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Abstract  Current combined challenges of rising 
food demand, climate change and farmland degra-
dation exert enormous pressure on agricultural pro-
duction. Worldwide soil salinization, in particular, 
necessitates the development of salt-tolerant crops. 
Soybean, being a globally important produce, has its 
genetic resources increasingly examined to facilitate 
crop improvement based on functional genomics. In 
response to the multifaceted physiological challenge 
that salt stress imposes, soybean has evolved an array 
of defences against salinity. These include maintain-
ing cell homeostasis by ion transportation, osmoregu-
lation, and restoring oxidative balance. Other adap-
tations include cell wall alterations, transcriptomic 

reprogramming, and efficient signal transduction 
for detecting and responding to salt stress. Here, we 
reviewed functionally verified genes that underly 
different salt tolerance mechanisms employed by 
soybean in the past two decades, and discussed the 
strategy in selecting salt tolerance genes for crop 
improvement. Future studies could adopt an inte-
grated multi-omic approach in characterizing soy-
bean salt tolerance adaptations and put our existing 
knowledge into practice via omic-assisted breeding 
and gene editing. This review serves as a guide and 
inspiration for crop developers in enhancing soybean 
tolerance against abiotic stresses, thereby fulfilling 
the role of science in solving real-life problems.

Keywords  Soybean · Salt stress · Osmotic 
regulation · Ion homeostasis · Transcription 
regulation · Oxidative stress response

Introduction

The forecasted population growth in the 21st century 
will not only bring about increased demand in food 
production, but also accelerated urbanization. The 
current agricultural output will no longer be sufficient 
to support the increasing population, while urbaniza-
tion will shrink the area of available farmland, wors-
ening the situation. Although breeders and scientists 
are dedicated to increasing crop yield, the increased 
yield will not be sufficient to satisfy the demand. 
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Exploring ways of utilizing salt-affected land for 
crop production appears to be an attractive option for 
increasing crop production (Shrivastava and Kumar 
2015). To exacerbate the situation, agricultural irriga-
tion is a major driving force of farmland salinization 
(Hassani et  al. 2021). At the same time, changes in 
precipitation patterns and global warming due to cli-
mate change have been predicted to massively alter 
the distribution of salinized soil (Hassani et al. 2021). 
To better utilize saline soil and prevent yield loss 
due to farmland salinization, researchers are deter-
mined to gain a better understanding of the salt stress 
responses in crops to improve their salt tolerance 
through molecular breeding or genetic engineering.

Salt stress is caused by the presence of excessive 
salt in the soil, which hampers the normal physiology 
of plants by inducing multiple stressors simultane-
ously (Fig.  1a). In turn, plants evolved acclimatory 
or adaptive responses to salinity (Fig. 1b). Salt stress 
includes the primary stresses of osmotic and ionic 
imbalance, and secondary stresses caused by reac-
tive oxygen species (Ashraf 1994) and cell flaccidity 
(Yang and Guo 2018). The excessive salt content in 
the soil lowers the osmotic potential, and thus reduces 

the availability of water for uptake by the plant root. 
This causes physiological drought in the plant, where, 
despite the presence of water in the soil, the plant can-
not uptake enough water through the roots to compen-
sate for the water loss through transpiration. In some 
cases, the ionic salt is absorbed concurrently with the 
soil water, then transported and built up in the aer-
ial parts of the plant. The accumulation of the toxic 
ionic salt causes ionic stress and disrupts cellular 
functions. The osmotic and ionic stresses then trigger 
the production of ROS, which damages macromol-
ecules such as DNA and lipid, leading to cell death. 
Furthermore, net water loss causes cells to collapse 
from the reduced turgor pressure, which is acerbated 
by cell wall impairment caused by ROS. The ability 
to eliminate or tolerate these stress components is 
hence the key to salt tolerance. Plants have evolved 
mitigation towards each and different components 
of salt stress, which have been described in detail 
by many well written reviews (Deinlein et  al. 2014; 
Hanin et al. 2016; Phang et al. 2008; van Zelm et al. 
2020). Briefly, at the molecular level, ion transporta-
tion by specialised membrane proteins can restrict the 
negative impacts of excess salt ions. Water uptake is 

Fig. 1   Salt stress and molecular tolerance mechanisms in 
plants. Each mechanism and its genetic components in soy-
beans are discussed in detail in individual sections. Abbrevia-

tions: NaCl, sodium chloride; ROS, reactive oxygen species; 
CW, cell wall; ABA, abscisic acid
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enhanced, and water loss is reduced by accumulating 
osmoprotectants to increase the osmolarity inside the 
cytoplasm. Antioxidants that scavenge and neutralise 
excessive ROS are produced to restore the oxidative 
balance. The loss of cell structural support is com-
pensated by cell wall strengthening, and later loos-
ening to enable growth and elongation. Meanwhile, 
all these responses are regulated and enabled by the 
interplay between transcription regulation and signal 
transduction.

Soybean (Glycine max) is a relatively sustain-
able crop. It could acquire nitrogen through sym-
biotic nitrogen fixation in the nodules. The surplus 
of organic nitrogen can also replenish soil fertility. 
Therefore, compared to other major crops, soybean 
has a lower dependency on synthetic nitrogen ferti-
lizer, of which production and utilization are energy-
demanding and polluting to the environment. Soy-
bean seeds contain roughly 40% protein and 20% oil, 
making it a good alternative to animal protein and 
lipid. With soybean being a primary producer, its 
consumption minimizes the energy and material loss 
during trophic transfer. Owing to its importance, soy-
bean is also predicted to become a dominant crop in 
Africa in the future (Foyer et al. 2019).

Soybean is regarded as a moderately salt-tolerant 
crop (Ashraf 1994), and thus its production and acre-
age expansion are also hampered by soil salinization. 
However, unlike the model plant Arabidopsis, there 
is a lack of mutant collection for soybean. Screening 
soybean mutants for salt-tolerance genes is, hence, 
not a viable strategy. Twenty years ago, salt tolerance 
research in soybean was confined to physiological 
characterization and some low-resolution mapping. 
There were limited identification and characteriza-
tion of functional genes. However, in the past twenty 
years, the advances in sequencing technologies have 
enabled the genome-wide identification and charac-
terization of gene families with well-annotated refer-
ence genomes. Moreover, sequencing-based genotyp-
ing methods, such as genotyping-by-sequencing and 
genome resequencing, have generated high-density 
markers for precision mapping of genes related to 
salt tolerance. Transcriptomic studies have also been 
able to detect global gene expression changes under 
salt stress. We have previously reviewed the soybean 
salt tolerance mechanisms before the genomic age 
(Phang et  al. 2008). In this review, we will explore 
the progress made in the identification and functional 

characterization of salt tolerance genes from soybean 
in the past twenty years (Fig. 2). From that, we will 
discuss the selection priority of various salt-tolerance 
mechanisms and suggest methods to incorporate our 
knowledge into field application.

Ion transportation

Sodium (Na+) is not an essential nutrient for plants. 
However, Na+ can serve as a subpar substitute of 
potassium (K+), an essential macronutrient of plant, 
when K+ is scarce (Maathuis 2014). Meanwhile, 
chloride (Cl−) is a micronutrient of higher plants 
that is involved in vital functions such as photosyn-
thesis, growth and development etc. (Geilfus 2018). 
Although sodium and chloride are beneficial to plants 
at low dosage, excessive amount of either one could 
be toxic. Therefore, to survive salt stress, soybean 
plant would need to remove excessive NaCl. Ion 
transportation is the major mechanism for soybean 
plants to maintain ion homeostasis. Different classes 
of ion transporters are localized in different subcellu-
lar membrane to alleviate salt stress through removing 
excessive NaCl from the cell, compartmentalization 
of NaCl into vacuole, and restricting the movement 
of NaCl from root to shoot (Table S1). Furthermore, 
it is reported that under salinity, H+-ATPase and 
H+-PPase located in tonoplast are more active, which 
provide the proton gradient to drive the active trans-
port of ions from cytoplasm into vacuoles (Yu et al. 
2005).

Cation transporters

In the past two decades, the major breakthrough for 
salt tolerance mechanisms in soybean is the identifi-
cation of the cation/proton antiporter (CPA)-encoding 
gene, GmCHX1, which is the major determinant of 
the salt tolerance level of soybean (Guan et al. 2014; 
Qi et al. 2014; Qu et al. 2021). A salt tolerance-con-
ferring major quantitative trait locus (QTL) has been 
mapped repeatedly to chromosome 3 of the soybean 
genome since 2004 (Ha et  al. 2013; Hamwieh et  al. 
2011; Hamwieh and Xu 2008; Lee et  al. 2004; Qi 
et al. 2014), but it was not until 2014 that the causal 
gene within this QTL was cloned.

