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Abstract  The genetic base of soybean culti-
vars (Glycine max (L.) Merr.) has been narrowed 
through selective domestication and specific breed-
ing improvement, similar to other crops. This presents 
challenges in breeding new cultivars with improved 
yield and quality, reduced adaptability to climate 
change, and increased susceptibility to diseases. On 
the other hand, the vast collection of soybean germ-
plasms offers a potential source of genetic variations 
to address those challenges, but it has yet to be fully 
leveraged. In recent decades, rapidly improved high-
throughput genotyping technologies have accelerated 
the harness of elite variations in soybean germplasm 
and provided the important information for solving 
the problem of a narrowed genetic base in breeding. 

In this review, we will overview the situation of main-
tenance and utilization of soybean germplasms, vari-
ous solutions provided for different needs in terms 
of the number of molecular markers, and the omics-
based high-throughput strategies that have been used 
or can be used to identify elite alleles. We will also 
provide an overall genetic information generated from 
soybean germplasms in yield, quality traits, and pest 
resistance for molecular breeding.

Keywords  Soybean germplasm · Core collection · 
Gene mapping · Omics · Elite allele · Molecular 
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Introduction

Crop domestication is an expansive process that 
occurs in four stages including management, purpose-
ful cultivation, geographic expansion of the domesti-
cate, and deliberate breeding (Gaut et al. 2018). There 
are three evolutionary types related to domestication 
including the wild relatives of crop species, local 
domesticates called landraces, and modern varieties, 
collectively called the crop germplasms. Over the 
course of around 10,000 years of artificial and natural 
selection, these germplasms have stored rich biodiver-
sity, which is fundamental in modern crop breeding 
(Jeong et al. 2019). However, only a small fraction of 
the available biodiversity has been utilized. For exam-
ple, less than 1% of soybean germplasms conserved 
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had been used for breeding (Qiu et  al. 2013b). This 
means that only a few improved cultivars coming 
from a few excellent parents have been planted, which 
has resulted in a narrow genetic basis, reduced diver-
sity, and enhanced consistency (Schoener and Fehr 
1979). The limited biodiversity has slowed the pro-
gress in conventional crop breeding and has increased 
the risk of disease and pest outbreak. Abundant germ-
plasm resources are the prerequisite for continuously 
developing new varieties with high yield and quality 
to ensure food security.

It is time to explore and use new variations con-
served in the gene banks for agriculture as genotyping 
approaches, such as SNPs array and re-sequencing, 
are rapidly developing. Biodiversity in germplasms 
could be explored by starting with genotyping rep-
resentative germplasm populations followed by phe-
notyping them and testing their regional differences. 
Then, the genetic constitution of the germplasm for 
both whole genome and individual traits, as well as 
the corresponding markers for the detected genes/
alleles with their regional differentiation, can be ana-
lyzed. Finally, the identified elite accessions, along 
with phenotypic and genetic knowledge, can fuel 
advances in improving cultivars by breeding pro-
grams to meet the food and nutritional demand of the 
growing population of the world (Susan et al. 2013). 
Soybean is a major legume crop providing a sig-
nificant amount of edible oil and protein for human 
and animal feed around the world. In this article, we 
review the conservation of soybean germplasm and 
the situation of the mining the favorable variations in 
this wealth of genetic resources.

The conservation of soybean germplasms

The genus Glycine is composed of two subgen-
era: Glycine and Soja. Subgenus Glycine contains 
around 30 perennial species which are mainly origi-
nated from Australia and distributed there (Chung 
and Singh 2008). Tetraploid species are distributed 
as far north as southeast coast of China. The subge-
nus Soja contains annual wild (Glycine soja Sieb. & 
Zucc.) and cultivated soybean Glycine max (L.) Merr. 
G. soja is native to East Asia and mainly distributed 
in China, Korea, Japan, and Russia (Sherman-Broyles 
et al. 2014). G. max originated from central China and 
domesticated from its ancestor annual wild soybean 

G. soja about 6000 to 9000 years ago (Zhuang et al. 
2022; Li et al. 2023b). Soybean from China was first 
introduced into neighboring Korea during the Chi-
nese Warring States Period and then spread from 
Korea to Japan. Soybean was known in Europe after 
the eighteenth century, and was introduced to the 
Netherlands in 1737, and then planted in France and 
the UK between 1739 and 1790. The earliest soy-
bean planting in the USA dates back to 1765. Sam-
uel Bowen, a seaman from the East India Company, 
brought Chinese soybean back to Savannah, Georgia. 
The first introduction of soybean into South America 
was to Argentina in 1882 (Chang 1989; Fig. 1). Since 
then, soybeans have been gradually planted almost 
all over the world and have acted as one of the most 
important legume crops due to their richness in pro-
tein and oil.

