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Abstract Genome-wide association studies
(GWAS) are effectively applied to detect the marker
trait associations (MTAs) using whole genome-wide
variants for complex quantitative traits in different
crop species. GWAS has been applied in wheat for
different quality, biotic and abiotic stresses, and agro-
nomic and yield-related traits. Predictions for marker-
trait associations are controlled with the development
of better statistical models taking population structure
and familial relatedness into account. In this review,
we have provided a detailed overview of the impor-
tance of association mapping, population design,
high-throughput genotyping and phenotyping plat-
forms, advancements in statistical models and multi-
ple threshold comparisons, and recent GWA studies
conducted in wheat. The information about MTAs
utilized for gene characterization and adopted in
breeding programs is also provided. In the literature
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that we surveyed, as many as 86,122 wheat lines have
been studied under various GWA studies reporting
46,940 loci. However, further utilization of these is
largely limited. The future breakthroughs in area of
genomic selection, multi-omics-based approaches,
machine, and deep learning models in wheat breed-
ing after exploring the complex genetic structure with
the GWAS are also discussed. This is a most compre-
hensive study of a large number of reports on wheat
GWAS and gives a comparison and timeline of tech-
nological developments in this area. This will be use-
ful to new researchers or groups who wish to invest in
GWAS.

Keywords Genome-wide association studies -
Genomic selection - High-throughput phenotyping -
Machine and deep learning - Wheat

K. S. Sandhu
Department of Crop and Soil Sciences, Washington State
University, Pullman, WA 99163, USA

A. Kumar

Department of Genetics and Plant Breeding, Chandra
Shekhar Azad University of Agriculture and Technology,
Kanpur 202002, India

S. Bazzer

Division of Plant Sciences, University of Missouri,
Columbia, MO 65211, USA

@ Springer


http://orcid.org/0000-0002-9260-8931
http://crossmark.crossref.org/dialog/?doi=10.1007/s11032-021-01272-7&domain=pdf

1 Page2of52

Mol Breeding (2022) 42: 1

Introduction

Wheat is a crop having great historical significance
as it marks the turning point of human civilization
10,000 years ago with its domestication. It is grown
worldwide and ranks third after maize and rice in
global production (Shiferaw et al. 2013). Numerous
efforts have resulted in the improvement of wheat
genetic maps since the last 3 decades, beginning from
restriction fragment length polymorphism (RFLP)
to the exon capture analysis (Botstein et al. 1980;
Saintenac et al. 2011). The development of molecular
markers, since the 1980s, has been based on advanced
statistical models, and high-speed computer software
which aids in the detection of genomic regions
associated with both simple and complex traits in
crops. Linkage mapping involves the mapping of
quantitative trait loci (QTLs) at a specific/particular
location over the genome using a bi-parental
population. It is a regression analysis that unravel an
association between a genomic locus and variation
in the phenotypic data collected from the population
(Lander and Botstein 1989; Xie et al. 1993). The
important factors affecting linkage mapping include
the molecular markers density on genetic maps,
quality of phenotypic data, and size of the mapping
population. The biggest issue with linkage mapping
involves low genetic resolution.

Recently, association or linkage disequilibrium
(LD) mapping utilizing genome-wide markers is
being adopted in wheat because of its two main
advantages: (i) association mapping does not require
the cost and time associated with the population
development and (i) GWAS provides high mapping
resolution as it efficiently uses the multiple historical
crossover events occurred in the diverse association
panel used. GWAS detects the association between
the particular genotype and trait of interest using con-
served LD present in the selected panel of accessions
(Myles et al. 2009). It is being adopted at a rapid
pace by the plant geneticists/breeders because of the
reduction in the genotyping cost, which was a major
bottleneck previously. In wheat, the development
of next-generation sequencing (NGS) tools such as
genotyping by sequencing (GBS) and different SNP
arrays provides a plethora of information for conduct-
ing whole genome-wide analysis at a very low and
affordable price (Tibbs Cortes et al. 2021; Sandhu
et al. 2021e).
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There has been rapid advancement in the GWAS
statistical algorithms which ranged from single to
multi-locus models for detecting the real association
with complete avoidance of false positives and false
negatives (Yu et al. 2006; Huang et al. 2018). Popula-
tion structure and familial relatedness/kinship are the
main causes for the spurious associations, and these
associations are avoided in the modified GWAS mod-
els with the inclusion of population structure and kin-
ship matrix components (Price et al. 2006; Vanraden
2008). Since the first association mapping in wheat,
there was a rapid adoption of GWAS for dissecting
the genetic architecture of various important traits
(Breseghello and Sorrells 2006). Since, majority of
QTLs identified through GWAS have minor effect
and are population specific, and difficulties in estima-
tion of exact QTLs’ effect create several challenges
for adoption of this technique. However, still, hun-
dreds of GWA studies have been conducted in wheat
since the last 15 years for different traits (Tables 3, 4,
5 and 6).

We have provided detailed information about
experimental designs adopted for performing GWA
studies, and their comparison is made with con-
ventional linkage mapping and nested association
mapping (NAM) population designs. Furthermore,
various next-generation sequencing platforms, high-
throughput phenotyping (HTP), and statistical models
are discussed for explaining the whole GWAS analy-
sis pipeline to a novice with previously conducted
studies. We tried to cover most of the GWA studies
being conducted in the wheat, and critical analysis
was performed to detect whether results from these
studies were used by the wheat breeding programs for
marker-assisted selection (MAS). The genetic archi-
tecture of most of the agronomic traits deciphered
from various GWAS is also provided. In the end, we
made a transition for the future prospectus of genomic
selection, OMICS approaches, and machine and deep
learning studies after exploration of most of the eco-
nomically important traits with association studies.

Experimental populations for association mapping

Association or LD mapping is a powerful tool for
dissecting the genetic architecture of a trait with the
help of phenotypic and genotypic information derived
from a set of diverse panels (Kaur et al. 2021). It has
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been used for deciphering the genetic architecture of
most of the complex quantitative traits in wheat (Edae
et al. 2014; Arora et al. 2017) due to the availabil-
ity of high-throughput genotyping and phenotyping
platforms along with larger population size. Associa-
tion mapping has high mapping resolution; this can
be attributed to historical recombination events and
greater allele richness. The population panel/sets
frequently used in association mapping involve lines
or accessions having vast genetic diversity. Linkage
disequilibrium (LD) in these accessions is used for
associating the marker with the QTLs (Nordborg and
Weigel 2008).

The association results provided by LD-based
mapping not only depends on the linkage between
different genomic regions but also on the popula-
tion structure and relatedness among the lines in the
population (Korte and Ashley 2013). The associa-
tion panel used for association mapping should have
genetic diversity with negligible population structure,
which otherwise might result in spurious associations
or subgrouping. Family-based association mapping
was proposed to overcome this obstacle. However,
efforts were also made for combining traditional link-
age mapping and association mapping for conduct-
ing the joint linkage association mapping, which can
combine the advantages of both mating designs with
avoidance of their pitfalls, but this technique did not
get importance in wheat (Wiirschum et al. 2012). One
biggest issue with these populations includes already
fixed and rare alleles in the sub-populations which
results in missing the identification of rare alleles
even after involving a large population size.

However, multi-parent population designs such
as multi-parental advanced generation intercross
(MAGIC) and nested association mapping (NAM)
populations can address these issues for identify-
ing rare variants while retaining the higher map-
ping resolution at the same time (Beyer et al. 2008;
Sandhu et al. 2021e). To our knowledge, in wheat,
eight sets of the MAGIC population are available and
have been used for genetic characterization of various
traits, viz. grain protein content, disease resistance,
and grain yield (Mackay et al. 2014; Delhaize et al.
2015). MAGIC populations are developed by several
generations of inter-mating cycles among the multi-
ple founder parents. The multiple founder parents
maintain the relatively high allelic diversity depend-
ing upon the number of parents used compared to the

bi-parental mapping population. Several generations
of inter-crossing in MAGIC populations create oppor-
tunities for the number of recombination events and
ultimately results in high resolution in the mapping of
MTAs. Mackay et al. (2014) developed the MAGIC
population in wheat using eight diverse founder par-
ents for studying the genetic architecture of awns in
the UK and European wheats. Similarly, Delhaize
et al. (2015) developed the two MAGIC populations
of wheat using four and eight founder parents, respec-
tively for studying the genetics of rhizosheath size.

Nested-association mapping (NAM) population is
a novel genetic approach for mapping the complex
traits which combine the advantages of both asso-
ciation and linkage mapping (Sandhu et al. 2021e).
NAM population involves crossing the diverse
founder parents with a common cultivar and the
resulting F,; are selfed for creating the recombinant
inbred lines (Sandhu et al. 2021b). In this way, NAM
populations have high allelic variation because of the
diverse founder parents and high mapping resolution
due to the creation of recombinant inbred lines (Song
et al. 2017). For the first time, a NAM population was
developed in maize, where 25 lines were crossed with
one single parent B73, followed by selfing for crea-
tion of a population of 5000 recombinant inbred lines
(200 per cross) (Yu et al. 2008). Till now, a couple of
studies have reported the use of the NAM population
for mapping the complex traits in wheat (Ren et al.
2018; Kidane et al. 2019). Jordan et al. (2018) utilized
the NAM population of 2100 RILs derived from 26
founder parents, for genetic mapping and studying the
recombination events in different regions of the chro-
mosome to identify recombination hotspots. Linked
top cross populations in wheat are another source and
can have even more parents than NAM populations
with a higher possibility of allele discovery than any
other population.