GmCHX1 was first cloned through QTL mapping 
using a wild-cultivated soybean recombinant inbred 
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population (Qi et al. 2014). It was later further con-
firmed by map-based cloning using other recombi-
nant populations and genome-wide association stud-
ies (GWAS) with different nomenclatures, GmNcl/
GmSALT3 (Guan et  al. 2014; Patil et  al. 2016). To 
prevent confusions in nomenclature, we will use the 
gene name reported in the first literature, GmCHX1 

in the following sections. The protein sequence of the 
salt tolerance allele is largely conserved in salt-toler-
ant soybean varieties, while natural variations of this 
gene, either in the promoter region or in the coding 
region, have led to salt sensitivity (Guan et al. 2014; 
Qi et al. 2014). GmCHX1 is predominantly expressed 
in the tissue associated with the root vasculature to 

Fig. 2   Overview of subcellular localization of soybean salt 
tolerance genes at cellular level. Light and dark green boxes 
indicate cation and anion transporters. respectively. CLC, chlo-
ride/proton exchanger or chloride channel; CHX, cation/H+ 
exchanger; NDH, subunit of NAD(P)H dehydrogenase com-
plex; NHX, SOS (Salt Overly Sensitive), Na+/H+ exchanger. 
Genes involve in regulation of oxidative balance are colored 
in red. GmCOL1a, CONSTANS-LIKE 1a protein; GmLEA 
and GmP5CS are downstream target genes of GmCOL1a. 
GmPAP3, purple acid phosphatase 3; GmPP2A-B’71, B” 
subunit of phosphatase 2A; GmUCB2, ubiquitin-conjugating 
enzyme. Genes involve in cell wall remodeling are shown in 
brown. GmCrRLK1L20, Catharanthus roseus RLK1-like pro-
tein; GmDNAJC7, co-chaperone DNAJ protein; GmRD22, 
BURP-domain protein. Transcription factors are indicated in 
purple. bHLH, basic/helix-loop-helix protein; bZIP, basic leu-
cine-zipper; DREB, dehydration responsive element-binding 

proteins; ERF, ethylene-responsive factors; MYB, MYB tran-
scription factors; NAC, NAC (NAM, ATAF, CUC) transcrip-
tion factors; WRKY, WRKY transcription factors; TFs, other 
transcription factors. Blue boxes indicate genes involve in sig-
nal transduction. GmCam4, calmodulin; GmCBL1, GmCBL4, 
calcineurin B-like protein; GmCBP60A-1, calmodulin-binding 
protein; GsCBRLK, calcium-dependent calmodulin-binding 
receptor-like kinase; GmCDPK3, calcium-dependent protein 
kinase; GmCIPK2, GmCIPK21, GmPKS4, calcineurin B-like 
protein interacting kinase; GmCML27, calmodulin-like pro-
tein. GmDi19-5, drought-induced protein; GmFBX176, F-box 
protein; GmMMK1, mitogen-activated kinase; GmNARK, 
nodule autoregulation receptor kinase; GmPUB21, U-box 
E3-ubiquitin ligase; GsRLCK, receptor-like cytoplasmic ser-
ine/threonine protein kinase; GmSAP16, stress associated pro-
tein; GmSK1, S-phase kinase-associated protein 1; Gs5PTase8, 
inositol polyphosphate 5-phosphatase
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restrict the loading of Na+ into the shoot, protecting 
the shoot from salt damage (Guan et al. 2014; Qi et al. 
2014; Qu et al. 2021). It is known that GmCHX1 is 
localized in the ER membrane, but the molecular 
mechanism of how this protein restricts the loading 
of Na+ into the shoot is still largely unknown. Inter-
estingly, although GmCHX1 serves primarily as a 
CPA, transporting Na+ and K+ through the exchange 
of H+ in the root (Jia et al. 2021; Qu et al. 2021), a 
functional GmCHX1 is also needed for Cl− exclusion 
in the shoot in a root-independent manner (Qu et al. 
2021).

Besides GmCHX1, the salt tolerance function of 
another CPA-encoding gene, GmCHX20a, which is 
located adjacent to GmCHX1 in the soybean genome, 
was also investigated. Although both GmCHX1 and 
GmCHX20a are homologs of AtCHX20 in Arabi-
dopsis, the functions of GmCHX1 and GmCHX20a 
have diverged from those of AtCHX20 (Jia et  al. 
2021). First of all, the expression of GmCHX1 and 
GmCHX20a showed a negative correlation in the 
root upon salt treatment (Jia et  al. 2021). That is, 
the expression of GmCHX1 was suppressed by the 
initial salt shock and then recovered after prolonged 
treatment while that of GmCHX20a was highly 
induced upon salt shock but was slowly reduced 
after prolonged treatment (Jia et  al. 2021). When 
these genes were overexpressed in tobacco Bright-
Yellow 2 (BY-2) cells, the plasma membrane-local-
ized GmCHX20a enhanced the uptake of Na+ while 
GmCHX1 enhanced its exclusion (Jia et  al. 2021). 
Consistent with this observation, the ectopic expres-
sion of GmCHX20a in transgenic Arabidopsis and 
soybean hairy root led to higher salt sensitivity. On 
the contrary, the transgenic BY-2 cells expressing 
GmCHX20a showed higher osmotic stress toler-
ance (Jia et  al. 2021). One possible explanation is 
that GmCHX20a may function as an osmotic regula-
tor by recruiting Na+ to combat osmotic stress dur-
ing the early phase of salt stress before GmCHX1 
kicks in. A later study demonstrated that the level of 
histone 3 lysine 9 acetylation (H3K9ac) at the pro-
moter of GmCHX20a was decreased upon mild salt 
stress priming treatment, implying that switching off 
GmCHX20a by salt stress priming may contribute to 
the enhanced salt tolerance in subsequent salt stresses 
(Yung et al. 2022).

Indeed, another major clade in the CPA fam-
ily is the Na+/H+ exchanger (NHX). There are 

9–10 NHX-encoding genes in the soybean genome 
(Chen et  al. 2015b; Joshi et  al. 2021). For example, 
GmSOS1 is the homolog of the well-characterized 
AtSOS1/AtNHX7 (Arabidopsis Salt Overly Sensi-
tive 1/Arabidopsis Na+/H+ exchanger 7), which has 
played crucial roles in salt tolerance in Arabidopsis 
(Qiu et al. 2002). However, unlike AtSOS1, which has 
two copies in the Arabidopsis genome, GmSOS1 is a 
single-copy gene in the soybean genome (Zhang et al. 
2022c). The expression of GmSOS1 is salt-responsive 
and in a dosage-dependent manner in the root (Zhang 
et al. 2022c). The ectopic overexpression of GmSOS1 
can complement the salt overly sensitive phenotype 
of atsos1 mutant, suggesting that the function of the 
SOS1 homologs is essentially conserved (Nie et  al. 
2015). A loss-of-function mutation of GmSOS1 in 
Williams 82 and Jack backgrounds increased the 
sensitivity of the plant toward salt stress in terms of 
the survivability in 160 mM NaCl treatment (Zhang 
et al. 2022c). It was observed that the gmsos1 mutants 
had lower net Na+ fluxes but higher K+ fluxes in the 
root meristem zone. The impaired ion fluxes signifi-
cantly increased and decreased the Na+/K+ ratio in 
the root and leaf, respectively, of the mutants (Zhang 
et al. 2022c). The imbalance in monovalent ions may 
be the reason for the salt sensitivity. This imbalance 
of ions also subsequently perturbed the expression 
of ion transporter-encoding genes such as KEA2, 
GmCHX20b, NCX1, and CIPK9 (Zhang et al. 2022c).

GmNHX1 is highly induced by NaCl or polyeth-
ylene glycol (PEG) treatment. It is localized in the 
tonoplast membrane and responsible for the com-
partmentalization of Na+ into vacuoles under salt 
stress (Li et  al. 2006). The ectopic expression of 
GmNHX1 enhanced the salt tolerance of BY-2 cells 
(Li et  al. 2006), Arabidopsis (Sun et  al. 2019a), 
soybean hairy root (Wang et  al. 2011a), and Lotus 
corniculatus L. (Sun et  al. 2006). GmNHX5 was 
responsive to NaCl treatment in the salt-tolerant 
cultivar Jidou-7, but not in the salt-sensitive culti-
var Mustang (Sun et al. 2021). The overexpression 
of GmNHX5 in transgenic soybean alleviated the 
salt stress symptoms and significantly reduced Na+ 
accumulation while enhancing K+ accumulation in 
the leaf and root (Sun et al. 2021). Nevertheless, it 
is still unclear how GmNHX5 alters the accumula-
tion of these ions.

GsCHX19.3 (Jia et  al. 2017) and GmNHX6 are 
two CPA-encoding genes that are responsive to 
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salt-alkaline stress (Jin et  al. 2022a). Although 
GsCHX19.3 was localized to the plasma membrane 
while GmNHX6 was localized to the Golgi, they 
both facilitated the uptake of K+ and reduced Na+ 
accumulation under salt-alkaline stress in transgenic 
Arabidopsis to maintain a low Na+/K+ ratio (Jia et al. 
2017), which may be responsible for the higher salt 
tolerance of the transgenic Arabidopsis (Jia et  al. 
2017; Jin et al. 2022a).