Collection and conservation of soybean germplasm

The purpose of crop germplasm conservation is to 
preserve them before losing the existing genetic vari-
ability due to the widespread use of modern cultivars. 
According to rough statistics, there are more than 
200 thousand soybean accessions conserved in more 
than 70 countries worldwide, but only 30% of them 
could be unique. As the origin and domestication 
site, China has rich soybean germplasm. The germ-
plasm collection was initialized in early 20th country 
(Qiu et al. 2011). In 1913, germplasm from northeast 
China was collected and evaluated by researchers in 
Gongzhuling. In the meantime, the southern China 
germplasm was also collected by researchers in Nan-
jing Agricultural University (former Jinling Univer-
sity). Since 1949, Chinese government has organized 
experts to conduct three national surveys of agricul-
tural collections during 1956 ~ 1957, 1979 ~ 1983, 
and 2015 ~ present, respectively (http://​www.​gov.​cn/​
zheng​ce/​zheng​ceku/​2021-​03/​25/​conte​nt_​55954​69.​
htm). Until now, around 42 thousand soybean acces-
sions, including ~ 10 thousand G. soja and ~ 32 thou-
sand G. max, were collected in China (Wang 1982; 
Chang and Sun 1991; Chang et  al. 1996; Qiu et  al. 
2013a; Guo et al. 2022). The Chinese soybean germ-
plasm collection has played a key role, not only in the 
domestic soybean breeding, but also in world soybean 
breeding and production such as cultivar develop-
ment in the USA, Brazil, Argentina, Korea, Japan, 
Europe, and Australia (Qiu et al. 2011). For example, 

http://www.gov.cn/zhengce/zhengceku/2021-03/25/content_5595469.htm
http://www.gov.cn/zhengce/zhengceku/2021-03/25/content_5595469.htm
http://www.gov.cn/zhengce/zhengceku/2021-03/25/content_5595469.htm
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it is estimated that the northern US cultivars contain 
50% nuclear DNA and 83% cytoplasmic DNA from 
China ancestors (Gizlice et  al. 1994). In addition, 
3.6 thousand cultivated soybeans were introduced 
from abroad and conserved in Chinese National Soy-
bean GeneBank (CNSGB). Until now, China has 
conserved the largest number (~ 46,000) of soybean 
germplasm in the world.

The USDA Soybean Collection was established in 
1895 but formally started to keep records in 1898. It 
was not until 1949 that the government realized the 
importance of conservation and utilization of the 
important crop germplasm, introduced soybean germ-
plasm from China, carefully conserved since then 
(Nelson 2011). The USA conserved the third largest 
soybean germplasm, which includes approximately 
1.2 thousand G. soja and 21 thousand G. max acces-
sions, fall behind Korea with around 26 thousand 
accessions. The conservation situation of soybean 
germplasm in other countries is shown in Table 1.

Construction of soybean core collection

The collection and conservation of crop germ-
plasm resources to maintain genetic diversity have 

long been an important priority worldwide. How-
ever, as the size of collections increases, the cost 
of conservation and evaluation has risen (Wang 
et  al. 2006). To deal with this challenge, Frankel 
(1984) first proposed sampling the collections to 
yield a manageable sample called “core collec-
tion.” A core collection is a subset of accessions 
that represents the genetic diversity of a species and 
its relatives. Before 2000, the construction of core 
germplasm worldwide mainly depended on phe-
notypic data in the field, such as plant height, leaf 
size, maturity, and disease resistance performance. 
Because different countries and regions paid atten-
tion to different traits, there were great difficulties 
in the consistency, comparability, and compatibil-
ity of collected data. The rapid development and 
application of DNA molecular marker technology 
promoted the exploration of technology and meth-
ods to establish core collections for major crops, 
including wheat, rice, maize, and soybean (Li et al. 
2004; Balfourier et al. 2007; Hao et al. 2008; Zhang 
et  al. 2011). Based on the DNA molecular finger-
print data of accessions, through cluster analysis, 
representative accessions are selected for core col-
lections, which has been widely accepted by the 

Fig. 1   The transportation route of soybean. Information from Chang (1989). The yellow and green arrows on the map represent 
direct or indirect transportation from China separately, with the occurrence time marked near the respective country
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academic community as a popular strategy to estab-
lish a core collection. In China, in order to acceler-
ate the evaluation and utilization of the germplasm, 
the projects of “Establishment of soybean core col-
lection” (1998–2003) and “Gene diversity of mini 
core collection in soybean” (2004–2008) were car-
ried out by the continuous support from National 

Basic Research Program (973 project). Taking a 
total of 23,587 soybean accessions as full collec-
tion (FC), serial core collections including primary 
core, core, and mini-core collections had been 
constructed (Qiu et  al. 2003, 2009, 2011, 2013b; 
Wang et al. 2006; Fig. 2). The primary core collec-
tion consisting of 2794 cultivars (11.8% of FC) was 

Table 1   The conservation of soybean germplasm resources

Country Institution Accessions 
(G. max/G. 
soja)

Ref. or website

China Chinese National Soybean GeneBank (CNSGB) 36,000/9862 Wang (1982), Chang and Sun (1991), Chang 
et al. (1996), Qiu et al. (2013a), Guo et al. 
(2022)