Recent advances in genotyping technologies

The extent of LD provides the estimation of the
marker density needed for GWAS in any crop. Link-
age disequilibrium (LD) measure or D refers to
the difference between the observed and expected
gametic frequencies of haplotypes under linkage
equilibrium (Cortes et al. 2021). Besides D, several
other measures of LD (D’, 2, R, D?, D%, Q*, F’,
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X(2), and d) have been developed to quantify LD in
various bi-allelic and multi-allelic situations (Dev-
lin and Risch 1995; Gupta et al. 2005). The detailed
description and formulae of LD quantification along
with sensitivity, merits, comparison, suitable statisti-
cal tests, and calculation methodology for these dif-
ferent LD measures have been extensively described
in the literature (Gupta et al. 2005). A low level of
LD in crop accessions implies that a higher number
of markers will be required for the sufficient coverage
of the genome that is crucial for finding the MTAs
and/or QTLs for the concerning traits and vice versa.
In wheat, the extent of LD patterns have been ana-
lyzed extensively (Maccaferri et al. 2005; Chao et al.
2010). Analysis of LD patterns using simple sequence
repeats (SSRs) markers in hexaploid wheat revealed
significant LD extension to 5 cM (Breseghello and
Sorrells 2006) or 10 cM (Chao et al. 2007), whereas
tetraploid wheat populations maintained around 50%
of their initial LD value at distances up to 20 cM
(Maccaferri et al. 2005). Moreover, different genomes
of wheat have shown different extent of significant
LD; the comparatively higher extent of LD has been
observed in the D genome than A and B genomes
(Chao et al. 2010). Theoretically, the extent of LD
can be increased by selecting a set of closely related
accessions or genotypes, and then only fewer mark-
ers can be sufficient for detecting the associations. In
contrast, accessions having high genetic diversity are
employed for GWAS; therefore, availability of a large
number of markers, sufficiently covering the whole
genome, becomes essential. Initially, SSR markers
were used for association analysis in wheat (Prasad
et al. 1999; Chen et al. 2014). The number of SSR
markers used in these studies was very less which did
not cover the genome sufficiently. Hence, numerous
causal genomic regions might have gone unnoticed.
Later, various advances in genotyping techniques
enabled successful GWA studies capable of identi-
fying maximum genetic variation in diverse acces-
sions. To overcome the limitations associated with
SSR markers, a high-throughput genotyping system,
i.e. diversity array technology (DArT), was developed
which allowed the rapid and cost-effective genome-
wide genotyping in wheat (Crossa et al. 2007).

DATT is a microarray-based genotyping technique
that is independent of sequence information. Since
the first study was published in 2007, several studies
have reported the successful use of DArT markers for
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GWAS in wheat for many complex traits (Joukhadar
et al. 2013; Jighly et al. 2016; Kalia et al. 2018).
The number of DArT markers used in various
studies in wheat ranged from 242 (Crossa et al.
2007) to 1728 markers which covered a total genetic
distance of 2,851.7 cM at an average distance of 1.7
cM (Joukhadar et al. 2013). Although these DArT
markers were quite abundant than SSRs, several
researchers found some chromosomes to be poorly
covered (Crossa et al. 2007; Langer et al. 2014). The
arrival of next-generation sequencing technologies
allowed the development of an advanced genotyping
technology/platform, i.e. GBS (Elshire et al. 2011),
which provided access to a comparatively large
number of single nucleotide polymorphism (SNP)
markers in a cost-effective manner. GBS-based
genotyping has been widely used in wheat for GWAS
(Arruda et al. 2016; Liu et al. 2018a; Pradhan et al.
2019). The number of GBS-SNPs used in GWA
studies in wheat ranged from 17,937 (Kumar et al.
2018) to 327,609 SNPs (Pang et al. 2020).

Owing to low read coverage, sometimes GBS
shows genotyping errors and poor ability to suf-
ficiently detect the true homozygotes. Moreover,
its performance is highly affected by the quality of
the reference genome. Wheat has a large genome
size (1C = 16Gb) comprising three homoeologous
genomes which contain more than 85% of repetitive
DNA sequences and significant gaps (only 14.1Gb of
the total have been accurately assigned and ordered
so far). Therefore, the relative incidence of genotyp-
ing errors may get increase further as the paralog
sequences might be treated as the same reads (Appels
et al. 2018; Rahimi et al. 2019). Moreover, the Chi-
nese Spring (whose genome is generally used as a
reference genome for SNP calling) is derived from
landrace which is known to have wide genetic vari-
ation compared to modern/advanced cultivars, result-
ing in low coverage of SNP markers shown by GBS,
therefore restricting the utilization of GBS in modern
wheat cultivars. It is also frequently troubled by a high
amount of missing data that can potentially reduce
the accuracy of any GWA study. One approach to
deal with this missing data is imputation and this has
widely been applied in many studies in many crops
including wheat (Arruda et al. 2016; Liu et al. 2018a;
Pradhan et al. 2019). It can increase the number of
variants that are used for GWAS by relying on link-
age information obtained from common haplotypes.
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Furthermore, the GBS-SNPs imputed based on the
reference genome of “W7984° have shown the highest
imputation accuracy (Alipour et al. 2019).

Later, a comparatively cheaper and easier but effi-
cient genotyping technique, i.e. DArTseq™, was also
developed by combining DArT with next-generation
sequencing platforms, which provides a relatively
large number of markers to build more dense link-
age maps cost-effectively. These highly dense link-
age maps have been widely used for various GWAS
in wheat (Dinglasan et al. 2019; Alahmad et al. 2019;
Long et al. 2019). In some studies, to get more marker
density, both DArT and DArTseq markers have also
been used together (Ledesma-Ramirez et al. 2019).

SNP array/platform is another genotyping plat-
form that has various features such as high marker
density, low cost, high-throughput, high commer-
cialization, and flexibility which are highly recom-
mended for GWAS in wheat. Unlike NGS and PCR-
based markers, these SNP arrays are flexible with
respect to customization of sample and data point
number, which donates to its high-density scanning
and comparatively higher and robust call rates. To
date, a number of high-density SNP genotyping
arrays have been developed and employed for vari-
ous GWA studies in wheat, for instance, the Illu-
mina Wheat 9K iSelect SNP array (Cavanagh et al.
2013; Guo et al. 2018a), the Wheat 15K SNP array
(Boeven et al. 2016; Qaseem et al. 2019), the Wheat
Breeders’ 35K Axiom array developed from 820K
SNP array (Sheoran et al. 2019; Kumar et al. 2020),
the Wheat 55K SNP array developed from 660K
array (Ye et al. 2019; Jin et al. 2020), the Illumina
Wheat 90K iSelect SNP genotyping array (Dhakal
et al. 2018; Mellers et al. 2020), TaBW280K (Rim-
bert et al. 2018), and the Axiom Wheat 660K SNP
array (Yang et al. 2019). These arrays have been
very promising for detecting extensive variation in
secondary and tertiary gene pools in addition to the
primary gene pool of wheat. For covering maxi-
mum genetic variation present in the large germ-
plasm collections, different combinations of SNP
arrays have also been utilized in wheat such as the
combination of 9K and 90K SNP arrays (Lewien
et al. 2018), 35K and 90K SNP arrays (Muqaddasi
et al. 2017), and 90K and 660K SNP arrays (Liu
et al. 2017e). However, a more recent study showed
that the Wheat 660K SNP array could be used as a
substitute for other SNP arrays for a great range of

possible applications including GWAS, as it com-
prises the highest percentage of genome-specific
SNPs with precise physical positions (Sun et al.
2020). The timeline of advancements in genotyping
of whole-genome variants employed for GWAS in
wheat is diagrammatically represented in Fig. 1.
The Wheat 660K SNP array, developed by the
Chinese Academy of Agricultural Sciences, is based
on tetraploid and hexaploid wheat, Aegilops tauschii,
and emmer wheat and has the advantages of being
genome-specific, efficient, high-density, cost-effec-
tive, and with a wide range of possible applications,
as well as adding numerous markers to the D genome
(Sun et al. 2020). However, the choice of array largely
depends upon the aim of the researcher, available
resources, and the kind of population used for genetic
dissection of the trait(s). The use of SNP arrays has
allowed access to an unprecedented number of mark-
ers for genomic studies; however, there are drawbacks
in using these technologies (Lachance and Tishkoff
2013; Elbasyoni et al. 2018; Chu et al. 2020). Inher-
ent ascertainment owing to smaller population size
is one of the major drawbacks in using SNP arrays
for genotyping (Lachance and Tishkoff 2013). Since
the SNP probes on arrays are static, sub-population-
specific variants or rare variants are generally not
assayed. This causes bias in population genetics stud-
ies including GWAS and does not permit the identifi-
cation of rare functional variants controlling traits in
question. By allowing access to all potential polymor-
phisms in the population of interest and not restrict-
ing the analysis to discrete markers on an array, a
method of detecting markers directly from sequence
data may reduce ascertainment bias on an experi-
ment-by-experiment basis. Access to all possible
polymorphisms can improve the resolution of genetic
mapping and GWA studies. However, the confidence
in sequence-based prediction of genotypes is con-
founded by the uncertain alignment of short reads
in the genome of polyploids such as wheat. To over-
come these challenges, a method of sequence-based
genotyping has been proposed (Clevenger et al. 2018)
which instead of applying a filter to individual sites
collects observed haplotypes from sequence reads
and contrasts those haplotypes between genotypes/
accessions to identify available polymorphic markers
in polyploids. Haplotype-based genotyping should be
broadly applicable in wheat and other allopolyploids.
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Fig. 1 Timeline of advancements in genotyping of whole-genome variants employed for GWAS in wheat

On the other hand, in most techniques of associa-
tion analysis, SNP markers are evaluated individually
for their association with the trait of interest, which
can be problematic for complex traits regulated by
several genetic loci (Gupta et al. 2014; Zhai et al.
2018). Furthermore, due to the bi-allelic nature of
SNPs, a single model may be unable to describe true
allelic diversity available in the population (Lu et al.
2011). Therefore, for better description of the genetic
architecture of complex traits, researchers recommend
testing numerous SNP markers, either with a multi-
locus model that evaluates adjacent markers simul-
taneously or with haplotype blocks where closely
linked markers are converted to a solitary multi-locus
haplotype block (Da 2015). The use of haplotype
blocks minimizes the cost and time spent on GWAS
since it eliminates the need to study every individual
SNP. Several GWA studies have demonstrated the
importance of this approach in the identification of
QTLs associated with different traits in wheat (Liu
et al. 2020a). Furthermore, deep analysis for the iden-
tified causative loci by GWAS, e.g., haplotype-based
analysis, is considered a key for genomics-assisted
crop breeding. Using “wheat AND GWAS” as the
keywords, we screened papers published on GWAS in
wheat in the PubMed database (https://pubmed.ncbi.
nlm.nih.gov/). A total of 552 research articles were
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published since December 31, 2020, which reported
the successful application of GWAS for dissecting
various complex traits in wheat. This analysis shows
that wheat geneticists and/or breeders are rapidly
utilizing and realizing the importance of GWAS for
genetic dissection of complex traits and the number
of papers on GWAS in wheat is expanding rapidly
with the maximum number of papers being reported
in the year 2020 (Fig. 2).