The high-affinity K+ transporter (HKT) family is 
another important class of ion transporters conferring 
salt tolerance in plants (Singh and Lone 2022). There 
are six HKT-encoding genes identified in the soy-
bean genome, namely GmHKT1;1-GmHKT1;6 (Chen 
et al. 2014). Thus far, only the function of GmHKT1;1 
(GmHKT1) and GmHKT1;4 have been character-
ized. The ectopic expression of either GmHKT1;1 or 
GmHKT1;4 was sufficient to confer salt tolerance in 
transgenic tobacco plants (Chen et al. 2014, 2011). Like 
other salt tolerance-conferring ion transporters, both of 
these HKTs reduced Na+ and improved K+ accumula-
tion in the transgenic plants upon salt treatment when 
compared to the wild type (Chen et al. 2014, 2011).

Through QTL mapping using a recombinant inbred 
population of Kefeng No. 1 and Nannong 1138–2, QTLs 
related to salt tolerance at the germination stage, in 
terms of imbibition rate, germination index, germination 
potential and germination rate, were mapped to chro-
mosome 8 in the soybean genome (Zhang et al. 2019a). 
Seventeen single nucleotide polymorphisms (SNPs) sig-
nificantly associated with the salt tolerance of 211 soy-
bean accessions at the germination stage were also iden-
tified in the same regions (Zhang et al. 2019a). Amongst 
the polymorphic genes between the Kefeng No. 1 and 
Nannong 1138–2 within the region, only GmCDF1 
(soybean cation diffusion factor 1; Glyma.08g102000) 
was induced by salt stress and was highly differentially 
expressed between the two parental lines under salt 
stress (Zhang et al. 2019a). In general, a higher expres-
sion of GmCDF1 is associated with a lower salt toler-
ance, as illustrated by the expression study on soybean 
accessions with different salt tolerance, and by trans-
genic composite soybean plants with roots either over-
expressing or underexpressing GmCDF1 (Zhang et  al. 
2019a). Although the expression of GmCDF1 was posi-
tively associated with the accumulation of Na+ in the 
root and affected the expression of other salt tolerance-
related genes, the direct link between GmCDF1 and salt 
sensitivity is still unknown.

Some ion transporters involved in salt tolerance 
may not be directly involved in NaCl transporta-
tion. One example is the calcium/proton exchang-
ers (CAXs). A stress-responsive soybean transcript, 
GmCAX1, was found to be differentially expressed 
upon PEG, CaCl2, NaCl, ABA and LiCl treatments. 
Overexpression of GmCAX1 could alleviate the salt 
stress symptoms of transgenic Arabidopsis (Luo et al. 
2005), probably through increasing the accumulation 
of Ca2+ and reducing the accumulation of monovalent 
ions (Na+, K+, and Li+, if present) (Luo et al. 2005). 
Whether GmCAX1 alters the accumulation of mono-
valent ions through direct transportation or regulates 
ion transportation indirectly through calcium signal-
ing is still unknown.

Auto-inhibited Ca2+-ATPases (Rodrigues et  al.) 
regulate the cytosolic Ca2+ concentration that contrib-
utes to salt tolerance. A NaHCO3- and NaCl-respon-
sive gene, GsACA1, was cloned from wild soybean 
(Glycine soja) (Sun et  al. 2016). Transgenic alfalfa 
overexpressing GsACA1 showed better salt tolerance 
and higher chlorophyll content than the wild type 
plants upon salt treatment. Moreover, compared to the 
wild type, transgenic plants showed lower membrane 
permeability and a lower malondialdehyde (MDA) 
content but a higher content of proline, which is both 
an osmolyte and ROS scavenger (Sun et  al. 2016). 
GsACA1 probably regulates salt tolerance through cal-
cium signaling, but that requires further investigation.

Anion transporters

The chloride channel protein (CLCs) family is one of 
the crucial classes of chloride transporters involved 
in salt tolerance in plants (Wu and Li 2019). There 
are eight CLC-encoding genes in the soybean genome 
(Wei et al. 2019), while only two of them have been 
demonstrated to be involved in soybean salt toler-
ance. It was found that GmCLC1, CLC-b1, CLC-
b2, CLC-c1, and CLC-c2 were significantly induced 
by salt treatment in both the salt-sensitive cultivar 
N23674 and the salt-tolerant wild soybean BB52 
(Wei et  al. 2019). As the only member containing 
non-synonymous SNP between N23674 and BB52, 
GsCLC-c2 from the wild soybean BB52 was able 
to confer salt tolerance in composite soybean plants 
with hairy roots overexpressing GsCLC-c2 (Wei 
et al. 2019). The tonoplast-localized GsCLC-c2 could 
compartmentalize NaCl in the root and promote the 
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accumulation of NO3
− and K+ in the shoot to coun-

teract the damages caused by salt treatment (Wei 
et  al. 2019). An electrophysiology experiment using 
oocytes injected with GsCLC-c2 cRNA demonstrated 
that GsCLC-c2 could function as a pH-independent 
Cl− channel with a higher affinity towards Cl− and 
NO3

− (Wei et al. 2019).
GmCLC1 is another CLC-encoding gene. 

Although its expression in soybean was highly 
induced by both NaCl and PEG, its ectopic expres-
sion in BY-2 cells could only confer tolerance to salt 
but not PEG (Li et  al. 2006). Lucigenin staining of 
isolated vacuoles demonstrated that GmCLC1 could 
compartmentalize Cl− into the vacuoles upon NaCl 
treatment (Li et al. 2006). An electrophysiology study 
as well as sequence homology implied that GmCLC1 
is a Cl−/H+ antiporter (Wong et al. 2013). The ectopic 
expression of GmCLC1 could also confer salt toler-
ance to transgenic Arabidopsis, transgenic soybean 
hairy roots and transgenic hairy root composite plants 
(Wei et al. 2016). An in planta experiment suggested 
that GmCLC1 was able to compartmentalized Cl− in 
the root to prevent the accumulation of Cl− in the 
shoot (Wei et al. 2016).

Other transporters

Besides ion transporters, other kinds of transporters 
were shown to be involved in salt stress responses. 
Plasma membrane intrinsic proteins (PIPs) govern 
the water transport across the plasma membrane 
(Chaumont and Tyerman 2014). The expression of 
GmPIP1;6 was initially suppressed within the first 
few hours of salt treatment and then the gene was 
induced in the following days (Zhou et  al. 2014), 
probably due to its differential functions during the 
osmotic stress and ionic stress phases. Transgenic 
soybean plants overexpressing GmPIP1;6 showed 
better salt tolerance than the wild type in terms of 
growth, photosynthetic performance, and higher root 
hydraulic conductance under salt treatment condi-
tions (Zhou et al. 2014). Furthermore, the transgenic 
plants also bore lower Na+ contents than the wild type 
(Zhou et  al. 2014). Although it is still unsure how 
GmPIP1;6 confers salt tolerance, the major hypoth-
esis suggests that GmPIP1;6 serves as a filter for the 
soil water, by allowing water to enter the cell while 
blocking the uptake of NaCl to maintain the water 
status of the plant.

Apart from managing material transfer or serving 
as components of signal transduction pathways, trans-
porters are also essential for maintaining the energy 
status of the plant under salt stress. Active ion trans-
portation is an energy-intensive process. A collapse of 
energy production mechanism such as photosynthesis 
upon salt stress is usually used as an indicator of salt 
sensitivity. ndhB and ndhH are genes encoding the 
subunits of NAD(P)H dehydrogenase (NDH), which 
drives the cyclic electron flow for ATP production 
(He et  al. 2015). The expression of both ndhB and 
ndhH were induced by salt treatment at both the tran-
script and the protein levels. Furthermore, the expres-
sions of both genes were higher in both the salt-toler-
ant soybean S111-9 and the salt-sensitive Melrose in 
both normal and salt-treated conditions. Interestingly, 
upon salt treatment, Na+ was mainly compartmental-
ized in the vacuole of S111-9 and the chloroplast of 
Melrose, which could be the cause of the difference 
in salt sensitivity (He et  al. 2015). Although direct 
evidence is lacking, with these observations, it is pro-
posed that the active NDH-dependent cyclic electron 
flow might be important for providing ATP for active 
Na+ sequestration into the vacuole to enhance the salt 
tolerance of the plant (He et al. 2015).

Osmoregulation

Upon the early stage of salt stress, due to the sudden 
presence of high solute concentration in the soil, the 
water potential around the root is lowered, and water 
is thus unavailable to the plant. The water loss through 
transpiration supersedes the water uptake through the 
root, leading to water deficit. It is reflected in droop-
ing leaves within the first hour of salt treatment due to 
the loss of turgor pressure in the cells. In general, the 
soybean plant is able to cope with this osmotic stress 
within a few hours through different mechanisms.

Accumulation of osmoprotectants in the cell is 
one way to balance the osmolarity between the inside 
and outside of the cell. As mentioned in the previous 
section, pumping Na+ into the cells as a readily avail-
able osmolyte through active transportation could 
be a quick way to reduce the cellular water poten-
tial, though this strategy will likely result in subse-
quent ion toxicity (Jia et al. 2021). In addition to the 
ionic salt, the plant also produces and accumulates 
compactible metabolites such as onium compounds, 
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polyols/sugars, amino acids, and alkaloids (Phang 
et  al. 2008). Since this mechanism has been inten-
sively discussed (Hasegawa et al. 2000; Phang et al. 
2008), it will not be covered in this review.