USA USDA Soybean Germplasm Collection 20,224/1179 https://​npgsw​eb.​ars-​grin.​gov/​gring​lobal/​search
Korea National Agrobiodiversity Center (NAC)  ~ 26,000/NA Kim et al. (2022)
Japan National Agricuture and Food Research Organization 

(NARO)
8523/2346 https://​www.​gene.​affrc.​go.​jp/

Ukraine Institute of Agroecology and Biotechnology 7000/NA Boerma and Specht (2004)
Russia N. I. Vavilov Research Institute of Plant Industry 6126/310 Boerma and Specht (2004)
Brazil Centro Nacional de Pesquisa De Recursos Genéticos e 

Biotec. (CENARGEN)
4693/NA Boerma and Specht (2004)

India India National Genebank (NGB) 3702/NA Babu et al. (2018)
Germany Genebank, Institute for Plant Genetics and Crop Plant 

Res. (IPK)
3063/2 Boerma and Specht (2004)

France G. I. E. Amelioration Fourragere 1582/NA Boerma and Specht (2004)
Indonesia Sukamandi Research Institute for Food Crops (SURIF) 2194/4 Boerma and Specht (2004)
Canada Plant Gene Resources of Canada (PGRC) 1031/NA Fu et al. (2021)

Fig. 2   The pipeline of the development and utilization of soybean core collections in China. Information from Qiu et  al. (2009, 
2013b)

https://npgsweb.ars-grin.gov/gringlobal/search
https://www.gene.affrc.go.jp/
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constructed using single sequence repeats (SSR) 
molecular markers and phenotypic data analysis, 
which account for 100% and 73.6% of phenotypic 
and genetic diversity separately. This primary core 
collection represents the achievement of soybean 
core research, encompassing theory and applica-
tion, with an emphasis on evaluating phenotype and 
gene diversity. Based on the core collection, a cul-
tivated soybean mini-core collection (MCC, 1% of 
FC) was further constructed with 94.5% and 63.5% 
representativeness of the overall resource phenotype 
and molecular level, respectively. These applied 
core collections could fulfill the needs of adaptation 
to different eco-regions and broadening the genetic 
base of germplasm for breeding programs. A suc-
cession of applied core collections has been con-
structed for different desirable traits. For resistance 
to soybean cyst nematode (SCN), Ma et  al. (2006) 
constructed a 28 accessions core collection from 
432 immune or highly resistant Chinese accessions. 
Using a GIS-assisted approach, Zhao et  al. (2004) 
constructed a phosphorus efficiency of soybean 
applied core collection. However, the sample size 
could increase suddenly if all the applied core col-
lections for each desirable trait are merged, which 
goes against the principle of the core collection. 
Thus, an integrated applied core collection (IACC) 
with cold, drought, salt tolerances, and resistances 
to SCN, SMV, high protein, and fat content has 
been developed (Guo et  al. 2014). Simultaneously, 
an annual Chinese wild soybean’s core collection 
was also developed (Zhao et  al. 2005). These core 
collections have played good leading roles in con-
structing core germplasm for other crops and pro-
moted the research of crop germplasm resources 
nationwide and even globally.

The construction of soybean core germplasm has 
also been carried out in other countries. Gizlice et al. 
(1994) identified twenty-eight ancestors and seven 
first progeny, which would be a useful core collection. 
Oliveira et  al. (2010) developed a core collection of 
1600 accessions from around 16,000 accessions in 
USDA Soybean germplasm collection using the mul-
tivariate proportional sampling strategy. Priolli et al. 
(2013) developed a 31 entries Brazilian core set from 
435 soybean cultivars. Kaga et  al. (2012) developed 
mini core collections from around 1600 accessions of 
NIAS in Japan. A core set of Korean landraces was 
developed from around 2800 accessions conserved 

in the National Genebank of Rural Development 
Administration (RDA-Genebank; Cho et al. 2008).

The evaluation of the genotypes of soybean 
germplasms

Genotyping is used to identify and track the genetic 
diversity for soybean germplasms. This polymor-
phism information could be used for identification, 
selection, and genetic basis dissection of traits that 
are desirable for specific growing conditions, end-
use applications, and addressing specific biotic and 
abiotic stresses. The knowledge enables the develop-
ment of new soybean varieties through breeding and 
genetic modification and broadens the genetic basis 
of current soybean-improved cultivars. There are var-
ious genotyping solutions available that can be cho-
sen based on the desired throughput and number of 
genomic molecular markers (Fig. 3A).