Alleviating the phenomics bottleneck:
high-throughput phenotyping

Associating genotype to phenotype for complex
traits on a genome level requires an association panel
having diverse accessions or mapping populations
along with high density of molecular markers. Plant
phenotyping refers to the assessment and measure-
ment of observable characteristics of the plants in
the field or under controlled conditions. The capa-
bility to collect accurate phenotypic data in the field
and/or greenhouse conditions is a major bottleneck
for precise genetic dissection of complex traits. The
recent advancements in genotyping technologies have
already provided almost limitless access to high-
density molecular markers; therefore, it becomes
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Fig. 2 The number of publications related to GWAS in wheat published from 01/01/2009 to 31/12/2020. Source: PubMed (key-
words “wheat AND GWAS” were used to search the number of publications in PubMed

an urgent need to shift plant science research from
genomics to phenomics. Several efforts have already
been made in the recent past for replacing low
throughput and invasive phenotyping methods with
high-throughput, rapid, and non-invasive phenotyp-
ing technologies (Mir et al. 2019). Table 1 includes
several such imaging techniques developed in the last
decade which have revolutionized crop phenomics.

Hyperspectral imaging was used in wheat to deter-
mine spectral changes during salt stress (Moghimi
et al. 2018). Moreover, a “hyperspectral absorption-
reflectance-transmittance imaging (HyperART)” sys-
tem was employed for the non-invasive quantifica-
tion of different leaf traits (Bergstrisser et al. 2015).
Various ‘“unmanned aerial vehicles” (UAVs) hav-
ing different sensors attached to them were utilized
effectively to measure different traits in various crops
including wheat (Yang et al. 2020b).

These non-invasive high-throughput phenotyping
platforms involve the utilization of various sophisti-
cated technologies such as (a) fluorescent spectros-
copy to evaluate photosynthetic rates; (b) infrared
imagery and thermography to examine transpiration/
temperature profiles; (c) light detection and ranging
(LIDAR) to measure development/growth rates; (d)
3-dimensional reconstruction to measure plant struc-
ture and growth rate; (e) canopy spectral reflectance
for monitoring dynamic complex quantitative traits;
(f) magnetic resonance imaging (MRI) and positron

emission tomography (PET) to measure leaf/root
physiology, growth/development patterns, photosyn-
thetic assimilate translocation properties, and water
relations; (g) digital RGB (red, green, and blue col-
our) imaging for recording data on several charac-
teristics of shoots, roots, leaves, and seeds; and (h)
nuclear magnetic resonance (NMR) for monitoring
the sucrose allocation and the structure of tissues
(Yang et al. 2020b).

Although the potential of these high-throughput
phenotyping technologies have already been and
being continuously demonstrated for various appli-
cations in wheat (Crain et al. 2018; Sandhu et al.
2021d), somehow these technologies have not been
fully explored for GWA studies in wheat. Only a few
papers have been published so far which utilized phe-
notypic data recorded via high-throughput phenotyp-
ing platforms for dissecting the different complex
traits such as normalized difference vegetation index
(NDVI) (Condorelli et al. 2018), lodging (Singh
et al. 2019), and transpiration efficiency (Gehan and
Kellogg 2017) in wheat. For the first time in wheat,
a study reported the increased ability of aerial plat-
forms, viz. UAVs over ground-based phenotyping
platforms to identify the QTLs by GWAS for NDVI
under terminal drought stress conditions (Condorelli
et al. 2018). Recently in 2019, one more study pro-
vided a proof-of-concept application of UAS-based
phenotyping of a complex phenological trait, i.e.
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lodging for describing the genetic architecture of
lodging tolerance in wheat through GWAS. Pheno-
typic data recorded on transpiration efficiency (TE)
via a high-throughput lysimeter platform was also
successfully used for identifying the QTLs associated
with TE in wheat (Fletcher et al. 2019).

Several state-of-the-art phenomics centers have
been established to increase the visibility and impact
of plant phenotyping in crops including wheat. More-
over, an association, known as International Plant
Phenotyping Network (IPPN) (https://www.plant-
phenotyping.org/) has also been established to dis-
seminate information about high-throughput pheno-
typing. This network has mainly six national partners/
centers: (i) the Austrian Plant Phenotyping Network
(https://www.appn.at/), (ii) Australian Plant Phenom-
ics Facility (https://www.plantphenomics.org.au/),
(iii) China Plant Phenotyping Network, (iv) German
Plant Phenotyping Network (https://dppn.plant-pheno
typing-network.de/), (v) Phen-Italy (http://www.
phen-italy.it/index.php), and (vi) the PHENOME-
The French plant phenomic network (https://wwwb6.
dijon.inrae.fr/umragroecologie_eng/Research-Progr
ams/Investissement-Avenir/PHENOME). Other
major centers are the Julich Plant Phenotyping Centre
(https://www.fz-juelich.de/ibg/ibg-2/EN/_organisati
on/JPPC/JPPC_node.html) in Germany and High-
Resolution Plant Phenomics Centre located in Can-
berra at CSIRO Plant Industry, whereas Nanaji Desh-
mukh Plant Phenomics Centre (developed by Saveer
Biotech Limited) at ICAR-IARI, high-throughput
plant phenomics facility at the ICAR-Indian Institute
of Horticultural Research (IIHR), high-throughput
automated phenotyping platform at ICRISAT (https://
www.icrisat.org/researchfacilities/), and phenomics
facility  (http://www.niam.res.in/Phenomics-facility)
at [CAR-National Institute of Abiotic Stress Manage-
ment (developed by LemnaTech, Germany) are the
major high-throughput phenotyping centres in India.

These centres use platforms designed mainly for
phenotyping under artificial/controlled conditions;
however, efforts are being made to create relevant
technologies and tools for use under field conditions
at both industrial and experimental scales. Moreo-
ver, the establishment of high-throughput phenotyp-
ing systems is time-consuming and costly and needs
in-depth knowledge of computational and engineer-
ing sciences to maintain functionality and flexibility.
The implementation of such systems may only be

justified at big research centres and companies as the
unit cost depends on throughput. Several private com-
panies like ‘LemnaTec’, ‘PhenoSpex’, ‘Phenokey’,
‘Photon System Instruments’, ‘We Provide Solu-
tions’, ‘WIWAM’, and ‘Saveer Biotech Limited’ offer
large-scale, custom, high-throughput phenotyping
platforms for both controlled and field environments
(Gehan and Kellogg 2017).

One of the biggest problems associated with
high-throughput phenotyping platforms is the han-
dling of large volume, velocity, and variety of data.
This might be one of the possible reasons also why
high-throughput phenotyping technologies have not
been fully explored in wheat for genetic studies. To
overcome these challenges associated with the analy-
sis and interpretation of enormous datasets, machine
learning (ML) and deep learning (DL) algorithms can
be employed (Ma et al. 2018b; Sandhu et al. 2021a).
These ML and DL algorithms are multidisciplinary
approaches that provide more efficient, accurate, and
faster data analytics by utilizing the concepts from
statistics, probability theories, decision theories, and
optimization (Gonzélez-Camacho et al. 2018). Appli-
cation of these machine learning and deep learning
algorithms/methods in the prediction of phenotypes
holds big promise, and therefore, these methods are
likely to be integral tools for future breeding pro-
grams (Shah et al. 2019).

Mixed models and significance thresholds
for GWAS in wheat

Several GWAS models are available, which range
from simple to increasingly complex for associating
phenotypic variation with the particular genotype
configuration in wheat (Huang et al. 2018). Tradition-
ally, linear models such as ANOVA, t-tests, and linear
regression were used for studying MTAs, but these
models usually resulted in several spurious associa-
tions because of the ignorance of population structure
and familial relatedness (Price et al. 2006; Yu et al.
2006). The wide geographical distribution of wheat
parents in the association panel results in a strong
population structure and it is important to use GWAS
models which reduce the false associations due to the
population structure. However, analysis using struc-
ture and principal component analysis (PCA) pack-
ages accounts for the population structure generated

@ Springer
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with the help of molecular information. The inclu-
sion of these structure parameters as a covariate in the
GWAS model controls the false positives (Pritchard
et al. 2000). General linear models (GLM) perform
the association using a single marker at a time with
the inclusion of population structure as a fixed effect
in the model and can be represented as:

Y = SNP + Q[PCs] + e

where Y is the trait of interest, SNP represents
the matrix of genotypic information, Q is popula-
tion structure obtained using structure or PCA, and e
is residual error. The results from structure and PCA
are usually similar, but PCA is more often utilized
because of less computational cost and resources
required for its generation (Wang et al. 2009; Wu
et al. 2011); initially, GLM was most frequently used
for GWAS analysis in wheat, but later it was real-
ized that GLM results in various false-positive asso-
ciations because of ignorance of relatedness among
the populations and hence, it was then replaced by
recent mixed models (Segura et al. 2012). GLM only
accounts for the population structure, completely
ignoring the relatedness among the individuals in the
population. Yu et al. (2006) developed the unified

Table 2 A brief comparison of different GWAS models

mixed model approach with inclusion the family
relatedness as a random effect in the GLM, resulting
in the creation of a mixed linear model (MLM) for
GWAS, which can be represented as:

Y = SNP + Q[PCs] + Kinship + ¢

All the terms of this equation are described above.
At the same time, kinship denotes the random com-
ponents of the model, demonstrating the relationship
between individuals in the population obtained using
pedigree or genotypic information. This model com-
plements the previously developed models that only
account for either population structure or familial
relatedness, thus resulting in the creation of the pow-
erful GWAS model (Abecasis et al. 2000). Presently,
this is the most often utilized GWAS model. More
than 50% of the GWAS conducted in wheat were per-
formed with this model and it is also evident from the
information on models provided in Table 2.

