seed dormancy and the germina-
tion (i.e., PHS tolerance) are believed to be antago-
nistically controlled by two major endogenous hor-
mones, namely ABA and GA in many plant species 
(Chen et al. 2020). ABA affects dormancy formation, 
while GA enhances germination (Hilhorst and Kars-
sen 1992, see Sohn et al. 2021 for review). Although, 
over the past decades, ABA and GA have been stud-
ied in some details, the regulatory mechanisms of the 
ratio of ABA and GA in controlling seed dormancy 
and germination remain to be fully resolved.

Surprisingly, the CGs underlying M-QTNs for FN 
have been shown to contain ubiquitin-like, Rad60/
SUMO-like domain and WD40 domain both of 
which are involved in positive/negative regulation of 

ABA signaling during seed germination (Zheng et al. 
2012; Wang  et al. 2020b). It is uncommon to find 
ubiquitin-related genes in the control of dormancy 
or PHS in wheat. Recently, He et al. (2021) reported 
TraesCS3D01G466100 as a novel PHS tolerance CG 
important for seed dormancy. It is proposed that the 
gene may have a crucial role in the action of ubiq-
uitin ligase enzymes 3 (E3), which could contribute 
to distinct PHS tolerance phenotypes. These find-
ings indicate that control of PHS or seed dormancy 
is genetically complex and additional detailed studies 
are needed to confirm the real function of these CGs 
in PHS tolerance.

Genomic prediction for SS, FN, and GC

The GP accuracies using three models were found to 
range from 0.41 to 0.55. These results are compara-
ble to the results of several other studies on PHS in 
wheat (Heffner et  al. 2011; Moore et  al. 2017). The 
highest prediction accuracy ranging from 0.49 to 0.62 
was reported by Moore et al. (2017). The GP accura-
cies for PHST reported in this study and earlier stud-
ies were within the range for those reported for grain 
yield, which ranged from 0.37 to 0.45 in a recent study 
(Juliana et al. 2021) and from 0.62 to 0.65 in an ear-
lier study (Basnet et al. 2018). In contrast to the pre-
sent study, multivariate models have also been used 
and shown promise over the single trait prediction 
accuracy models (for reviews see Montesinos-López 
et al. 2021; Gill et al. 2021; Shahi et al. 2022). Not-
withstanding the above, differences in the assumptions 
and algorithms concerning the variances of complex 
traits, the marker density, population size, trait archi-
tecture, heritability, relatedness between testing and 
training population, and selection intensity together 
affect the accuracies of GP (Wang et  al. 2018; Mer-
rick et al. 2022a, b; for a review see Budhlakoti et al. 
2022) in both a variety of parametric models (rrBLUP, 
GBLUP, LASSO, Bayes A, Bayes B, and Bayesian 
LASSO) and nonparametric models (RKHS, neural 
networks and random forests) that have been used 
for GP (for a review see Shahi et al. 2022). However, 
it has been argued that with GP accuracies > 0.50, 
the GS allows maximum annual genetic gains com-
pared to other breeding methods (Longin et al. 2015), 
although GS is still in a transition phase and is being 
tested to find out its utility in wheat breeding.
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GWAS and GP have been sparingly used together 
for the same trait in a crop (Odilbekov et  al. 2019; 
Kibe et  al. 2020; Sandhu et  al. 2021a; Alemu et  al. 
2021). It needs to be emphasized, however, that 
a joint study of GWAS and GP will be useful, only 
when the future GS program will utilize a training 
population selected from the GWAS panel used for 
calculation of GP. The breeding population should 
also be relevant as recommended for GS.

We may also like to examine the merits of the three 
models that were used for GP. In this study, the model 
rrBLUP has been shown to be superior in predicting SS 
and FN while Bayes B performed better for GC; this 
is partly due to different genetic architecture of each 
component trait (Merrick et  al. 2022a) and suggests 
that different models may need to be used, depending 
upon the crop, the trait, and the heritability of the trait 
involved, as done in a recent study (Kibe et al. 2020).

The model rrBLUP assumes that all markers con-
tribute to the trait, have a random effect with common 
variance and thus reduces the effect of all markers 
equally toward zero, which is true for the polygenic 
traits such as SS and FN in our study (Endelman 2011; 
Sandhu et  al. 2022b). Furthermore, Bayes B uses a 
selection operator based on an assumption that few 
loci contribute to the traits and remaining markers 
have a zero effect. Bayes B also uses a Markov Chain 
Monte Carlo to estimate the effect of markers and thus 
are computationally expensive, whereas rrBLUP uses 
a ridge regression coefficient to estimate the markers 
effect and is faster. The rrBLUP is mostly the pre-
ferred model in wheat breeding programs in addition to 
GBLUP (Pérez and de los Campos 2014). More infor-
mation about the working of these models is given in 
Sandhu et al. (2022a) and Merrick et al. (2022a).

Conclusions

A large number of M-QTNs and E-QTNs for SS, 
FN, and GC were identified during the present study, 
suggesting the polygenic nature and role of epistasis 
in controlling PHS tolerance in wheat. The number 
of QTNs reported by the three GWAS models also 
differed, suggesting differences in their efficiencies. 
Some of the QTNs detected during the present study 
were mapped together with earlier reported loci and 
cloned genes in 26 PRGRs, each genomic region 
being 5Mbp long. These observations validated our 

results. A sizable frequency of QTNs were novel 
and make a good source for future studies. A set of 
definitive and stable QTNs has been proposed for 
use in MARS for the improvement of PHS tolerance 
in wheat; however, validation of these QTNs using 
KASP assay require further efforts in future stud-
ies. Validated KASP marker for TaPHS1 gene in the 
present study may be utilized in breeding programs 
aimed at improving PHS tolerance in wheat. GP 
accuracies (0.41–0.55) for the three traits estimated 
using three different models suggested that GP can 
be used for planning a GS program for improvement 
of PHS tolerance. Such a GS program will have to 
be based on a training population derived from the 
GWAS panel used in the present study, and a related 
breeding population. Further refinement in GP mod-
els may also allow improvement in GP accuracy 
so that GS will be routinely used in due course of 
time. A set of CG underlying M-QTNs were also 
identified, which broadly suggested the role of ABA 
in PHS tolerance. These CGs may be examined in 
detail in the future studies. In recent years, empha-
sis is also being laid on post-GWAS, where available 
statistics from GWAS is used for extracting further 
information (Gupta et al. 2019).
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