Genotyping strategies for different molecular markers

Two decades ago, molecular makers were developed 
as the main technique for genotyping via utilizing 
the DNA polymorphism, such as restriction fragment 

Fig. 3   The genic and multi-omics variation for genetic basis 
dissection of trait. A Different genotyping platforms or tech-
nologies. The y-axis represents number of molecular mark-
ers, and x-axis indicates the time applied in soybean studies. 
B Omics data and the revealed polymorphisms for association 
studies
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length polymorphism (RFLP), amplified fragment 
length polymorphism (AFLP), randomly amplified 
polymorphic DNA (RAPD), SSR, and single nucle-
otide polymorphism (SNP). SSR is the polymor-
phism of DNA length (Akkaya et  al. 1992) and one 
of the most widely markers used for linkage mapping 
(Cregan et al. 1999) and population study (Abe et al. 
2003) in soybean. Another important type of marker, 
SNPs, exists at a higher frequency and is more sta-
ble. It is widely used with different strategies (Hyten 
et  al. 2006, 2010; Shu et  al. 2011; Shi et  al. 2015), 
such as the kompetitive allele specific PCR (KASP) 
technology, which is cost-effective and can be applied 
in high-throughput systems.

In the last decade, tremendous progress has been 
achieved in genotyping methods, particularly in the 
development of high-throughput and cost-effective 
methods, such as SNP arrays and next-generation 
sequencing platforms. SNP arrays are a fast and effi-
cient way for researchers to genotype a large number 
of samples, and they are usually less expensive than 
other sequencing-based genotyping methods. Soy-
bean SNP arrays (Song et al. 2013; Lee et al. 2015; 
Wang et al. 2016; Li et al. 2022d; Sun et al. 2022; Ma 
et al. 2023) have been designed with a range of sizes, 
from 20 to 618  K, to meet different research goals. 
Song et al. (2013) developed an array of 50,000 SNPs 
with a high minor allele frequency among landraces, 
elite cultivars, and wild soybeans. They used this 
array to identify genetic regions associated with the 
signature of domestication and selection during soy-
bean breeding. Lee et  al. (2015) selected 180,961 
SNPs for creation from millions of resequencing 
SNPs. This array provided a higher quality of geno-
typing for diversity analyses, linkage mapping, and 
association studies. Wang et al. (2016) constructed a 
355,595 SNPs array for population genetic analysis to 
track the evolutionary history and identify the genetic 
regions for improvement. Sun et  al. (2022) brought 
out a functional SNPs array aimed for cost-effective 
genome selection that included 158,959 SNPs cover-
ing 91% of soybean genes and known QTLs of agron-
omy traits. Li et al. (2022d) and Ma et al. (2023) both 
designed array with more than 600  K SNPs, which 
has a high-resolution for germplasm studies and 
breeding programs.

Those solid chip-based SNPs arrays have the 
advantage of being able to be customized to focus 
on specific regions of interest. This, however, might 

potentially be a drawback because it necessitates 
prior information and prevents the genotyping of 
novel SNPs. A more flexible liquid SNP array, a tech-
nique genotyping by target sequencing, was applied 
in soybean (Liu et al. 2022). This technique allows for 
easy updating of target SNPs and is more cost-effec-
tive than solid chip-based SNP arrays. In addition, 
genotyping by sequencing (GBS) is another approach 
that uses restriction enzymes to simplify the genome 
and requires no prior knowledge (Elshire et al. 2011; 
Sonah et al. 2013). Compared to re-sequencing, GBS 
is a much less expensive genotyping solution for spe-
cies with a large genome size. GBS was widely used 
for genetic dissection of agronomy traits (Sonah et al. 
2015), germplasm screening (Lemay et al. 2019), and 
geographic adaptation (Li et al. 2020b) in soybean.

Genome re-sequencing is the most comprehen-
sive method for genome-wide genotyping, and it 
allows for the detection of a wider range of genetic 
variations, like insertion and deletion (InDel), pres-
ence-absence variation (PAV), copy number varia-
tion (CNV), and gene fusion. Lam et al. (2010) first 
demonstrated in-depth understandings of variety and 
selection of soybean from re-sequencing of 31 wild 
soybean and cultivars. After that, hundreds to thou-
sands soybean lines were genotyped by re-sequenc-
ing (Zhou et al. 2015; Liu et al. 2020b; Torkamaneh 
et  al. 2021; Bayer et  al. 2022; Yang et  al. 2022; Li 
et  al. 2023b), of which gave higher resolution on 
domestication, improvement, adaptation, and genetic 
basis dissection of traits. Millions of SNPs and short 
InDels were typically identified and genotyped in 
those re-sequencing studies. Liu et  al. (2020b) and 
Li et  al. (2023b) both genotyped over 2000 soybean 
accessions, providing better insight into diversity, 
genetic basis of agronomic traits, and domestication 
and improvement of soybean. Liu et al. (2020b) iden-
tified large structural variations and linked them with 
gene expressions and traits. Li et al. (2023b) proposed 
soybean evolutionary route with four geographic 
paths, expansion of annual wild soybean G. soja from 
Southern China, domestication in Central China, 
expansion of landrace, and local breeding.