MLM was shown to be superior regarding con-
trol of false positives in the simulation models, but
this model suffers from substantial computational
cost. Computational time varies in MLM as mpn®
where m is the number of markers, p is the num-
ber of iterations required to solve the model, and n

GLM

MLM

CMLM

MLMM

SUPER

FarmCPU

BLINK

Year of release

2004

2006

2010

Single or Single locus Single locus Single locus
multi-locus

Population Ignored Included Included
structure

Kinship No Yes Yes

Number of Not applicable All markers Among associ-
SNPs in kin- ated groups
ship

False Positives  Present Controlled Controlled

False negatives Absent Present Present

LD criteria No No No

Model effect Fixed Mixed Mixed

Time or com-  Quick Large Large
putational
burden

Use ++ +++++ ++

References (Price et al. (Yu et al. (Zhang et al.

2006) 2006) 2010)

2012

Multi-locus

2014

Multi-locus

2016

Multi-locus

2019

Multi-locus

Included Included Included Included

Yes Yes Yes No

Among pseudo Among pseudo Among pseudo Not applicable
QTNs QTNs QTNs

Controlled Present Controlled Controlled

Present Absent Absent Absent

No No No Yes

Mixed Mixed Mixed Fixed

Large Large Medium Quick

+++ ++ ++++ 4

(Seguraetal. (Wang et al. (Liu et al. (Huang et al.
2012) 2014a) 2016) 2018)

*(less, as it is new)
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is the number of individuals in the random effect
model. The computational time increases with the
cube of individuals in the random component of
the MLM. Zhang et al. (2010) developed the com-
pressed mixed linear model (CMLM) that reduces
the computational time of the MLM by the group-
ing of a number of individuals in the random effect
model. This model reduces the computational time
compared to MLM by retaining the same or higher
statistical power than MLM. CMLM can be repre-
sented as

Y = SNP + Q[PCs] + Kinship + e

Here, kinship is obtained among the groups using
the maximum likelihood method. If all the individu-
als are classified into one group, it is equivalent to
GLM, while if all the individuals are in separate
groups, this will result in MLM. In this regard,
CMLM is intermediate to MLM and GLM. CMLM
gained its popularity in wheat due to the group-
ing of lines from the same breeding programs or
regions into one pool, to account for the relatedness
for controlling false positives. Several studies uti-
lized CMLM for association analysis and reported
its computational superiority over the MLM in
wheat (Arruda et al. 2016).

The first mixed linear model was published in
2006 for GWAS analysis, and since then, many
MLMs have been proposed to account for popula-
tion structure and family relatedness for controlling
the false positives (Breseghello and Sorrells 2006).
However, all these MLM were single-locus mod-
els, studying a single association at a time, but the
majority of traits in wheat are controlled by a large
number of QTLs which show that these models fail
to mimic the true genetic architecture of the traits
(Segura et al., 2012; Liu et al. 2016). This required
the use of multi-locus GWAS models in wheat to
reduce the false negatives produced by single-locus
GWAS models because of overfitting in the mod-
els. This overfitting happens because single-locus
models explain the variation individually for each
marker, which completely ignores the other sig-
nificant marker and interactions between markers,
resulting in missing some real associations. Segura
et al. (2012) developed the multi-locus mixed model
(MLMM), which studies multiple associations
using stepwise regression and heritability as criteria

for forward inclusion and backward elimination
of markers in the model. This model can be repre-
sented as:

Y = SNP + QTN1 + QTN2 + QTNn + Q[PCs] + Kinship + ¢

Quantitative trait nucleotides (QTNs) are added
in the model using the heritability estimate for stop-
ping further inclusion. Once forward inclusion is
done, backward elimination is performed, where each
added QTN is removed individually, to identify the
exact number of QTNs which are controlling the vari-
ation in the trait, using heritability estimate.

MLMM uses all the SNP marker information for
extracting the kinship matrix among the individu-
als. The settlement of MLM under the progressive
exclusive relationship (SUPER) model was devel-
oped, which used significant QTNs for extracting
the kinship matrix. This model produces higher sta-
tistical power and is also computationally efficient
than MLMM (Wang et al. 2014a). Both MLMM and
SUPER models incorporate the significant QTNs to
remove the confounding problem between the testing
markers and kinship. To altogether remove the con-
founding issue in the analysis, a fixed and random
model circulating probability unification (FarmCPU)
was developed, which divides the model into a fixed
and random effect model (Liu et al. 2016). The fixed-
effect model tests a single marker at a time, while the
random effect model utilizes the multiple associated
markers for obtaining kinship as a covariate in the
model, and this also controls the false positives in the
model. This model is superior compared to previous
multi-locus models, having high statistical power and
less computational time (Liu et al. 2016). This model
is represented as:

Y = SNP + QTN1 + QTN2 + QTNn + Q[PCs] + e

This is a fixed component of the model where each
QTN is tested individually at a time. The random
effect component of the model is represented as:

Y = Q[PCs] + Kinship + ¢

Kinship in this model is obtained using multiple
associated markers from the fixed-effect model, thus
controlling the false positives. Several studies using
the FarmCPU model for association analysis have
been reported in wheat (Bhatta et al. 2018b). Farm-
CPU has been reported to be superior for GWAS
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analysis because of its computational advantage
owing to the separation of fixed and random effects.
This is particularly important for wheat, owing to its
hexaploid and complex genome nature.

Malik et al. (2019) compared the performances for
three GWAS models, namely, SUPER, CMLM, and
FarmCPU for association analysis of yield and straw
quality traits in wheat. The superiority of FarmCPU
was reported for MTAs for plant height, yield, lodg-
ing, Septoria tritici blotch, and harvest index. Q-Q
plots and P-value inflations were compared to con-
clude that FarmCPU performed superior for all the
traits analyzed in this study and validated that Farm-
CPU should be used for future analysis in wheat.
Similar results were obtained by Ward et al. (2019)
during the comparison of MLM and FarmCPU for
GWAS for yield and yield-related components in
wheat. They showed that MLM results in a large
number of false negatives, as MLM only identified
nine significant MTAs while FarmCPU identified 74
significant MTAs. These results were also validated
using Q-Q plots from association analysis.

FarmCPU model assumes that QTNs are randomly
distributed across the genome, thus eliminating the
LD along the genome. Furthermore, FarmCPU has
a random effect model that has associated computa-
tional cost with bigger data sets. Bayesian informa-
tion and LD iteratively nested keyway (BLINK) is the
most recent GWAS model which removes the prob-
lem available in the FarmCPU (Huang et al. 2018).
BLINK uses Bayesian information criteria for replac-
ing the random effect component of the FarmCPU
with the fixed effect model. Furthermore, LD infor-
mation is used for the inclusion of a single marker at
a time in the model and eliminating the confounding
problem (Huang et al. 2018). This model is reported
superior for analysis in wheat, but till now, there are
only a few studies available that have reported the
use of this model due to its recent release (Liu et al.
2020b). A comparison of different GWAS models is
presented in Table 2.

False positives and false negatives occur not only
by GWAS models, but they can also arise because
of over-conservative or less stringent threshold, sug-
gesting that identification of significant threshold
is crucial in wheat (Dudbridge and Gusnanto 2008;
Pe’er et al. 2008). The commonly utilized significant
thresholds in wheat are Bonferroni correction, false
discovery rate (FDR), and positive false discovery

@ Springer

rate (PFDR) (Benjamini and Hochberg 1995). Bon-
ferroni correction of 0.05 is a strict significant thresh-
old (obtained using P-value/number of markers), and
this causes a number of false negatives because of the
over-conservative nature of this threshold, as it does
not consider that markers on the same chromosome
could be independent (Hayes 2013). MTAs identified
with Bonferroni correction are highly significant and
provide high confidence for incorporating particu-
lar MTAs in a breeding program. A very few studies
usually report the significant MTAs with Bonferroni
correction as evident from Table 3. FDR and PFDR
are somewhat less stringent threshold criteria and are
often used for reporting the significant associations
(Tables 3, 4, 5, and 6). FDR is calculated from the
expected portion of MTAs that are in fact the false
positives (Hayes 2013). There is a high need for
deciding the strict threshold for controlling the false
positive associations in wheat. Permutation testing
was proposed for solving the multiple testing problem
in humans to select a significant threshold by analyz-
ing the large number of simulated data sets generated
from the real data set by randomly shuffling the popu-
lation (Churchill and Doerge 1994). This led to the
selection of a P-value < 5 x 1078 as a strict cutoff for
reporting significant MTAs in humans, and this kind
of cutoff is needed for association studies in crops
including wheat, in spite of freedom to the research-
ers to report their own subjective threshold P-value.