Osmoregulation by late embryogenesis abundant 
proteins

Late embryogenesis abundant (LEA) proteins have 
been investigated broadly with respect to salt toler-
ance. The expressions of LEA-encoding genes were 
highly induced under different stress conditions such 
as drought, heat, cold and salt stresses (Bhardwaj 
et al. 2013; Hasegawa et al. 2000). The LEA proteins 
might function by (i) participating as antioxidant to 
safeguard against ROS (Sobhanian et  al.); (ii) stabi-
lizing the plasma membrane and proteins; (iii) filling 
the space and maintain the shape of cells upon dehy-
dration (Bhardwaj et al. 2013; Tunnacliffe and Wise 
2007). Given that LEA proteins are in general highly 
hydrophilic, the accumulation of LEA proteins in 
cells upon desiccation is proposed to be an important 
mechanism for osmoregulation. LEA proteins can be 
divided into four groups according to their structures, 
with each group serving a different function (Bhard-
waj et al. 2013; Tunnacliffe and Wise 2007; Wise and 
Tunnacliffe 2004).

The functions of a few soybean LEA proteins, such 
as PM11 and Em belonging to group I LEAs, have 
been studied (Lan et al. 2005; Cai et al. 2006). Trans-
genic Escherichia coli expressing PM11 underwent a 
short lag phase when growing in a medium contain-
ing 800 mM NaCl when compared to the vector-only 
control (Lan et  al. 2005). Apart from improving the 
salt tolerance of transgenic E. coli, Em could also 
confer salt tolerance in transgenic tobacco plants (Cai 
et al. 2006). Besides, group II LEA proteins such as 
GmLEA2-1 can also enhance salt tolerance. Overex-
pressing GmLEA2-1 in Arabidopsis showed improved 
tolerance under mannitol and NaCl treatment, in 
which the expression might be regulated by DREB-, 
DBF-, CBF-, MYC- or MYB-like transcription fac-
tors (Wang et al. 2018b).

The functions of PM30 and PM2, belonging to 
group III LEA proteins, have also been studied using 
transgenic E. coli. Similar to PM11, PM30 was able 
to confer tolerance to transgenic E. coli treated with 
800 mM NaCl (Lan et  al. 2005). Transgenic E. coli 

expressing PM2 did not gain any advantage over the 
control under 1100  mM sorbitol treatment, but it 
showed improvement in salt tolerance when treated 
with 500 mM NaCl and 500 mM KCl (Liu and Zheng 
2005). Furthermore, the expression of the 22-mer 
repeating region of PM2 in E. coli demonstrated a 
similar protective effect as the full-length PM2, sug-
gesting that the 22-mer repeating region is responsi-
ble for the tolerance (Liu and Zheng 2005).

Regulation of oxidative balance

Reactive oxygen species (ROS) are by-products of 
redox reactions in aerobic respiration and photosyn-
thesis (Dixon et al. 2010). Integral to plant metabolic 
pathways, ROS exhibit dual effects depending on 
their cellular concentrations (Das and Roychoudhury 
2014). At low levels, they act as signaling molecules 
or substrates for metabolism (Czarnocka and Karpin-
ski 2018), whereas at high concentrations, they cause 
oxidative damage to nucleic acids, proteins, lipids and 
pigments (Gill and Tuteja 2010). Salinity induces sec-
ondary oxidative stress by perturbing ROS homeosta-
sis, by increasing ROS production while slowing their 
removal (Chawla et al. 2013). The overaccumulation 
of ROS and their downstream products cause damage 
to biomolecules and cell tissue, and eventually lead to 
cell death (Czarnocka and Karpinski 2018; Gill and 
Tuteja 2010). Therefore, key adaptations in salinity 
tolerance usually entail enhanced ROS scavenging to 
restore oxidative balance at the transcription, trans-
lation and post-translational modification levels (Lv 
et al. 2014; Matsuura et al. 2010; Schmidt et al. 2013; 
Yu et  al. 2010). It is thus critical for crop improve-
ment research to investigate the genes responsible for 
ROS scavenging during salt stress.

To restore oxidative balance under salt stress, soy-
bean employs both antioxidant enzymes and second-
ary metabolites (Das and Roychoudhury 2014), of 
which synthesis is activated by high concentrations 
of ROS and malondialdehyde (MDA), a toxic electro-
phile produced from the peroxidation of polyunsatu-
rated fatty acid (Dixon et  al. 2010). Enzymatic anti-
oxidants catalyze direct ROS scavenging or reactions 
that replenish ROS decomposition substrates (Das 
and Roychoudhury 2014), while non-enzymatic anti-
oxidants serve as scavenging substrates or direct scav-
engers (Dogan 2011). These two groups complement 
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each other in ROS elimination. Thus far, a number of 
genes underpinning the production of antioxidants 
and their ROS scavenging pathways in soybean have 
been discovered and functionally verified (Table S2).

In general, superoxide dismutase (SOD) cata-
lyzes the conversion of superoxide radicals into less 
reactive hydrogen peroxide (H2O2) and oxygen mol-
ecules. Hydrogen peroxide is normally detoxified 
by catalase (CAT) (Rodrigues et  al.), peroxidase 
(POD) or ascorbate peroxidase (APX) coupled with 
the ascorbate–glutathione cycle (Das and Roychoud-
hury 2014). A class III peroxidase-encoding gene, 
GsPRX9, was cloned from a salt-tolerant wild soy-
bean (Jin et al. 2019). The expression of GsPRX9 was 
significantly induced by salt stress and the induction 
was more prominent in salt-tolerant wild soybeans, 
LY01-10 and LY16-08, than in the salt-sensitive culti-
vated soybean, Tianlong1, and the salt-sensitive wild 
soybean, LY01-06 (Jin et  al. 2019). Composite soy-
bean plants with roots overexpressing GsPRX9 appar-
ently grew better than those transformed with empty 
vector, with higher SOD and POD activities and 
glutathione concentration (Jin et  al. 2019). GsPRX9 
overexpression also led to the upregulation of seven 
genes involved in the phenylpropanoid pathway (Jin 
et  al. 2019), which is the major pathway producing 
secondary metabolites with antioxidant activities.

Glutathione S-transferases (GSTs) are another 
class of potent antioxidants that catalyze the conju-
gation of the nucleophilic glutathione (GSH) to lipid 
hydroperoxides, hence preventing the downstream 
generation of the toxic MDA (Sharma et  al. 2004). 
Under acute salt stress at 200  mM NaCl, GsGST-
overexpression in tobacco led to a sixfold increase 
in GST activities and a significantly higher survivor-
ship and root elongation compared to the wild type 
(Ji et  al. 2010). Meanwhile, under salt treatment, 
GmGSTL1-overexpression in tobacco BY-2 cells and 
Arabidopsis reduced ROS accumulation and leaf 
chlorosis (Chan and Lam 2014), which is a typical 
symptom of ROS toxicity (Lim et al. 2007). Chan and 
Lam (2014) elucidated the anti-oxidation mechanism 
of soybean GST through its conjugation with the sec-
ondary metabolites, quercetin and kaempferol, and 
demonstrated the interactions between quercetin and 
GST via exogenous applications.

ROS detoxification also entails MDA scavenging 
by aldehyde dehydrogenases (ALDHs), which cata-
lyze the conversion of aldehydes into carboxylic acids 

(Singh et al. 2013). Under salinity stress, the ectopic 
expression in Arabidopsis and tobacco of Glycine max 
turgor-responsive 55  kDa protein (GmTP55), which 
encodes an antiquitin-like ALDH, resulted in higher 
germination efficiency and seedling development than 
the wild-type plants (Rodrigues et al. 2006). Notably, 
transgenic Arabidopsis under 100 mM NaCl retained 
the same germination rate as in unstressed condition 
(Rodrigues et  al. 2006). The elevated salt tolerance 
was achieved by a higher anti-oxidation efficiency 
as evidenced by GmTP55-overexpressing transgenic 
plants exhibiting lower MDA levels and less severe 
oxidative stress symptoms under peroxide and para-
quat treatments than wild-type plants (Rodrigues 
et al. 2006).

Alternative salt stress response pathways involving 
purple acid phosphatase 3 have also been uncovered 
(Liao et  al. 2003). GmPAP3 is localized in mito-
chondria, a primary site of ROS generation (Li et al. 
2008). Under salt and oxidative stress treatments, 
the overexpression of GmPAP3 in tobacco BY-2 
cells resulted in reduced ROS levels and increased 
ascorbic acid-like antioxidation pathway activities, 
while GmPAP3-overexpressing Arabidopsis expe-
rienced reduced lipid peroxidation (Li et  al. 2008). 
The ectopic expression of GmPAP3 in rice also 
yielded increased SOD, POD and CAT activities, a 
higher proline content, and a reduced MDA content 
under salt treatment compared to wild type (Deng 
et  al. 2014). Since the ROS-scavenging effects from 
GmPAP3 overexpression were diminished when an 
ion chelator was present, it is possible that the redox 
reactions of GmPAP3 play a role in ROS scavenging 
(Li et al. 2008). However, whether GmPAP3 acts on 
ROS directly or through interfering Fenton or Heiber-
Weiss reactions is still inconclusive and awaits further 
investigations.