Development of soybean pan‑genome

In 2010, the first soybean reference genome was made 
public (Schmutz et al. 2010). A 1.1-gigabase chromo-
some-scale draft sequence assembly for the Williams 
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82, a northern USA improved cultivar, was built using 
a combination of whole genome shotgun sequencing 
and BAC-by-BAC sequencing. Long reads sequenc-
ing technology and algorithms were becoming mature 
and more accurate in last 5 years, of which made the 
chromosome level assembly with a reasonable cost 
on sequencing, labors, and computing resource (Sohn 
and Nam 2018). Soybean-improved cultivars from 
represent growing areas were assembled: Enrei from 
Japan (Shimomura et al. 2015), Zhonghuang 13 from 
China (Yang and Huang 2018; Shen et al. 2019), and 
Lee from southern USA (Valliyodan et  al. 2019). 
Wild relative of soybean cultivars was also assem-
bled: annual wild soybean PI 483,463 (Valliyodan 
et  al. 2019), W05 (Xie et  al. 2019), and a perennial 
wild soybean (Glycine latifolia) PI 559,298 (Liu et al. 
2018). Soybean pan-genome studies (Li et  al. 2014; 
Liu et al. 2020b; Torkamaneh et al. 2021; Bayer et al. 
2022) were reported to further investigate the diver-
sity of core genome and complete set of genes. Liu 
et  al. (2020b) combined the PacBio SMRT, Bio-
nano optical maps, Hi-C scaffolding, and Illumina 
next-generation sequencing error correction for de 
novo assembly of 26 soybean genomes and created a 
graph-based genome. Recently, the Telomere-to-Tel-
omere (T2T) reference chromosome or genome with 
completed sequence was achieved in human (Nurk 
et al. 2022) and plants (Song et al. 2021; Deng et al. 
2022; Wang et  al. 2022), but not in soybean yet. In 
the near future, a more comprehensive and complete 
reference genome will enable more accurate genotyp-
ing for soybean germplasm studies.

The identification of elite functional alleles 
in soybean germplasms

Strategies for gene mapping

The identification of elite genes and functional alleles 
is the foundation of crop improvement of yield and 
quality, crop development resistant to climate changes 
and stress tolerance, and the understanding of plant 
evolution and diversity. It is a critical area of study 
in the field that has benefitted from developments in 
genotyping technologies and reference genome, and 
considerably contributed to our understanding of 
genetics and genomics in soybean. Meanwhile, there 
are challenges and limitations for gene mapping that 

soybean is self-pollinating leading with a low recom-
bination rate and a slow LD decay (Zhou et al. 2015). 
There are two classical mapping approaches in soy-
bean: linkage mapping for the bi-parental genetic 
populations (Keim et al. 1990) and association study 
for diversity panels (Hao et al. 2012).

Linkage mapping is an analysis to the examina-
tion of Mendelian inheritance patterns between geno-
typed markers and phenotype to identify the location 
of causal genes for qualitative and quantitative traits. 
Bulked segregant analysis (BSA) (Michelmore et  al. 
1991) is a linkage mapping method used to rapidly 
identify molecular markers linked to the trait, which 
normally is qualitative. The next-generation sequenc-
ing (NGS) based BSA offers genome-wide fast gene 
mapping via high-density molecular markers. Mul-
tiple NGS-based BSA methods were developed in 
plants, such as SHOREmap in Arabidopsis (Schnee-
berger et  al. 2009) and MutMap in rice (Abe et  al. 
2012). A method named BSR-Seq (Liu et al. 2012b) 
utilized the RNA-Seq, instead of genome re-sequenc-
ing, for genotyping that only focus on the genic region 
of genome and capture gene expression information. 
The NGS-based BSA methods were widely used for 
gene mapping in soybean traits, such as gnarled tri-
chome (Campbell et al. 2016), high sucrose fast neu-
tron (Dobbels et al. 2017), and cotyledon color (Song 
et  al. 2017). However, quantitative traits are more 
common, especially agronomy traits, in plants. Quan-
titative trait loci (QTLs) mapping was applied to iden-
tify the genetic basis of soybean flowering time (Orf 
et al. 1999), height (Zhang et al. 2004), yield (Yuan 
et al. 2002), quality (Reinprecht et al. 2006), drought 
tolerance (Specht et al. 2001), and disease resistance 
(Yuan et al. 2002).

Genome-wide association studies (GWAS) con-
duct association analysis between the variation 
of genetic markers and variation of phenotype on 
diversity panels composed of unrelated individuals, 
rather than bi-parental populations. A nested asso-
ciation panel named SoyNAM was built from cross-
ing between 40 important soybean varieties with the 
common hub parent, IA3023. GWASs using the gen-
otyped SoyNAM have been used to identify genetic 
variants associated with yield-related traits (Wen et al. 
2015), canopy coverage (Xavier et  al. 2017), resist-
ance to soybean cyst nematode (Cook et  al. 2014) 
and Phytophthora sojae (Scott et al. 2019), water use 
efficiency (Lopez et  al. 2019), and environmental 
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interactions (Jarquin et  al. 2018). Several important 
domestication genes have been identified in soybean 
through GWAS. These genes are involved in the regu-
lation of various traits related to soybean domestica-
tion, including flowering time (Li et al. 2020a; Dong 
et al. 2021), yield (Duan et al. 2022; Li et al. 2022a), 
quality (Gao et al. 2021; Goettel et al 2022), and other 
agronomy traits (Liu et al. 2020a).