GWAS and characterization of candidate genes

Over the years, GWA studies have been successfully
conducted for better defining the relative role of genes
in various crops and further assisted in exploring
the genetic basis of natural selection and population
differences among the individuals of a population,
developing into a briefly verified and mature method
today. GWAS has been extensively used to investi-
gate various biological and physiological traits in the
wheat crop during the last decade (Tables 3, 4, 5, and
6). In the literature that we surveyed, 86,122 wheat
lines have been studied under various GWA studies
reporting 46,940 loci. However, further utilization
of these is largely limited. Nevertheless, this huge
information source can be further utilized for identi-
fying meta-QTLs through meta-GWAS. Meta-analy-
sis of QTLs identified through interval mapping has
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Table 4 Recent GWAS in wheat and characterization of candidate genes conducted over the last decade (2010-2020) for abiotic

stress traits

Traits Population size Total Putative or candidate gene  GWAS model Significance References
identified IDs/QTLs/ Significant used threshold
MTAs markers associated with
the trait
Aluminum toxic- 860 70 CMLM Bonf. P value < (Froese et al.
ity tolerance 0.01 2016)
Selenium sensi- 480 accessions 10 Excalibur_c47452_183, CMLM Bonf. P value < (Downie et al.
tivity GENE-3324_338, Bob- 0.05 2018)
White_c4838_58
Drought traits 277 accessions 295 TraesCS6A02G124100, GLM, MLM, P value < 1.88  (Lietal. 2019¢)
TraesCS6D02G114400 and FarmCPU X 10-5
Drought toler- 100 accessions 75 TraesCS2D02G462600, CMLM FDR < 0.05 (Deshmukh et al.
ance and bio- TraesCS2D02G514100, 2014)
mass allocation TraesCS2D02G370400,
TraesCS1B02G340800
Drought and 315 accessions 472 QGWt.adh-3A, QGWp. CMLM FDR < 0.05 (Schmidt et al.
heat stress adr-2D, QGWt.ara- 2020)
tolerance 7A.1, QGWt.ara-6D.2,
QGWot.ara-6B.6
Drought 111 accessions 263 SDP6 MLM FDR < 0.01 (Tarawneh et al.
response of 2019)
wheat
Grain yield and 123 accessions 90 TraesCS7A01G158200.1, FarmCPU P value (Bhatta et al.
related traits TraesCS3D01G002700, <9.99%0-5 2018a)
under drought TraesCS3A01G343700
stress
Drought toler- 108 accessions 28 MLM Pvalue <0.01  (Muhu-Din
ance traits Ahmed et al.
2020)
Cold tolerance 543 accessions 76 TraesCS7B01G466300, MLM -loglO(P) > 4.05 (Zhao et al.
TraesCS5B01G351200 2020b)
Heat-responsive 236 accessions 500 TraesCS5B01G325000, FarmCPU P value <9.99  (Pradhan et al.
physiological TraesCS6B01G063500, x 10— 4 2019)
traits TraesCS2B01G496300,
TraesCS5B01G436700
Yield and 192 accessions 487 GENE-1752_162, MLM -logl0(P) > 3.96 (Qaseem et al.
related traits RFL_Contig2471_119, 2019)
under heat and TACX203, IACX5767,
drought stress Kukri_rep_c68068_95
Seedling heat 200 accessions 15 QLCCOT.nri-1B, MLM P value <0.001 (Maulana et al.
tolerance QLNOT.nri-2A, 2018)
QLNHR.nri-2A.2
Salt tolerance 307 accessions 117 QSt.nwafu-1A, QSt. MLM P value < (Yu et al. 2020)
nwafu-3B, QSt.nwafu- 1.0x10-5
6B
Salinity toler- 227 varieties 24 Wmc120, barc151, MLM P value < 0.01 (Liu et al. 2018d)
ance gwm?274, barc318,
gwm?275
Salt stress toler- 150 cultivars 187 Traes_1BS_D68FO- MMLM P value < 0.01 (Oyiga et al. 2018)

ance

BEDG6.1.mrnal-
E4(ZIP-7), Traes_2AL_
A2CBDBS5F7.1.mrnal-
E2(KeFc), AtABCS8
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Table 4 (continued)

Traits Population size Total Putative or candidate gene  GWAS model Significance References
identified IDs/QTLs/ Significant used threshold
MTAs markers associated with
the trait

Herbicide resist- 697 accessions 329
ance 1B

gHR-5B, gHR-7D, gHR- MLM

P value < 0.001 (Shi et al. 2020)

regularly been conducted in wheat (Saini et al. 2021a,
2021b, 2021c¢). The traits considered under evalua-
tion include cold tolerance (Zhao et al. 2020b), seed
dormancy (Zuo et al. 2019), coleoptile length (Ma
et al. 2020), spike fertility (Pradhan et al. 2019), agro-
morphological traits (Sheoran et al. 2019), kernel
weight and length (Daba et al. 2018), end-use quality
traits (Jernigan et al. 2018), anther extrusion (Muqad-
dasi et al. 2017), root traits (Beyer et al. 2019), dis-
ease resistance (Bhatta et al. 2018b), micro-nutrients
in grain (Cu et al. 2020), and multiple pest resist-
ances (Ando et al. 2018) (see Tables 3, 4, 5, 6). Bar
graphs have been provided to represent the number
of GWA studies conducted over the last decade, and
further, the recorded studies have been divided into
four major categories to compile the data for this
study. Maximum number of GWA studies have been
conducted for agronomic and yield traits, followed
by biotic stress resistance, quality traits, and abiotic
stress tolerance in wheat over the last decade (Figs. 3,
4, and 5).

While the number of studies for four major catego-
ries has been represented here in the form of histo-
grams, a comprehensive table has also been provided
to summarize all these GWAS conducted in wheat
during the last decade, with information related to the
population size for a particular study, the number of
QTLs identified, putative genes, and GWAS models
used for analysis in the study. Only high confidence
putative genes or associated markers having a sig-
nificant PVE (Phenotypic Variation Explained) or R?
value for a particular trait have been documented in
this review (Tables 3, 4, 5, 6).

Multiple disease resistance for leaf rust (Puccinia
triticina), stripe rust (Puccinia striiformis var. tritici),
common bunt (7illetia tritici), and tan spot (Pyre-
nophora tritici-repentis) was phenotyped in 81 acces-
sions where 94 MTAs were identified on seven chro-
mosomes for the studied traits. Identified major effect
genomic regions were found to be coinciding with

@ Springer

previously identified genes like Tsnl gene (Perez-
Lara et al. 2017). Resistance to powdery mildew was
phenotyped in 97 accessions, and 262 significant loci
were identified in these accessions. Based on GWAS
and the linkage map-based QTL analysis, two large
effect QTLs with dynamic gene action were identi-
fied on chromosome 1BL and 2BL for adult plant
resistance to powdery mildew which may be used in
breeding programs; some candidate genes were also
identified and annotated like TraesCS1B02G264000
(Mohler and Stadlmeier 2019).

In a recent study, a total of 319 varieties were phe-
notyped for the resistance to stripe rust, and 47 sig-
nificant loci were found significantly associated with
the trait. Moreover, using the gene enrichment with
mapping-by-sequencing and the homozygosity hap-
lotyping algorithm, 589 high confidence genes were
detected, and out of these 589 genes, 10 genes (e.g.
TraesCS2B01G486100, TraesCS2B01G486200) were
annotated for diseases resistance which had homol-
ogy to a previously characterized Yr7 candidate gene
(Gardiner et al. 2020). Similarly, fusarium crown rot
resistance was phenotyped in 358 accessions, and 104
loci were found to be significantly associated with it.
A novel significant region was detected on chromo-
some 5SDL; qRt-PCR was used to validate the involve-
ment of candidate genes in providing resistance to
the fusarium crown rot disease. Validated candidate
genes, namely, TraesCS5D01G138700.1 and TraesC-
S5D01G142400.1, encode the proteins belonging to
the widely known disease resistance protein (TIR-
NBS-LRR class) family (Jin et al. 2020).

The combination of advanced techniques with
GWAS provides precision targeting of the candidates
for the trait of interest. Conversely, advancements in
breeding methodologies based on GWAS also pro-
vide a key role in developing resistant lines; efficient
methods such as genomic selections can be used to
assist in it. A similar study was associated with Sep-
toria tritici blotch (STB) resistance; a total of 371
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Table 5 (continued)

I

Significance threshold References

GWAS model used

Putative or candidate gene
IDs/QTLs/ Significant markers
associated with the trait

Total identified

MTAs

Population size

Traits

Springer

(Ma et al. 2020)

-log10(P) > 3

MLM
GLM

Qgr.cas-1AS, Qgr.cas-5AL.2

Ra_c14761_1348

153
31

166 accessions

Seed dormancy

(Chen et al. 2017)

Bonf. P value < 0.05

-T, Excali-

bur_c11045_236

205 accessions

Seedling emergence

-A, Bob-

White_c8436_391-T

and tiller number

accessions were phenotyped, and 44 loci were found
to be significantly associated with STB resistance.
Putative candidate genes TraesCSIA01G323600 and
TraesCS6D01G365100 were also identified and anno-
tated. Along with candidate gene identification, the
potential of using the results of GWAS in genomic
prediction was also assessed in order to highlight the
potential of combined use of GWAS and genomic
selection in STB resistance (Mugaddasi et al. 2019a).

Multiple GWAS models have also been used
for conducting association analysis in wheat. For
instance, a study was conducted for Barley yel-
low dwarf (BYD) virus resistance where 335 acces-
sions were phenotyped and both MLM and GLM
models of GWAS were employed which resulted in
the identification of 36 loci significantly associated
with the target trait. The candidate genes, namely,
TraesCS2B01G037300 and TraesCS2B01G038300
were defined which may be useful to breeders in
breeding programs to achieve the stable resistance to
BYD virus (Choudhury et al. 2019). Along with dis-
ease resistance, traits like quality of the wheat grain
and its processed products were also well studied
by using GWAS. A comprehensive study of baking
and milling traits which include flour yield, softness
equivalent, flour protein, and four solvent was con-
ducted in 270 accessions and 84 loci were found to
be significantly associated; except one, all the iden-
tified associations were novel. Moreover, two puta-
tive genes, viz. TraesCS1B01G12950 and TraesC-
S7A01G01360 were also identified (Gaire et al.
2019). Likewise, STB resistance, more than one
GWAS analysis model, namely GLM and MLM,
were used to study grain protein content. Grain pro-
tein content was phenotyped in 161 accessions, and
145 loci were found to be significantly associated
with it. Furthermore, two large effect QTLs on chro-
mosome arms 2B and 7B and underlying putative
genes namely TraesCS1D01G029200.2 and TraesC-
S2A01G328100.1 were identified.