Increasing the generation of secondary metabolites 
involved in ROS catabolism can also contribute to the 
restoration of oxidative balance in soybean. L-ascor-
bic acid (AA), a prominent antioxidant in photosyn-
thetic eukaryotes, reacts with peroxides to form the 
nontoxic docosahexaenoic acid (Wheeler et al. 2015). 
AA synthesis, catalyzed by GDP-D-mannose pyroph-
osphorylase (GMP), hence acts as a universal defence 
against oxidative stress (Wheeler et al. 2015). Indeed, 
under salt stress, overexpressing GmGMP1 in trans-
genic Arabidopsis conferred higher salt tolerance via 
significantly elevated AA levels and reduced levels of 
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superoxide radicals and lipid peroxidation (Xue et al. 
2018). Other important non-enzymatic antioxidants in 
soybean include flavonoids and proline. Flavonoids, a 
class of polyphenolic compounds, can directly scav-
enge peroxides, singlet oxygen and hydroxyl radicals 
(Brunetti et  al. 2013). Similarly, proline, which also 
acts as an osmolyte, scavenges singlet oxygen and 
hydroxyl radicals, and prevents damages from lipid 
peroxidation (Dogan 2011). In transgenic Arabidop-
sis, GmMYB12 overexpression improved salt stress 
tolerance during seed germination, root develop-
ment, and in the vegetative stage by increasing flavo-
noid and proline productions and upregulating genes 
involved in their biosynthesis, alongside increased 
SOD and POD activities (Wang et al. 2019b).

Some gene products may not act directly on ROS 
but regulate the downstream expressions of genes 
that mitigate the salt-induced oxidative stress. Xiong 
et al. (2022) examined the interactions between ROS, 
salt tolerance and protein phosphatase 2A (PP2A), 
an enzyme family that is known to modulate oxida-
tive stress in plants. Specifically, PP2A-B”71 was 
shown to mediate the stress-induced abscisic acid 
(ABA) signaling (Yang et al. 2020a), and its expres-
sion was responsive to salt stress (Xiong et al. 2022). 
Under salt treatment, GmPP2A-B”71-overexpressing 
soybean hairy roots had increased levels of chlo-
rophyll, proline, CAT and POD, and lower MDA 
content, while GmPP2A-B”71-RNA-interference 
plants exhibited the opposite phenotype (Xiong 
et  al. 2022). Crucially, GmPP2A-B”71 overexpres-
sion markedly upregulated genes responsible for 
the synthesis of CATs (GmCAT1 and GmCAT2) and 
POD (GmPOD1), and two genes with putative roles 
in stress-responsive antioxidation (GmLEA15 and 
GmERF115) (Xiong et  al. 2022). Similarly, CON-
STANS-LIKE 1a (GmCOL1a), a flowering repressor 
gene in soybean, was found to participate in oxida-
tive stress alleviation by promoting the accumulation 
of stress-responsive proteins under salinity treat-
ment (Xu et al. 2022). GmCOL1a proteins, of which 
expressions are highly induced by NaCl, are local-
ized in the nucleus and promote the transcriptional 
activation of the stress-tolerance genes, GmLEA and 
GmP5CS, by binding to their promoters (Xu et  al. 
2022). Compared to the knockout mutants and wild 
type, GmCOL1a-overexpressing and GmP5CS-over-
expressing soybean hairy roots had much more effec-
tive antioxidation under salt treatment via reduced 

ROS levels, and significantly elevated enzymatic 
antioxidant activities and proline concentrations (Xu 
et al. 2022). Both studies attest to the importance of 
characterizing the regulation of downstream salt-tol-
erance genes by the target genes under salt stress.

Besides directly participating in the restoration 
of oxidative balance, signal transduction (which 
will be discussed in detail in a later section) is cru-
cial for plants to detect salt stress and acclimatize 
accordingly. Genes encoding substrate or receptor 
proteins involved in signal transduction can medi-
ate salinity stress responses including ROS scav-
enging. The ectopic expression experiments of such 
soybean genes have implied their potential roles in 
salt-induced oxidative stress responses. The phyto-
hormone, abscisic acid (ABA), is an important mes-
senger in stress signaling pathways in plants. In both 
maize and wheat, exogenous ABA applications at low 
doses increased the activities of SOD, CAT, APX and 
glutathione reductase (Agarwal et al. 2005; Jiang and 
Zhang 2001). By increasing ABA sensitivity, a lower 
threshold is required to activate stress responses, 
thereby allowing plants to mitigate salinity stress 
more quickly and preventing the overaccumulation of 
intracellular ABA, which can be toxic at high concen-
trations (Agarwal et al. 2005; Jiang and Zhang 2001). 
GmSAP16, which encodes stress-associated proteins 
(SAPs) of the zinc-finger protein family, increased 
ABA sensitivity and proline level, and reduced MDA 
level when overexpressed in Arabidopsis and soy-
bean hairy roots (Zhang et  al. 2019b). Similarly, in 
Arabidopsis under salt treatment, the ectopic expres-
sion of GmST1, of which function has yet to be char-
acterized, increased ABA sensitivity and reduced 
peroxide level (Ren et  al. 2016). The expressions of 
lectin receptor protein kinases (LecRLK), another 
important group of receptors to external stress sig-
nals in plants, were induced in wild soybean roots 
under salt treatment (Zhang et al. 2022d). Under salt 
stress, GmLecRlk-overexpressing soybean hairy roots 
had increased proline content and CAT activities, 
and reduced peroxide and MDA levels compared to 
the wild-type control (Zhang et al. 2022d). The exact 
functional mechanism of GmLecRlk in soybean oxi-
dative stress reduction is unknown, but the expres-
sion patterns of its homologs in Arabidopsis, rice 
and other legumes under salinity stress suggested its 
involvement in mediating the ABA signaling pathway 
(Joshi et  al. 2010; Li et  al. 2014; Sun et  al. 2013b). 
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The exact physiological mechanisms of these genes 
in soybean oxidative stress reduction are not as well 
characterized as their roles in improving ion homeo-
stasis or signal transduction. As a result, their roles in 
restoring oxidative balance are only implicated. The 
improved ROS scavenging due to the expressions of 
these genes is likely due to their downstream regula-
tion of the antioxidation regulatory network, which 
awaits verification by future research.

Besides salinity, secondary oxidative stress and 
the subsequent antioxidation metabolism in plants 
are also inducible by other biotic and abiotic stresses 
(Cheng et al. 2015; Li et al. 2021a; Mira et al. 2021). 
In particular, multiple soybean genes responsible for 
oxidative balance restoration have been functionally 
verified with drought stress, an agricultural chal-
lenge that often occurs concurrently with salinity (Li 
et al. 2018a, 2013; Wang et al. 2019b). Furthermore, 
genome-wide identification has been applied to char-
acterize the soybean gene families associated with 
the enzymatic antioxidants, SOD and glutathione 
peroxidase (Aleem et al. 2022), while proteomic and 
metabolomic analyses have uncovered indirect path-
ways that can improve soybean antioxidation (Pi et al. 
2016). Future studies could verify the functions of 
these genes with salt treatment, thereby expanding 
the genetic avenues available for improving oxida-
tion–reduction responses in soybean under salinity 
stress.

Cell wall remodeling

In plants, cell wall (CW) provides structural support 
by maintaining cell stiffness (Houston et  al. 2016), 
and the apoplast serves as an important site for reac-
tions and signal transduction (Farvardin et al. 2020). 
The physical and biochemical properties of CW ren-
der it indispensable to plant survival under abiotic 
stress (Farvardin et al. 2020; Le Gall et al. 2015; Ten-
haken 2015). Salinity impairs CW functioning and 
arrests plant growth by inducing osmotic imbalance 
that reduces cell turgidity (Liu et  al. 2021a), and by 
causing secondary oxidative stress, where excessive 
ROS results in cell wall loosening (Gigli-Bisceglia 
et  al. 2020). There is increasing evidence suggest-
ing CW remodeling to be a critical adaptation to 
salt stress (Liu et  al. 2021a). To survive under high 
salinity, plants constantly modulate CW structure and 

composition to optimize stress signal detection, CW 
integrity repair, and subsequent loosening to allow for 
growth under sustained stress (Houston et  al. 2016; 
Le Gall et al. 2015; Liu et al. 2021a; Tenhaken 2015). 
Exploring the genes underlying the adaptive remod-
eling of soybean CW under salt stress offers insights 
into improving crop tolerance against salinity.