Omics data facilitates gene mapping

Both linkage mapping and association study iden-
tify genetic regions surrounding dozens or hundreds 
of candidate genes, but the causal genes are often 
unknown, making it challenging and time-consuming 
to identify the functional gene underlying a trait. On 
the other hand, the identified loci from either linkage 
mapping or association studies only explain a propor-
tion of the total heritability of complex trait, of which 
is referred as “missing heritability” (Manolio et  al. 
2009). Meanwhile, omics data, including transcrip-
tomics (RNA), proteomics (protein), epigenomics 
(methylation), and metabolomics (metabolism), are 
producing using high-throughput and cost-effective 
cutting-edge technologies. These omics data can be 
used to identify functional genes or be integrated with 
GWAS to prioritize candidate genes (Fig. 3B).

Transcriptomics sequencing could provide not only 
genetic variation but more importantly, gene expres-
sion. Transcriptome-wide association studies (TWAS) 
were a method to study the association between gene 
expression and phenotype variation. The gene expres-
sion could either be integrated with GWAS as eQTLs 
(Gusev et  al. 2016; Li et  al. 2020c; Ma et  al. 2021) 
or used as measured expression independently (Lin 
et  al. 2017; Zheng et  al. 2020; Li et  al. 2021; Tang 
et al. 2021). Lin et al. (2017) developed the first plant 
TWAS method named eRD-GWAS performed asso-
ciation between the variation of the measured gene 
expression and phenotype variation. The genes iden-
tified by TWAS are complementary with loci reveal 
by GWAS in maize, of which further be confirmed 
in maize (Zheng et  al. 2020), Brassica napus (Tang 
et al. 2021) and Arabidopsis (Li et al. 2021). Li et al. 
(2021) reported that TWAS can reduce effects of slow 
linkage disequilibrium in soybean, which may make 
gene-level association mapping alliable in soybean. 
The gene co-expression networks were also used to 

identify genetic variation associated with soybean 
trait, such as seed development (Gao et al. 2018).

Proteome-wide association study (PWAS) links the 
gene proteome variation and phenotype variation. To 
our knowledge, PWAS was reported in human studies 
but not in plant yet. There were two PWAS strategies: 
the first one is to predict protein function alteration 
via DNA sequence, which hypothesized that causal 
variants in coding regions of certain gene affect phe-
notypes by altering the biochemical functions of the 
genes’ protein products (Brandes et  al. 2020); the 
second one is to measure the abundance of genes’ 
protein products genome-widely, and integrated with 
independent GWAS results (Wingo et  al. 2021). 
Besides that, epigenomics (Huan et  al. 2019) and 
metabolomics (Lord et  al. 2021) were also reported 
to be used to integrate with GWAS results to identify 
DNA methylations or metabolites involved in human 
diseases via Mendelian randomization analysis. The 
integration, interpretation, and application of omics 
data in soybean research has the potential to accel-
erate our understanding of the genetic basis of traits 
and offers promising opportunities for both genetic 
research and breeding programs.

Soybean elite alleles identified

Adaption related  Soybean is a classic short-day 
crop that is particularly photoperiod sensitive. Indi-
vidual varieties or germplasm resources are gener-
ally only suitable for planting in restricted geographic 
areas with small latitude spans. The genetic dissec-
tion study of flowering/maturity time could give us 
insights into the regulation of geographic adapta-
tion and broaden the adaption of varieties. Currently, 
hundreds of loci associated with flowering/maturity 
time have been identified through linkage mapping 
and association studies and are available in Soy-
Base (https://​www.​soyba​se.​org/; Grant et  al. 2010). 
Functional gene of some major QTLs was cloned, 
including E1 to E4, E9, J, Tof5, Tof11, GmRPP3b, 
GmGBP1, and GmCDPK38 (Xia et  al. 2012; 
Tsubokura et  al. 2013; Zhao et  al. 2016, 2018; Lu 
et al. 2017a, 2020; Li et al. 2020a, 2022c; Dong et al. 
2022). Three distinct e1 mutant alleles, comprising 
a non-synonymous SNP, a one-base insertion, and a 
deletion of the entire gene, were identified, all result-
ing in an earlier flowering time (Xia et  al. 2012). A 
major mutant e2 allele (Tsubokura et al. 2014) caused 

https://www.soybase.org/
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by a stop-gained SNP also induced earlier flowering 
time. Similarly, the natural e3, e4, tof11, gmprr3b, 
and gmcdpk38 mutant alleles resulted in earlier flow-
ering/maturity time. Conversely, the e9, j, tof5, and 
gmgbp1 mutant alleles induced later flowering/matu-
rity time, which enhanced adaptation in higher lati-
tudes. The inferred flowering regulatory network was 
reviewed recently (Hou et al. 2022; Du et al. 2023). 
Since flowering/maturity time is the key factor for 
geographic adaption, some of those identified flower-
ing/maturity time loci undergone selection either dur-
ing domestication or improvement (Li et  al. 2020a; 
Lu et  al. 2020). The elite alleles of some of those 
loci in germplasms were already effectively utilized 
to expand the suitable growing areas for soybeans in 
breeding programs. The nature mutant alleles of J 
cause long juvenile trait, and breed soybean varieties 
adapt from temperate to tropic environment, such as 
Brezil (Dong et al. 2021). The mutant alleles of pho-
toperiod sensitivity genes were selected by breeders 
in the high latitude (Jiang et al. 2014; Lu et al. 2020).