Abiotic stresses pose a great threat to the crops and
can cause a huge loss (Kaur et al. 2021). In order to
have a better insight into the genetics of traits associ-
ated with abiotic stresses, several GWA studies have
been conducted in wheat. Drought, nutrient toxicity,
extreme temperatures, and salinity are some of the
major abiotic stresses that can significantly impede
the normal development of plants. Among these abi-
otic stresses, the effect of drought on various traits
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like yield and other related traits has been exten-
sively studied by GWAS. Li et al. (2019a) conducted
GWAS using 277 accessions and identified 295 sig-
nificantly associated loci using three different mod-
els, namely, GLM, MLM, and FarmCPU. Candidate
genes including TraesCS6A02G124100 and TraesC-
S6D02G 114400 were also identified (Li et al. 2019a,
2019b, 2019c¢, 2019d). Similarly, the effect of drought
stress on grain yield was studied by Bhatta et al.
(2018a) using the FarmCPU model of GWAS, the
trait was phenotyped among 123 accessions, and 90
loci were found to be significantly associated. Can-
didate genes TraesCS7A01G158200.1 and TraesC-
S3D01G002700 were also identified. As evident from
the histogram (Fig. 4), nine GWA studies have been
conducted for drought tolerance alone, followed by
heat stress (3), salt tolerance (3), and drought and
heat together (2), while many other abiotic stresses
have been studied at least once (Fig. 4).

Quality traits including the micronutrients like
vitamins and minerals have been the topics of keen
interest with respect to market pricing and consumer
preference; in this regard, GWAS was performed for
evaluating the variation for vitamins B1 and B2 con-
tent in wheat, which were phenotyped among 166 cul-
tivars. A total of 24 loci were declared significant (17
loci for Vitamin B1 and 7 loci for Vitamin B2) in this
study. IWB43809, IWB69903, and IWB23595 were
identified as putative markers which can be of interest

@ Springer

to the breeders. However, the candidate genes remain
unidentified as little is known about biosynthetic
pathways of Vitamins B; and B, in plants (Li et al.
2018). Similarly, copper content in wheat grains was
phenotyped using 243 accessions, and 489 loci were
found to be significantly associated with the trait. Fur-
thermore, haplotype analysis revealed three impor-
tant genetic loci, GCC_Hap_2A1, GCC_Hap_3BI,
and GCC_Hap_5A1 associated with grain copper
content. Linkage mapping identified four QTLs on
chromosomes 1D, 6A, 6B, and 7D, associated with
copper content in wheat grains. Two of the significant
SNPs, detected on chromosome 1D via GWAS, were
mapped within the interval of one QTL (QGCC.hau-
1D), implying that this locus has an important role in
regulating copper content in wheat grains (Zhao et al.
2020a). Fig. 5 represents the number of GWA studies
considered or covered under a particular quality trait
over the last decade.

Agronomic traits such as plant architecture, root
structure, and most importantly yield affecting traits
have also been studied by GWAS. For example,
a GWA study for twelve agronomic traits pheno-
typed in 768 accessions under multiple environ-
ments resulted in the identification of a total of 807
loci significantly associated with the traits under
study. A total of 9 environmentally stable QTLs
were identified which can be of great use in breeding
programs. Candidate genes TraesCS4B02G049100
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Fig. 5 Histogram showing the number of GWAS over the last decade for various a agronomic and b quality traits. Trait name is

given as reported in published reports

and TraesCS1B02G415500 were reported for QTLs
associated with spike seed setting and grain size,
respectively (Pang et al. 2020). For root traits, six
related traits were phenotyped in 196 accessions,
and 1,105 loci were found to be significantly asso-
ciated with the traits under study. Three candidate
genes TraesCS5A02G022300, TraesCS4A02G484800,
and TraesCS4A02G493900 were also reported; the
proteins of these genes were found to be associated
with carbon metabolism, nitrogen metabolism, sig-
nal induction, stress responses, and DNA synthesis
(Xu et al. 2020). Similarly, yield and its contributing
traits were phenotyped in 320 accessions of a highly
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diverse wheat association mapping panel, and 46 loci
were found to be significantly associated with five
traits. Candidate genes TraesCS3B02G123600 and
TraesCS4A02G389900 were also reported (Gahl-
aut et al. 2019). Generally, a single locus GWAS
model is used to identify significant MTAs, but for
complex traits like nutrient use efficiency which are
being controlled by multiple loci, a more stringent
model is required. Hence, multi-locus models were
developed, as they can detect potential MTAs using
lower significance criteria. Such a study was con-
ducted for potassium use efficiency which was phe-
notyped in 150 accessions. In this study, both single
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and multi-locus GWAS models were used from which
a total of 534 loci were found to be significantly asso-
ciated with the traits in question. Candidate genes
TraesCS1A02G288500 and TraesCS2B02G201400
were reported (Bin Safdar et al. 2020). Similarly,
spikelet sterility was phenotyped in 710 accessions,
and 118 loci were found to be significant using
GWAS. Candidate genes TraesCSIB0I1G144500 and
TraesCS1B01G145500 were reported (Alqudah et al.
2020). Fig. 4 represents the number of GWA studies
for each agronomic trait over the last decade. Grain
yield remains the most extensively studied trait under
GWAS of various agronomic traits of wheat.

Applications in breeding

Recent advancements in molecular genetics have
made it possible to use molecular technologies in
breeding programs and to develop diverse molecu-
lar breeding strategies for efficient and effective crop
improvement. One of such tools is GWAS, which
has been extensively used to search for genomic
regions associated with various traits. These identi-
fied genomic regions, then, can be used to develop
breeder-friendly markers for use in the breeding pro-
grams. Many traits, including phenology, height, and
resistance to rusts in wheat, are affected by some
key genes (such as Ppd, Vrn, Yr, Lr, Sr, and Rht)
with major effects. These genes can reduce the sen-
sitivity for other minor QTLs (or hinder the detec-
tion of minor effect QTLs) since the different alleles/
QTLs can only be analyzed accurately in the respec-
tive group of lines. Actually, the estimation of the
total number of QTLs depends on the distribution of
QTL effects. If the overall distribution of the effects
is delineated by an exponential distribution, the dis-
tribution of identified QTL effects becomes a trun-
cated exponential distribution after incorporating
the Beavis effect. This must not be confused with
the original Beavis experiment where all simulated
QTLs are supposed to have an equal genetic effect.
According to the Beavis experiment, when only 100
progeny are evaluated, the average estimates of phe-
notypic variances associated with correctly identified
QTL are greatly overestimated, slightly overestimated
when 500 progeny are evaluated, and fairly close to
the actual magnitude when 1000 progeny are evalu-
ated (Beavis et al. 1994; Beavis 2019). The statistical

power of detecting a minor QTL is as low as 3%
when the sample size is modest, say 100, and the
predicted effects are frequently inflated 10-fold. This
phenomenon has since been termed the Beavis effect
and has formed the basis of a number of subsequent
analyses (Beavis et al. 1994; Beavis 2019). Further-
more, minor alleles/genes can also be detected for any
trait that has been measured in response to the major
genes (at least background genes such as Vrn, Ppd,
and Rht) or using the wheat genotypes having null
alleles for these major genes and using a genotyping
technology which facilitate the selection of most-
informative SNPs (by adding or removing targeted
loci) in a custom-designed fashion.

Various modifications of GWAS like (a) eGWAS
(uses data from gene expression profiling) which can
be very useful for identification and annotation of
candidate genes involved in the metabolic pathways
(Luo 2015), (b) PWAS (proteome wide association
study) which can be used to link proteome abun-
dance variation and phenotypic variation (Brandes
et al. 2020), (¢) mGWAS (metabolic GWAS) which
is used to define the relationship between genetic fac-
tors and the metabolome of a tissue or the complete
plant (Luo 2015), and (d) TWAS (transcriptome wide
association study) which conducts expression map-
ping by creating functionally relevant maps that cor-
respond to genes and their expression have broadened
the application of GWAS in genetic studies from gene
to the molecule level (metabolites) (Wainberg et al.
2019). Another concept, PheWAS (phenome wide
association studies) applies a contrasting phenotype
to genotype approach for assessing the sequence pol-
ymorphisms across diverse phenotypes, thereby com-
plementing the data from GWAS (Denny et al. 2010).
The markers derived from GWAS can be involved
in genomic selection/genomic prediction models as
fixed effects for enhancing the prediction accuracy
(e.g. for grain yield and yield-related traits in wheat)
(Odilbekov et al. 2019). Despite all these applications
and advantages of GWAS over conventional breeding,
the true potential of GWAS still awaits full exploita-
tion in wheat breeding because there are many gaps
between genomic studies and breeding (Samantara
et al. 2021). One of the gaps is that the breeders who
hold molecular biology training still fall short in the
handling of genomic data. More user-friendly soft-
ware systems are required to fill this gap. Similarly,
various modifications of GWAS like eGWAS, PWAS,
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and TWAS are still relatively new concepts to the
breeders and thus require a wider adoption. Moreo-
ver, the effectiveness of molecular breeding for highly
complex traits like yield and related traits based on
GWAS data needs to be further improved. The com-
plex traits are controlled by multiple alleles, thus the
conventional GWAS or the single-locus GWAS can-
not be used to search for the associated MTAs, as the
marker selection criteria like FDR implemented in
single-locus GWAS make the criteria stringent for
the detection of multiple MTAs. Hence, multi-locus
GWAS models with higher sensitivity are required
in order to detect MTAs of such complex traits using
a less stringent criterion. Another gap arises, as the
QTLXQTL interactions and QTLXE interactions of
complex traits are not completely described in genetic
studies. The knowledge of these interactions is very
important for the better understanding of complex
quantitative traits and effectively using GWAS for
them (Samantara et al. 2021).