CW is a dynamic and complex matrix consisting of 
polysaccharides, proteins, and other compounds that 
help maintain or modulate CW functions. The cellu-
lose microfibril scaffold is interconnected by hemicel-
lulose and pectin (Lampugnani et al. 2018; Loix et al. 
2017; Somerville et al. 2004). The depolymerization 
of these polysaccharides via enzymatic or ROS cleav-
age, their strengthening by increased cross-linkages, 
or changes in their biosynthetic rates, all combine to 
modulate CW plasticity and tensile strength as plants 
respond to abiotic stress (Houston et  al. 2016; Le 
Gall et  al. 2015; Liu et  al. 2021a; Tenhaken 2015). 
Cell wall proteins, which can either be embedded in 
the CW or in soluble forms in the apoplast, include 
enzymes that catalyze CW component biosynthesis 
and modifications, as well as those involved in stress 
signal reception and transduction (Jamet et al. 2006; 
Tenhaken 2015). Mediating the abundance, composi-
tion and distribution of aforementioned CW compo-
nents are integral to plant survival and development 
under abiotic stress.

The immediate challenge faced by plants under 
high salinity is osmotic stress, which causes the 
loss of cell turgor (Liu et  al. 2021a). Furthermore, 
the ROS generated as the secondary stress response 
cleave polysaccharide polymer linkages, hence low-
ering CW tensile strength and aggravating the water 
loss-induced flaccidity (Tenhaken 2015). There-
fore, the first line of CW defense involves increas-
ing mechanical strength by polymer biosynthesis and 
deposition. In soybean, a co-chaperone DNAJ protein, 
GmDNAJC7, was found to upregulate and co-express 
with genes involved in cellulose biosynthesis, where 
under salt treatment, GmDNAJC7-overexpressing 
Arabidopsis had a higher germination rate, a higher 
cotyledon greening rate and greater root length com-
pared to wild type (WT) (Jin et al. 2022b). The pro-
duction of lignin, a phenolic polysaccharide of which 
deposition at secondary CW confers tensile strength, 
is often increased to stiffen CW amidst stresses (Cesa-
rino 2019). GmRD22 encodes a BURP-domain pro-
tein localized in the apoplast that interacts with a cell 
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wall peroxidase to increase CW lignification (Wang 
et al. 2012). Under salt treatment, its overexpression 
in tobacco BY-2 cells, Arabidopsis and rice resulted 
in higher survivorship while reducing the negative 
effects of NaCl on Arabidopsis root elongation (Wang 
et al. 2012). In both Arabidopsis and rice transgenic 
systems, GmRD22 overexpression markedly elevated 
lignin contents, evincing its protective properties in 
soybean under salt stress (Wang et al. 2012).

Besides CW strengthening, the hydrophobic cuti-
cle is also an important barrier against dehydration, 
as its waterproofing property could reduce transpi-
rational water loss during salinity stress (Ziv et  al. 
2018). EARLI (early Arabidopsis aluminium-induced 
gene1) is a CW-localized protein that contains lipid 
transfer protein (LTP) motifs (Bubier and Schlappi 
2004), which are involved in cutin biosynthesis and 
membrane formation (Kader 1996). In soybean, 
GsEARLI17 encodes a hybrid proline-rich pro-
tein (HyPRP) (Liu et al. 2015), which is involved in 
CW reinforcement (Jose-Estanyol and Puigdome-
nech 2000). Under salt treatment and compared to 
WT, its overexpression in Arabidopsis led to higher 
germination rates and healthier cotyledons, while 
GsEARLI17-overexpressing seedlings had higher 
rates of leaf opening and greening (Liu et al. 2015). 
Remarkably, the transgenic line had cuticles up to 
167% thicker than those of WT (Liu et al. 2015). This 
corroborates the role of proline-rich proteins in alter-
ing soybean CW structure under salt stress, as pro-
posed by He et  al. (2002), where the expression of 
soybean SbPRP3, encoding a HyPRP with unknown 
function, was found to be inducible by salinity stress 
(He et al. 2002).

The growth and functionality of plant cells are 
constrained by the CW architecture (Lampugnani 
et al. 2018; Somerville et al. 2004), which is partly 
underpinned by the cortical microtubule array that 
directs the arrangement of cellulose and other CW 
components (Oda 2015). Coumarin, a phytotoxin 
typically produced by plants to combat pathogens 
and herbivory (Gnonlonfin et  al. 2012; Prats et  al. 
2007; Sun et  al. 2014), has been found to mediate 
plant growth and development (Lupini et al. 2014). 
Specifically, it exhibits a dose-dependent effect on 
Arabidopsis root morphology by indirectly altering 
the cortical microtubule organization, and hence, 
the architecture of the root apical meristem (Bruno 
et  al. 2021; Lupini et  al. 2014). In soybean, the 

expression of GmF6′H1, which encodes the enzyme 
for coumarin biosynthesis, was highly induced 
by salt stress (Duan et  al. 2019). The GmF6′H1-
overexpressing transgenic Arabidopsis had higher 
salt tolerance, along with a higher germination rate 
and chlorophyll content, produced more siliques 
and had less growth impairment under NaCl than 
the WT plants (Duan et al. 2019). Coumarin might 
play a role in altering the soybean cortical micro-
tubule array, thereby causing adaptive changes in 
the CW structure to confer salt tolerance. However, 
since the role of coumarin in soybean CW modifica-
tion is only implied, future verification is required 
to characterize the actual changes in CW composi-
tion and organization following increased coumarin 
biosynthesis under salt stress.

Achieving efficient signal transduction to enable 
rapid acclimation is as crucial as the direct modula-
tion of the CW structure. For instance, the Catharan-
thus roseus receptor-like kinase (CrRLK1L) sub-
family is crucial in regulating cell expansion via 
spatially and temporally controlled downstream sig-
nal transduction when plants undergo development or 
respond to stresses (Nissen et  al. 2016). In soybean, 
GmCrRLK1L20 encodes a cell membrane-localized 
FERONIA receptor kinase that mediates Ca2+ sign-
aling (Feng et  al. 2018; Wang et  al. 2021b). Under 
salt treatment, soybean hairy roots overexpressing 
GmCrRLK1L20 had delayed leaf wilt, longer roots, 
and higher chlorophyll content compared to wild 
type (Wang et al. 2021b). Additionally, elevated con-
tents of enzymatic and secondary metabolite anti-
oxidants were coupled with a lower MDA level and 
less cell membrane damage, as indicated by lower 
membrane permeability in the transgenic line (Wang 
et al. 2021b). Importantly, CrRLK1L-mediated Ca2+ 
signaling is activated by changes in pectin structure 
and polymerization (Lin et  al. 2022; Nissen et  al. 
2016), which are a common feature of both adaptive 
and maladaptive salt responses in plants (Feng et al. 
2018), evincing the critical role of apoplastic modifi-
cations in salt stress responses.

After overcoming the salinity-induced osmotic 
stress, secondary responses at later stages typi-
cally involve CW loosening and cell elongation 
for plants to continue to grow under prolonged salt 
stress (Voxeur and Hofte 2016). The brassinoster-
oid (BR) signaling pathway is involved in cellu-
lose deposition (Planas-Riverola et  al. 2019), and 
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is activated as a protective response against the 
stress-induced loss of CW integrity due to imbal-
anced pectin modification (Wolf et al. 2012). Mean-
while, BIN2 (brassinosteroid-insensitive 2), a nega-
tive regulator of BR signaling (Li et al. 2020c), acts 
as a molecular switch from immediate salt stress 
responses to growth recovery (Li et  al. 2020c). 
In soybean, GmBIN2 encodes glycogen synthase 
kinase 3 (GSK3), and its expression is induced by 
exposure to NaCl (Wang et  al. 2018a). Under salt 
treatment, GmBIN2-overexpressing Arabidopsis had 
a higher germination rate and Ca2+ content, longer 
root length, and a reduced Na+ content than WT, 
while GmBIN2 overexpression in soybean hairy 
roots resulted in lower cell membrane permeabil-
ity (Wang et  al. 2018a). Given that BIN2 inhibits 
the cellulose biosynthesis required for early salt 
responses, future studies could examine the tempo-
ral control mechanism of GmBIN expressions and 
verify the downstream gene regulation cascade in 
soybean CW remodeling.

Past researches on soybean CW remodeling have 
mainly focused on growth and development (Hong 
et  al. 1987; Ye and Varner 1991), and responses 
to pests and pathogens (Borkowska et  al. 1998; 
Liu et al. 2017). Proteomic studies have uncovered 
enzymes that are key to adaptive CW remodeling 
and responsive to salinity (Rehman et al. 2022; Sob-
hanian et  al. 2010), but the underlying genes have 
yet to be determined. Moreover, CW-modifying 
protein gene families, including those involved in 
CW loosening, cellulose biosynthesis and pectin 
modification, have been identified and characterized 
in genome-wide analyses (Feng et al. 2022; Nawaz 
et  al. 2017; Wang et  al. 2021b). Given that CW 
remodelling is closely tied to salt-induced growth 
regulation (Julkowska and Testerink 2015), future 
study could first finely characterize the relative 
growth rate of different soybean organs and the salt-
induced sequential changes in cell wall structure, 
then investigate the underlying genetic components 
using functional verification.