Yield related  High yield is always the ultimately 
goal of soybean breeding. Plant height, seed size, and 
seed weight are all important factors in determining 
the final yield. Dt1 (Liu et  al. 2010) and Dt2 (Ping 
et al. 2014; Zhang et al. 2019a) are two major genes 
regulating the soybean stem growth habit, which were 
categorized into three types: determinate (dt1dt1), 
semi-determinate (Dt1Dt1/Dt2Dt2) and indeter-
minate (Dt1Dt1/dt2dt2). dt1 allele is the dominant 
allele of Dt1 locus and has an epistatic effect on Dt2 
(Ping et  al. 2014). Benefiting from the development 
of genotyping and gene editing, the seed size-related 
genes were mapped and functionally proved: PP2C 
(Lu et  al. 2017b), GmKIX8-1 (Nguyen et  al. 2021), 
POWR1 (Goettel et  al. 2022), and GmGA3ox1 (Hu 
et al. 2022). The PP2C allele from wild soybean was 
found that could increase seed size (Lu et al. 2017b). 
gmkix8-1 mutant alleles increase seed size (Nguyen 
et  al. 2021). powr1 allele with transposable element 
insertion is the major allele in cultivated soybean 
and increased the seed weight (Goettel et  al. 2022). 
gmga3ox1 mutant alleles have lower seed weight but 
increased seed number (Hu et  al. 2022). The cloned 
seed weight-regulated genes included GmSWEET10a 
(Wang et al. 2020b), GmSSS1 (Zhu et al. 2022), ST1 
(Li et  al. 2022a), and GmST05 (Duan et  al. 2022). 
The wild soybean dominant alleles of GmSWEET10a 

have a decreased frequency in cultivars, while the 
cultivar alleles display varying degrees of increased 
seed weight and oil content (Wang et al. 2020b). The 
natural gmsss1 mutant allele is induced by a non-syn-
onymous SNP and has an increased seed weight (Zhu 
et al. 2022). ST1 influences seed weight and exhibits 
high levels of surrounding polymorphisms, including 
SNPs and InDels, resulting in a wide range of seed 
weight variation (Li et al. 2022a). Two major alleles 
of GmST05 were identified, displaying a geographi-
cal distribution and expression levels that positively 
correlated with seed weight. GmST05 also affects 
protein and oil content, with the low-protein allele 
being selected during domestication and improve-
ment (Duan et al. 2022).

Seed quality related  Soybean is a vital legumi-
nous crop that plays a crucial role in providing a 
global source of vegetable protein and oil. The qual-
ity of the seed, specifically in terms of oil and pro-
tein content, is a key trait to consider. GmOLEO1 
(Zhang et  al. 2019b) and GmSWEET39 (Miao et  al. 
2020) both regulate seed oil content. The alleles con-
tributing to higher oil were both artificially selected 
during the domestications. And alleles increased oil 
negatively impacts on protein content. Pleiotropic 
genes GmST05 (Duan et al. 2022) and GmSWEET10a 
(Wang et  al. 2020b) not only contribute the seed 
size, but also the oil and protein contents. POWR1 
(Goettel et al. 2022) also regulated seed quality as a 
pleiotropic gene that its mutant had increased oil con-
tent and seed weight but decreased protein content. 
Besides that, GmCCD4 (Gao et  al. 2021) regulates 
seed carotenoid that mutant alleles resulted in increas-
ing of carotenoid content. GmZFP7 (Feng et al. 2022) 
and GmMYB29 (Chu et al. 2017) involve in isoflavone 
biosynthesis regulation of soybean. Variations within 
the promoters of GmZFP7 were found to affect iso-
flavone accumulation, which is positively correlated 
with the expression of GmZFP7 (Feng et al. 2022). A 
single exon SNP in GmMYB29 accounts for 14.91% 
of the variation in total isoflavone content (Chu et al. 
2017).

Biotic and abiotic stress related  The resistance 
to biotic and abiotic stress is an important factor to 
ensure yield and quality of final production. SCN, as 
a represented biotic stress, is a pathogen that causes 
worldwide significant damage to soybean crops with 
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reducing growth and yield. SCN is difficult to control, 
as the nematode is able to survive in the soil for long 
periods of time. The most effective method of control 
is through the use of resistant soybean varieties. Two 
major SCN resistance QTLs Rhg1 and Rhg4 were 
mapped (Concibido et  al. 2004) and cloned (Cook 
et al. 2012; Liu et al. 2012a). Copy number variation 
of Rhg1 is positively correlated with the SCN resist-
ance (Cook et  al. 2012). Two naturally occurring 
SNPs were identified that alter the function of the 
Rhg4 enzyme, resulting in a change from resistance 
to susceptibility (Liu et  al. 2012a). Developing the 
ability of varieties to tolerate drought and salt condi-
tions is crucial in addressing the challenges posed by 
climate change. Pd1-Ps-P1 feedback loop was discov-
ered to regulate pubescence formation affecting insect 
and drought tolerance (Liu et  al. 2020a). GmSALT3 
affects soybean salt tolerance with five haplotypes, 
and four haplotypes have salt-sensitive phenotype, 
while the salt tolerance haplotype widely distributes 
in saline areas (Guan et al. 2014; Qu et al. 2021).