Being an allopolyploid, genetic redundancy is no
new concept to wheat. A plethora of traits like seed
dormancy (Abe et al. 2019) and broad-spectrum
resistance to diseases like powdery mildew (Wang
et al. 2014b) can be identified in wheat where
genetic analysis has been very difficult because
of the presence of multiple homeoalleles, as com-
pletely recessive mutant does not exist in natural
population to understand the functioning and effects
of underlying alleles (homeoalleles). To solve this
issue and for the improvement or better under-
standing of polyploid crops, simultaneous editing
of multiple homeoalleles of a trait is required. The
CRISPR-Cas9 system and its predecessors ZFN
(zinc finger nucleases) and TALEN (transcription
activator—like effector nuclease) are powerful tools
for genome editing which can be used to precisely
edit multiple QTLs simultaneously and to gener-
ate novel alleles, providing rapid genetic enhance-
ments (Abe et al. 2019). The results of significant
MTAs from GWAS can be put into candidate gene
identification approaches to find putative genes. The
CRISPR-Cas9 or TALEN can then be used to gen-
erate genome-edited organisms in order to validate
the function of associated putative genes or they can
be directly used in the editing of candidate genes if
the data is already available. So far, CRISPR-Cas9
and TALEN have been successfully used in wheat
for editing traits like male sterility (Okada et al.
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2019), powdery mildew resistance (Wang et al.
2014b), and quality traits like gluten content of
grains (Jouanin et al. 2020). Hence, genome editing
tools enlighten the path to the era of ‘GWAS-plus’
in wheat, a concept given in rice (Wang et al. 2020).

In wheat, several recent studies have also demon-
strated the power of association mapping in identify-
ing and characterizing the candidate genes that con-
trol the target traits (Li et al. 2019a; Wang et al. 2019;
Sandhu et al. 2021e). For instance, using wheat 90 K
SNP assay, an association mapping was performed
for grain length and thousand-grain weight leading
to the identification of numerous significant SNPs
located on chromosome 7B. Furthermore, haplotype
analysis of these significant SNPs on 7B generated
the block containing the predicted TaGWS-BI gene,
which was then cloned by sequencing in bread wheat.
Analysis of agronomic traits revealed that genotypes
with TaGWS-Bla allele possessed significantly more
grain number per spike, wider grain length, higher
thousand-grain weight, longer grain length, and more
spikelets per spike than the genotypes with TaGWS§-
B1b (Yan et al. 2019). Another GWA study conducted
in wheat using a 90K genotyping assay for the six
quality-related traits in Chinese wheat cultivars in
eight environments over 4 years led to the identifi-
cation of a total of 846 significant SNPs, involving
103 multi-environment significant SNPs detected
in more than four environments (Chen et al. 2019b).
Furthermore, it was discovered that some important
genes, including some known functional genes and
annotated unknown functional genes, were linked to
the six quality traits. 7aRPPI3L1 was found to be
associated with flour colour among the annotated
unknown functional genes. Wheat cultivars or lines
with the TaRPP13L1-Bla allele showed considerably
higher flour redness and lower yellowness than those
with TaRPPI3LI-BIb in the Chinese wheat natural
population and the bi-parental population. This study
provided valuable information for further dissection
of the genetic basis of flour colour and also provided
potential genes or genetic loci for marker-assisted
selection to improve the process of breeding quality
wheat (Chen et al. 2019b). The aforementioned suc-
cessful examples of genes discovered using GWAS
give strong evidence that GWAS can be utilized as a
part of a rapid gene-cloning strategy.

Researchers may have been misled by early opti-
mism regarding QTL deployment in populations
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using marker-assisted selection. Because favour-
able alleles frequently have population-specific
effects, QTL found in one population may not have
the same amount of effect in other populations. This
could be the result of epistatic interactions between
the QTL and the total genetic background, resulting
in low penetrance and varying degrees of expres-
sion (Gaire et al. 2020). After interrogating simul-
taneously, a large number of QTLs/alleles in natural
populations through GWAS, bi-parental populations
can be used to validate a subset of the detected QTLs.
This validation step is required to choose a parental
line confirmed to have the favourable allele that can
be used as a donor in the marker-assisted breeding
program. For instance, a GWA study identified sev-
eral QTLs associated with grain yield, yield compo-
nents, and plant water status in wheat. Fourteen of
these QTLs detected as significant in at least three
environments in the GWAS were further validated
using a panel of eight bi-parental mapping popula-
tions (Zhang et al. 2018). QTL identified and vali-
dated in this study provided beneficial information
for the improvement of wheat under full and limited
irrigation.

Moreover, GWAS results can also be validated
using meta-QTL analysis. For instance, a GWAS
analysis identified a total of 13 and 11 significant
MTAs for fertile tiller number and total tiller num-
ber, respectively, in Iranian wheat under varying
water regimes (Bilgrami et al. 2020). Then, a meta-
analysis was conducted using 30 previously published
independent studies, which led to the identification
of 30 meta-QTL regions on 11 wheat chromosomes,
that validated at least 5 significant MTAs (identified
through GWAS) associated with the trait in ques-
tion (Bilgrami et al. 2020). GWAS offers the oppor-
tunity to identify genes that contribute to naturally
occurring variation in complex quantitative traits.
However, GWAS relies largely on the statistical asso-
ciation, so functional validation is necessary to make
strong claims about gene function. The genes identi-
fied through GWAS can be validated using differ-
ent strategies including transgenesis, gene silencing,
gene, and genome editing (Curtin et al. 2017).

GWAS can be considered an exploratory analysis
for the right selection of true segregating genotypes/
accessions that may be used as parents in the bi-
parental mapping population, as well as for further
genetic and molecular validation of the associations

(Alqudah et al. 2020). GWAS can also be utilized
to get insights into breeding-program variation (the
genetic variation in the natural population used to
develop improved breeding material) or MAS (where
candidates are screened for target markers, their phe-
notypes are predicted based on allelic states, and
then selections are made based on these predictions)
because the association mapping population can be
considered as a source of favourable alleles that are
not or rarely present in the bi-parental populations.
QTLs/MTAs identified through GWAS can be fol-
lowed by MAS if a significant proportion of trait
genetic variation is explained by the associated mark-
ers. Initial limitation of retrieving large number of
loci based on hundreds of identified SNPs through
simple MAS was practically not possible and required
re-genotyping making it difficult cost-wise; however,
platforms now have come up for multiplexed SNP
identification which may now lead to practical utiliza-
tion of information generated through GWAS or GS.
For instance, the AgriSeq targeted GBS can target and
uniformly amplify the hundreds to thousand of mark-
ers in a single PCR reaction utilizing a highly efficient
multiplexed PCR chemistry (Gujjula et al. 2019). A
targeted sequence-based, scalable, and flexible mul-
tiplexed genotyping technology known as KeyGene
SNPSelect technology was also proposed which
facilitates the selection of most informative SNPs (by
adding or removing loci), permitting cost efficient
yet highly informative genotyping in a custom-made
fashion (Hogers et al. 2018). Most recently in 2020,
a method known as SNP-seq was developed which
combines the advantages of multiplex PCR amplifica-
tion and high-throughput sequencing. This is flexible
both in number of SNPs and samples targeted, yields
high accuracy, particularly when genotyping genome
wide perfect SNPs with high polymorphism and con-
served flanking sequences, and is also cost-effective
(Zhang et al. 2020a). Under significant epistasis,
interacting loci distributed across the genome alter the
outcome of a major single-locus QTL. The epistatic
background influence limits the usefulness of QTLs
in other populations (Korte et al. 2012; Bocianowski
2013). The QTL and the interacting loci act as a pack-
age within the specific genetic background of the dis-
covery population (Bocianowski 2013); in these sce-
narios, special statistical techniques may be required
to identify and minimize background epistasis effects.
Xavier et al. (2015) (Bocianowski 2013) advocated
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simultaneously assessing marker effects in different
populations to eliminate variations in QTL phasing,
genetic background, and effect sizes from one popu-
lation to another (Bocianowski 2013). Most recently
in 2021, Malosetti et al. combined a QTL discovery
method employing pre-breeding populations that
used intensive phenotypic selection for the target trait
across several plant generations with accelerated gen-
eration turnover (i.e. ‘speed breeding’) to allow the
cycling of multiple plant generations each year. They
demonstrated that QTL detection using breeding pop-
ulations under selection for the target trait can detect
QTLs associated with the trait in question and that the
frequency of the favourable alleles gets increased as
a response to selection, thereby validating the QTLs
identified. This is a useful opportunistic approach that
may provide QTL information that is more readily
transferred to breeding applications (Malosetti et al.
2020). They also envisaged great potential for inte-
grating speed breeding with GWAS, accelerating the
rate of crop improvement.

GWAS-assisted genomic selection

Conventionally plant breeders used to rely on the use
of phenotypic information for selections of desir-
able plants in the field. With the development of high
throughput genotyping tools, the selection process
got complemented with the use of MAS. The MAS
allows the rapid selection of superior genotypes by
identifying QTLs having a major effect on the trait.
Still, it fails in most of the complex quantitative traits
in crop plants, which are usually controlled by a
large number of small-effect QTLs (Xu and Crouch
2008). Furthermore, these small effect QTLs are
highly affected by environmental conditions, different
genetic backgrounds, and QTL by environment inter-
actions (Bernardo 2016). Even linkage and associa-
tion mapping have not been able to properly account
for such small effect QTLs. Moreover, MAS is used
to introduce a single gene at a time and thus increas-
ing the time required for variety release especially
in wheat, which has a large number of contributing
genes due to its hexaploid nature. Hence, genome-
wide prediction (GP) or genomic selection (GS) came
in handy, which uses the whole genome-wide marker
information for predicting the breeding value of the
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plant, known as genomic estimated breeding values
(GEBVs), and these GEBVs further assist in making
selection (Meuwissen et al. 2001).

Originally proposed by Meuwissen et al. (2001) in
animal breeding, GS could be considered an upgraded
version of MAS, where all the markers are used to
calculate the GEBVs of the plant. It is believed that
each QTLs is in LD with at least one of the molecular
markers, and this marker accounts for all the genetic
variances for that QTLs in the GS models for predict-
ing GEBVs (Lorenz et al. 2011). Genomic selection
requires a training population that is genotyped and
phenotyped, and the generated information is then
used for defining the GS model. This model calcu-
lates the effect of all molecular markers using phe-
notypic data from the training population in the GS
model (Rutkoski et al. 2011). Once the GS model is
trained, it is used to predict the GEBVs of the breed-
ing/testing population, which is only genotyped. Plant
breeders can choose the parents for inter-mating, gen-
erate segregating population, genotype the popula-
tion, make the selection based on these GEBVs, and
develop cultivars without further testing, thus acceler-
ating the breeding cycle and ultimately increasing the
genetic gain per unit time (Bernardo 2016). Genomic
selection is being applied in breeding programs for
the selection of parents for crossing, selection of top-
performing lines in the breeding trials, and prediction
of multi-environmental trials breeding values, and
assists in the maintenance of high performing lines in
the program (Sandhu et al. 2021b, a).