Transcription regulation

Plants, when subjected to salt stress, undergo exten-
sive transcriptome reprogramming to make physi-
ological and metabolic adjustments to survive the 

damage caused by the salt (Liu et  al. 2019). In the 
past 20 years, a number of transcriptomic studies have 
been conducted to identify the differentially expressed 
genes (DEGs) in soybean under salt stress (Table S3). 
The global transcriptomic view allows researchers to 
determine transcriptionally the most affected cellular 
processes or pathways during salt stress.

Transcription factors (TFs) play a key role in salt 
stress-induced transcriptome reprogramming by acti-
vating or repressing their target genes. A number of 
TFs belonging to various families, including bHLH, 
bZIP, AP2/ERF, MYB, NAC, and WRKY, have been 
reported to participate in plant tolerance against abi-
otic stress such as drought and salinity (Golldack 
et al. 2011; Khan et al. 2018). In soybean, in the salt-
induced DEGs belonging to these same families of 
transcription factors are also identified in response to 
salt stress. For instance, 862 TFs clustering mostly in 
the WRKY, NAC, AP2-EREBP, ZIM, and C2C2 (Zn) 
CO-like families were identified among the DEGs in 
salt-treated soybean (Belamkar et  al. 2014). For the 
remaining 1,235 DEGs under salt stress, 117 were 
identified as TFs and 17 of them were putative mem-
bers of the MYB family of TFs (Liu et al. 2021b). A 
single TF can regulate a series of downstream stress-
responsive genes and induce comprehensive phe-
notypic adjustments for salt tolerance (Khan et  al. 
2018). Therefore, manipulating the expressions of 
a few salt stress-related TFs could lead to signifi-
cant improvements in salt tolerance. Summarized in 
Table  1 are the functional analyses using transgenic 
plants to characterize the roles of selected TFs that 
are differentially expressed under salt stress.

Among the 10 groups of GmbZIPs identified 
in soybean (131 in total), the group A genes were 
reported to be involved in ABA-dependent stress 
signaling (Liao et al. 2008c). For example, the over-
expression of GmbZIP1 in Arabidopsis upregulated 
ABA-regulated genes such as ABA INSENSITIVE 1 
(ABI1), ABI2, RESPONSIVE TO DESICCATION 29B 
(RD29B), and RESPONSIVE TO ABA 18 (Rab18), 
and downregulated POTASSIUM CHANNEL IN 
ARABIDOPSIS THALIANA 1 (KAT1) and KAT2, 
to promote stomatal closure upon salt stress (Gao 
et  al. 2011). The overexpression of GmFDL19 
upregulated another subset of stress-responsive 
genes including the ion transporters GmCHX1 and 
GmNHX1, and some ABA-responsive TFs such as 
GmbZIP1, GmNAC11, and GmNAC29 to activate 
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salt tolerance mechanisms (Li et  al. 2017b). Thus, 
these two groups of genes may enhance salt toler-
ance in an ABA-dependent manner. On the other 
hand, some non-group A members were determined 
to be negative regulators of ABA signaling in salt 
stress. Transgenic plants overexpressing a group D 
member GmbZIP132, a group S member GmbZIP44, 
a group C member GmbZIP62, or a group G mem-
ber GmbZIP78 showed reduced ABA sensitivity but 
enhanced salt tolerance (Liao et  al. 2008a, 2008c). 
Similar observations were also reported in three MYB 
genes GmMYB76, GmMYB92, and GmMYB177, 
which also negatively regulate ABA signaling for 
soybean salt tolerance (Liao et  al. 2008c). Besides, 
GsMYB15-overexpressing Arabidopsis repressed the 
expressions of the marker genes in the ABA pathway, 
AtABI1 and AtABI2, and showed improved salt toler-
ance, so GsMYB15 may also participate in the ABA-
dependent pathway in salt stress responses (Shen 
et al. 2018a).

There are around 180 members in the NAM/
ATAF/CUC (NAC) family of TF-encoding genes 
in the soybean genome (Melo et  al. 2018). A num-
ber of them have been characterized to play roles in 
salt stress tolerance (Table 1). Some members in the 
NAC family also play roles in the ABA pathway. For 
example, the overexpression of GmNAC109 resulted 
in the upregulation of ABA-responsive genes, ABI1 
and ABI5, conferring increased sensitivity to ABA 
and greater tolerance against salt stress (Yang et  al. 
2019). SALT INDUCED NAC1 (GmSIN1) regulates 
the ABA biosynthesis genes, 9-cis-epoxycarotenoid 
dioxygenases (GmNCED3s), which in turn leads to 
the rapid accumulation of ABA and enhances salt tol-
erance by amplifying the initial salt stress signal (Li 
et al. 2019b).

At the same time, the ethylene responsive factor 
(ERF) family of TFs are also involved in ABA and 
multiple phytohormone signaling pathways upon salt 
stress. The induction of GmERF75 by exogenous sali-
cylic acid (SA), jasmonic acid (JA), and ethylene (ET) 
suggested that GmERF75 may integrate signals form 
the SA and ET/JA pathways and positively regulate 
salt stress responses (Zhao et al. 2019b). GmERF057 
and GmERF089 were also induced by salt, drought, 
ET, SA, JA, and ABA, implying their participation 
in various phytohormone-mediated signaling path-
ways in enhancing salt tolerance (Zhang et al. 2008). 
Meanwhile, the ET biosynthesis genes, AtACO4 Ta
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and AtACS2, and ABA biosynthesis genes, ABA1 
and ABA2, were upregulated in transgenic Arabi-
dopsis overexpressing GmERF135, indicating that 
GmERF135 modulates salt tolerance by regulating 
both ET and ABA signaling pathways (Zhao et  al. 
2019c).

The WRKY TFs are characterized by the core 
amino acid sequence, WRKYGQK, which binds 
specifically to the W-box sequence (T)TTGAC(C/T) 
in the promoters of their target genes (Zhou et  al. 
2008). GmWRKY54 can regulate the expressions of 
DREB2A and STZ/Zat10 and induce stress tolerance 
mechanisms. GmWRKY49 can also bind directly to 
the W-box in its target gene promoters and possi-
bly modulate the expressions of downstream stress-
related genes, leading to enhanced salt tolerance in 
GmWRKY49-overexpressing plants (Xu et al. 2018).

Signal transduction

When plants sense salt stress, multiple signal trans-
duction pathways, such as the phytohormone-medi-
ated, Ca2+-dependent, and phosphatidylinositol sig-
nals, are initiated (Liu et  al. 2019). Regulators such 
as transcription factors are activated and the gene 
expressions of downstream stress-responsive genes 
are then changed to induce salt tolerance mechanisms 
and help plants combat salt stress. In soybean, the 
Ca2+-mediated as well as ABA-dependent pathways 
related to salt stress are most extensively documented. 
Components in the pathways involved in soybean salt 
tolerance and their functional studies are listed in 
Table 2.

Ca2+‑mediated pathway

When salt stress is detected, Ca2+ serves as one of the 
secondary messengers to trigger a series of sequential 
responses (Phang et al. 2008). Its cytosolic concentra-
tion is controlled tightly by Ca2+ transporters such as 
Ca2+ ATPase. One good example is GsACA1 detailed 
in a previous section (Sun et al. 2016) (Fig. 3).

Following the rapid changes in cytosolic Ca2+ 
level in response to environmental stimuli, Ca2+ sig-
nals are amplified and transmitted through Ca2+ sen-
sors. There are three main classes of EF-hand Ca2+ 
sensors in plants, including calmodulins (CaMs) and 

CaM-like proteins (CMLs), calcium-dependent pro-
tein kinases (CDPKs), and calcineurin B-like protein 
(CBLs) (DeFalco et  al. 2010). While CaMs, CMLs, 
and CBLs are non-catalytic relay sensors regulating 
downstream signaling, CDPKs are direct responders 
possessing catalytic activities that can transduce a 
signal (DeFalco et al. 2010). Among 17 drought- and 
salt-induced CDPK genes in soybean, GmCDPK3 
demonstrated a relatively high differential expression 
level and was subjected to further functional analy-
ses (Wang et  al. 2019a). Soybean hairy roots with 
GmCDPK3 overexpression had increased protein, 
chlorophyll and decreased MDA contents, while the 
opposite results were obtained in GmCDPK3-RNA-
interference soybean hairy roots. The overexpression 
of GmCDPK3 also enhanced salt tolerance in Arabi-
dopsis, with shortened primary roots and more lateral 
roots, indicating that GmCDPK3 can regulate drought 
and salt stress responses as well as root growth and 
development (Wang et al. 2019a). Despite confirming 
the role of GmCDPK3 in salt tolerance by functional 
analysis, further investigation would be required to 
study the direct downstream effects of GmCDPK3 in 
transducing the salt stress signal.