With the rapid development in high-throughput 
phenotyping platforms (Yang et  al. 2020; Jin et  al. 
2021), it is possible to phenotype time-series, instead 
of single-point, data of trait in larger population. After 
that, the time-series data could introduce the time 
dimension to reveal new trait and increase the statistic 
power for the genetic dissection of traits (Li and Sil-
lanpaa 2015). For example, a novel trait, speed of can-
opy closure, was inferred from the time-series canopy 
coverage in soybean (Li et  al. 2023a). GWAS were 
combined with the time-series data to identify the elite 
alleles of plant height (Chang et  al. 2018), canopy 
coverage (Xavier et al. 2018; Li et al. 2023a) with the 
time-series data in soybean. Li et al. (2023a) identified 
35 genetic loci associated with canopy coverage that 
displayed dynamic regulation, which were grouped 
into three categories based on their function in “Ear-
lier,” “Later,” or “All” of soybean developmental 
stages. And geographically favored alleles from two 
different canopy coverage-associated loci were identi-
fied with potential applications for breeding programs.

Conclusion

Soybean germplasm studies were dramatically acceler-
ated with developing genotyping technologies in the last 

decades; however, there were both opportunities and 
challenges to obtain genetic basis of desired traits from 
germplasms for future genetic research and breeding. 
The “missing heritability” was a normal phenomenon 
in genetic basis dissection of complex quantitative traits, 
while limited number of major QTLs were repeatedly 
be identified from independent studies. “Missing herit-
ability” was partially induced by the rare alleles, popula-
tion size, and the power of statistic model. The cost of 
genotyping has been continuously decreasing with the 
development of sequencing platforms, while the quality 
of reference genomes and pan-genomes is improving. 
The identification of genetic variation will be more cost-
effectively and accurate. High-throughput phenotyping 
(HTP) methods were widely developed for phenotyp-
ing of soybeans and are expected to be improved with 
advances in sensors, image-processing algorithms, and 
deep learning (Wang et al. 2020a; Watt et al. 2020; Jin 
et al. 2021). However, to our knowledge, there have been 
a limited number of studies (Xavier et al. 2017; Bai et al. 
2022; Li et al. 2023a) that have applied HTP platforms 
to identify elite materials and alleles in diverse popula-
tions. These platforms will enable large population sizes 
in greenhouses or fields, which will further observe 
higher phenotype diversity. The combination of high-
throughput genotyping and phenotyping offers more 
possibilities with increased population size together with 
more rare alleles. On the other hand, the statistic models 
(Liu et al. 2016; Huang et al. 2019; Li et al. 2022b) were 
developed to addressing the challenges in GWAS: (1) 
the computational efficiency was increased by address-
ing increased markers number and samples size; (2) sta-
tistic power was increased to explained more phenotype 
variation; (3) the gene by environment interaction was 
estimated to handle multiple environment data. Those 
advanced achievements on genotyping, phenotyping, 
and statistics will enable us to identify more elite materi-
als and QTLs on desired traits.

Identifying the causal genes within QTLs (quanti-
tative trait loci) is crucial for understanding the genes 
and regulatory mechanisms that are responsible for 
desirable traits such as high yield, disease resistance, 
and drought tolerance. Those information can aid in 
more precise breeding efforts. The omics data were 
reported that could prioritize candidate genes and 
provide complementary results with genetic results in 
other plants (Lin et  al. 2017; Li et  al. 2020c, 2021; 
Zheng et al. 2020; Tang et al. 2021), and multi-omics 
data were integrated as one network map in maize 
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(Han et al. 2023). However, there is no public omics 
data for a diverse population in soybean yet. The 
omics data will certainly facilitate the candidate gene 
analysis. Moreover, gene editing has been widely 
used for gene functional validation but still presents 
challenges. The process of transformation, introduc-
ing new genetic material into soybean, is the bottle-
neck in soybean gene editing, as it is not as advanced 
as it is in other crops. And soybean is an ancient poly-
ploid with many redundant genes, which affect not 
only the precision of target gene, but also the pheno-
type of edited loss-of-function gene. The combination 
of advanced high-throughput phenotyping and geno-
typing can expand the range of traits available for 
selection and increase genetic diversity, resulting in 
the discovery of novel elite alleles from germplasms. 
This broadens the genetic base for developing better 
improved cultivars, advancing genetic research and 
breeding towards a “green revolution” of soybean.
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