Several factors affect the GS prediction accura-
cies, namely, the heritability of the trait, relatedness
between training and testing population, sample size,
cross-validation scenario, marker density, and GS
model used (Lorenz et al. 2011; Sandhu et al. 2021c¢).
Some of the traits in wheat are controlled by large
effect QTLs, and hence, the inclusion of those QTLs’
effects in the GS model may provide an excellent
opportunity (Fig. 6). Several studies have shown that
incorporation of GWAS results as a fixed effect in GS
models resulted in an increase in prediction accuracy
for quantitative traits (Boichard et al. 2012; Bernardo
2014). Bernardo (2014) showed in a simulation study
that the inclusion of a QTL as a fixed effect in GS
model which explains more than 10% of the genetic
variance resulted in a significant increase in model
performance. GWAS-assisted GS has several benefits
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as it does not require the additional data and results in
the increase of prediction accuracy, and furthermore,
this is easily accessible to plant breeders without the
need for considering the underlying genetic architec-
ture of the trait (Spindel et al. 2016), and the struc-
ture of a population can be accounted by using PCA
as a fixed effect in the GS models. In a recent study
from CIMMYT, authors showed that the inclusion of
GWAS loci as a fixed effect in the GS model results
in a 9 to10% increase in prediction accuracy for grain
yield in spring wheat (Sehgal et al. 2020). Similarly,
Odilbekov et al. (2019) demonstrated the ability of
GWAS-assisted GS for predicting resistance to Sep-
toria tritici blotch in winter wheat. They showed that
prediction accuracy increased from 47 to 62% with
the inclusion of all significant QTLs in the GS model.
The GWAS-assisted GS has demonstrated significant
results for traits controlled by a smaller number of
QTLs; however, for grain yield, significant improve-
ment has not been observed.

Mixed models used in GS take only the additive
genetic effects into account completely ignoring
the dominance, epistatic, and environmental vari-
ances (Crossa et al. 2019). With the rapid adoption
of machine learning (ML) and deep learning (DL)
approaches in other disciplines, there is also a need
for these highly efficient approaches for conducting
GS in wheat breeding. ML and DL models are flex-
ible in regard to modelling the large and small effect
QTLs in the GS model, and hence, these models
have completely overcome the need for separately
including the GWAS-assisted fixed effects in the
GS models. ML and DL models have shown their
superiority for predicting grain length (Ma et al.
2018b), grain yield (Sandhu et al. 2021c), and rust
resistance (Gonzalez-Camacho et al. 2018) in wheat.
These models remove the assumptions of traditional
GS models during training of the models due to the
use of nonlinear activation functions (Bellot et al.
2018; Sandhu et al. 2021c). Commonly used models
are random forest, reproducing kernel Hilbert space,
support vector machine, multilayer perceptron, con-
volutional neural network, and recurrent neural
network. This review opens up the avenue where
we can shift from GWAS to the GS using ML and
DL models for making the best selection, and thus
increasing the genetic gain in crop plants for com-
plex quantitative traits.

@ Springer

Transcriptome-wide association studies (TWAS)
and probabilistic TWAS (PTWAS)

GWAS is performed in humans, animals, and plants
to associate the various traits to genomic loci (Mac-
Arthur et al. 2017). Most GWAS loci lie in the
intronic region of the genome; therefore, informa-
tion about casual genes for the gene-trait association
is largely lacking. GWAS has failed to determine the
exact causal genes that have a major effect on the trait
variant and causal genomic loci that drive the asso-
ciation (Gallagher and Chen-Plotkin 2018). This limi-
tation has led to the development of new methods to
prioritize causal genes at GWAS loci. Transcriptome-
wide association study (TWAS) is one such method,
which uses gene expression data to determine gene-
complex trait association and prioritizes likely causal
genes at GWAS loci (Gamazon et al. 2015). Tran-
scriptome-wide association study follows a three-step
procedure: firstly, it uses expression panels to train
the simulation models for expression prediction from
genotype; secondly, these models are used to predict
an individual’s expression in the GWAS cohort; and
the final step involves the estimation of a statistical
association between predicted gene expression and
phenotypic traits. Transcriptome-wide association
study could be performed with individual data and
summary of GWAS data using PrediXcan (Gamazon
et al. 2015) and Fusion (Gusev et al. 2016) or S-Pre-
diXcan (Barbeira et al. 2018), respectively.

However, it is also found that TWAS makes false
prioritization with expression panels from non-related
tissues. TWAS’s Fusion platform performs better in
prioritizing genes at loci than two simple baselines,
i.e. random per locus ranking and expression rank-
ing (Wainberg et al. 2019). But TWAS is challenged
by two factors, i.e. tissue biasness and co-regulation.
Tissue biases can be reduced by using mechanisti-
cally most related tissue. If tissue is too small to get
a sufficient sample size, then other related tissues can
be taken to increase the sample size. Co-regulation
can be addressed by using TWAS fine mapping. But
TWAS fine mapping is more challenging to perform
than GWAS fine mapping. Therefore, there is a need
for more computational methods along with TWAS
to make it perform better in gene prioritization at
GWAS loci. The other two limitations of TWAS are
that (i) it does not validate the causal implications of
association and (ii) it lacks estimation of the causal
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effect of gene-trait associations (Zhang et al. 2020b).
Probabilistic transcriptome genome-wide association
studies (PTWAS) address these limitations of TWAS
analysis by testing relationships between causal genes
and complex traits and allow validation of causal
implication and estimation of the causal effect.

Probabilistic transcriptome genome-wide asso-
ciation studies use instrumental variance analysis
and probabilistic eQTLs annotations to estimate the
causal relationship between causal gene expression
and phenotypic traits (Zhang et al. 2020a, 2020b).
It is more powerful than other existing methods as
it provides causal implications and estimates tissue-
specific genes to trait effect using multi-tissue eQTL
data for analysis. The phenome-wide association
study (PheWAS) is a high-throughput tool that deter-
mines the association between the genotypic vari-
ation and phenotype of the organism to get a better
understanding of the effect of genotype. GWAS deter-
mines genotype-phenotype association by linking a
number of genotypic variants like SNPs to a pheno-
typic trait or disease, whereas PheWAS studies the
link of genotypic variation to a number of phenotypic
traits. GWAS focuses on the study of a single target
phenotype over a number of genotypes (maybe up to
500,000 SNPs) and PheWAS studies of single target
genotype to a number of phenotypes (up to 1,000).
Phenome-wide association study was recently used
in the field of medicines to identify the association of
genetic loci with many diseases. However, the appli-
cation of PheWAS in the field of plant science is not
explored yet.

Conclusion and future perspectives

With the arrival of high-throughput next-genera-
tion sequencing technologies and the development
of various efficient statistical models, GWAS has
become a method of choice for the genetic dissec-
tion of complex quantitative traits in many crops
including wheat. The information generated in vari-
ous GWA studies reporting 46,940 loci is appar-
ently for great use in breeding and may form the
base of meta-GWAS analysis, while actual utilization
of these is not apparent and we are yet to see them
being transferred from publications to actual varie-
ties. Using GWAS, the genetic architecture of several
different agronomic, physiological, and quality traits

has been widely investigated and thousands of MTAs
or causal SNPs have been revealed for these studied
traits in wheat (Tables 3, 4, 5, and 6). These identified
causal SNPs or MTAs have largely allowed the iden-
tification of candidate genes for different complex
traits (Tables 3, 4, 5, and 6). The use of these identi-
fied significant MTAs as fixed effects in the genomic
prediction models has also resulted in the increased
prediction accuracy of GS for various traits in wheat
(Sehgal et al. 2020) which indicates that these highly
significant and robust genomic regions identified via
GWAS can largely improve the utility of GS in future
wheat breeding programs.

Almost 14 years have passed since the first paper of
association study in wheat was published (Breseghe-
llo and Sorrells 2006), but still, GWAS faces some
challenges which need to be addressed carefully to
exploit this important approach. These challenges or
limitations include false discovery rate (FDR), ‘large
p small n problem’, markers with rare genetic variants
and rare alleles, family-wise error rate (FWER), and
reproducibility of identified loci. These issues have
been discussed elsewhere and solutions have also
been sought to manage these issues/concerns (Gupta
et al. 2019a). Moreover, epistatic interactions and G
X E interactions have largely been ignored in wheat
GWAS, although these genetic interactions have been
demonstrated to be important for complex quantitative
traits (Sehgal et al. 2017). Improved statistical mod-
els/methods and the experimental designs for dissect-
ing these genetic interactions need to be explored in
the future. Furthermore, for a detailed understanding
of the underlying molecular mechanisms of genotype-
phenotype relationships, causative genes along with
other causative sequence variants need to be identi-
fied. Also, we do not have enough knowledge of the
potential effects of sequence variants on untranslated
regions (UTRs) and promoter regions. Integrated use
of multi-omics data can also help in getting insights
into these molecular mechanisms. Various modifica-
tions of GWAS like eGWAS, PWAS, and TWAS have
emerged but these are still relatively new concepts
to the wheat breeders/geneticists. A new method,
meta-GWAS, has recently emerged that can enable
more robust and significant genomic regions associ-
ated with the target traits. Nevertheless, a few meta-
GWA studies have been used within a wheat breed-
ing program to reveal associated genomic regions
and directly implement genomics-assisted breeding.

@ Springer



1 Page40o0f52

Mol Breeding (2022) 42: 1

Moreover, with the increasing interest in the ML and
DL techniques, the analysis of multi-dimensional data
will become much easier soon (Sandhu et al. 2021a;
c). With these advancements, it will be possible to
develop the networks that might be involved in the
expression of target phenotypes of the complex traits.
We believe that these efforts will greatly facilitate
molecular breeding in wheat.
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