CaMs are prominent non-enzymatic Ca2+ sensors 
that interact and alter the activities of other proteins 
upon the binding of Ca2+ in response to environ-
mental stress. GmCaM4 has been shown to directly 
interact with the transcription factor, Myb2, which is 
involved in the regulation of stress-responsive genes 
(Rao et  al. 2014). The overexpression of GmCam4 
in Arabidopsis can induce AtMyb2-regulated genes, 
including P5CS1, which causes the accumulation of 
proline and improves salt tolerance. Moreover, the 
interaction between GmCaM2 and a CaM-binding 
reporter-like kinase, GmCBRLK, was also con-
firmed. Therefore, a GmCaM4-Myb2-mediated and 
GmCaM2-GmCBRLK-mediated mechanism may 
be involved in salt tolerance in soybean. GsCML27, 
which contains four conserved calcium-binding 
EF-hand motifs, was isolated from a salt-alkali-
resistant wild soybean (Chen et  al. 2015a). It shows 
Ca2+-binding affinity and has a higher expression 
under bicarbonate, salt, and osmotic stresses. Interest-
ingly, the ectopic expression of GsCML27 promoted 
seed germination under bicarbonate stress but inhib-
ited it under salt and osmotic stresses (Chen et  al. 
2015a), implying the complex function of GsCML27 
in various stress signaling pathways and its negative 
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Table 2   A list of functionally verified components of the Ca2+-mediated and ABA-dependent pathways involved in salt tolerance in 
soybean

Putative function Gene Role in salt tolerance References

Ca2+-mediated pathway
  P-type II Ca2+ ATPase GsACA1 Overexpression in alfalfa enhances salt 

tolerance
(Sun et al. 2016)

  Calmodulin GmCam4 Overexpression in soybean enhances 
salt tolerance

Silencing in soybean leads to increased 
salt sensitivity

(Rao et al. 2014)

  Calcineurin B-like protein GmCBL1 Overexpression in Arabidopsis 
enhances salt tolerance

(Li et al. 2012)

  Calcineurin B-like protein GmCBL4 Overexpression in soybean hairy roots 
enhances salt tolerance

(Li et al. 2022a)

  Calmodulin-binding protein GmCBP60A-1 Overexpression in Arabidopsis and 
soybean hairy roots enhances salt 
tolerance

RNAi soybean hairy roots show 
increased salt sensitivity

(Yu et al. 2021)

  Calcium-dependent calmodulin-
binding receptor-like kinase

GsCBRLK Overexpression in Arabidopsis and 
soybean enhances salt tolerance

(Ji et al. 2016b; Yang et al. 2010)

  Calcium-dependent protein kinase GmCDPK3 Overexpression in Arabidopsis and 
soybean hairy roots enhances salt 
tolerance

RNAi soybean hairy roots show 
increased salt sensitivity

(Wang et al. 2019a)

  Calcineurin B-like protein interact-
ing protein kinase

GmCIPK2 Overexpression in Arabidopsis and 
soybean hairy roots enhances salt 
tolerance

RNAi soybean hairy roots show 
increased salt sensitivity

(Li et al. 2022a)

  Calcineurin B-like protein interact-
ing protein kinase

GmCIPK21 Overexpression in Arabidopsis and 
soybean hairy roots enhances salt 
tolerance

RNAi soybean hairy roots show 
increased salt sensitivity

(Wang et al. 2019a)

  Calmodulin-like protein GsCML27 Overexpression in Arabidopsis leads to 
increased salt sensitivity

(Chen et al. 2015a)

  Calcineurin B-like protein-interact-
ing protein kinase

GmPKS4 Overexpression in Arabidopsis and 
soybean hairy roots enhances salt 
tolerance

(Ketehouli et al. 2021)

ABA-mediated pathway
  Drought-induced protein GmDi19-5 Overexpression in Arabidopsis shows 

increased salt and ABA sensitivities
(Feng et al. 2015)

  F-box protein GmFBX176 Overexpression in Arabidopsis shows 
increased salt sensitivity and reduced 
ABA sensitivity

(Yu et al. 2020)

  Glucose-6-phosphate dehydrogenase GmG6PH7 Overexpression in Arabidopsis 
enhances salt tolerance

(Jin et al. 2010)

  Mitogen-activated protein kinase GmMMK1 Overexpression in Arabidopsis and 
soybean hairy roots leads to increased 
salt sensitivity

(Liao et al. 2021)

  Nodule autoregulation receptor 
kinase

GmNARK Overexpression in Arabidopsis leads to 
increased salt and ABA sensitivities

(Cheng et al. 2018)
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Table 2   (continued)

Putative function Gene Role in salt tolerance References

  U-box E3-ubiquitin ligase GmPUB21 Overexpression in tobacco leads to 
increased salt sensitivity

Knock-down soybean shows increased 
salt sensitivity

(Yang et al. 2022)

  Receptor-like cytoplasmic serine/
threonine protein kinase

GsRLCK Overexpression in Arabidopsis 
enhances salt tolerance and reduces 
ABA sensitivity

(Sun et al. 2013a)

  Stress-associated protein GmSAP16 Overexpression in Arabidopsis 
enhances salt tolerance and ABA 
sensitivity

(Zhang et al. 2019b)

  S-phase kinase-associated protein 1 GmSK1 Overexpression in tobacco enhances 
salt tolerance

(Chen et al. 2018b)

  Salt tolerance 1 GmST1 Overexpression in Arabidopsis 
enhances salt tolerance and ABA 
sensitivity

(Ren et al. 2016)

  With No Lysine serine-threonine 
kinase

GmWNK1 Overexpression in Arabidopsis 
enhances salt and ABA tolerance

(Wang et al. 2011b)

  Inositol polyphosphate 5-phos-
phatase

Gs5PTase8 Overexpression in Arabidopsis and 
soybean hairy roots enhances salt 
tolerance

(Jia et al. 2020)

Fig. 3   Schematic representation of Ca2+-mediated pathway 
involve in salt stress in soybean. Upon salt stress, Ca2+ATPase 
regulate cytosolic Ca2+ level. Ca2+ signals are amplified and 
transmitted by Ca2+ sensors including calmodulins (CaMs), 
calmodulin-like proteins (CMLs), calcineurin B-like proteins 
(CBLs), and calcium-dependent protein kinase (CDPKs). 

Through interacting with their associated interacting proteins, 
downstream effectors genes are subsequentially activated to 
give physiological response countering salt stress. Black boxes 
indicate functionally verified genes in the Ca2+-mediated path-
way involve in salt tolerance in soybean
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regulatory role in salt stress during early growth 
stages.

CBLs are Ca2+ sensors unique to plants that 
decode Ca2+ signals by interacting with CBL-inter-
acting protein kinases (CIPKs). GmCBL1-overex-
pression conferred salt tolerance in Arabidopsis by 
activating several stress-responsive genes in response 
to high salinity, including DREB1A, DREB2A, 
RD29A, and KIN1 (Li et  al. 2012). Salt tolerance 
was also enhanced in GmCBL4-overexpressing soy-
bean hairy roots and Arabidopsis, resulting in lower 
levels of MDA and H2O2 detected (Li et  al. 2022a, 
b). GmCIPK2 and GmCIPK21 were identified as 
interacting partners of GmCBL4. The overexpres-
sion of either GmCIPK2 or GmCIPK21 can promote 
the activities of antioxidant-related enzymes such as 
POD, GST, and CAT, consistent with the lower MDA 
and H2O2 contents and the greater salt tolerance phe-
notype observed. Thus, the GmCBL4-GmCIPK2 and 
GmCBL4-GmCIPK21 complexes participate in salt 
tolerance in soybean by enhancing ROS scavenging. 
GmPKS4 is another CIPK that could regulate salt 
stress responses through activating ROS scavenging 
systems and promoting the transcription of stress-
related genes (Ketehouli et al. 2021). In Arabidopsis 
and soybean hairy roots overexpressing GmPKS4, 
lower MDA, higher proline, and lower ROS levels as 
well as less membrane damage were observed. More-
over, the expression levels of stress-related genes, 
such as SNF4, CBL1, and NHX1, were also higher 
(Ketehouli et al. 2021).

The roles of the calcium-dependent calmodulin-
binding receptor-like kinase (CBRLK) and calmo-
dulin-binding protein 60 (CBP60) in soybean salt 
tolerance were also reported. Isolated from Glycine 
soja, GsCBRLK was a novel CaM-binding protein 
kinase containing Ca2+-dependent activities and a 
CaM-binding site within the kinase domain (Yang 
et al. 2010). Enhanced salt tolerance was observed in 
Arabidopsis and soybean overexpressing GsCBRLK 
(Ji et al. 2016b; Yang et al. 2010). Proteomic studies 
also revealed that GsCBRLK plays a role in regulat-
ing ROS scavenging and photosynthesis by affect-
ing the abundance of signaling, photosynthetic, and 
metabolic salt-responsive proteins (Ji et  al. 2016b). 
Among 19 CBP60 members identified in soybean, 
GmCBP60A-1 was induced significantly under high 
salt and dehydration (Yu et al. 2021). Soybean hairy 
roots overexpressing GmCBP60A-1 demonstrated 

better salt tolerance and RNAi plants showed 
increased sensitivity to salt stress, corroborating the 
role of GmCBP60A-1 in enhancing salt tolerance in 
soybean (Yu et al. 2021).

ABA‑dependent pathway

Abscisic acid (ABA) is a plant hormone that plays a 
vital role in stress responses due to its rapid accumu-
lation upon stress and participation in various stress 
signaling pathways (Zhang et  al. 2006). The ABA 
signaling pathway generally encompasses the initial 
stress signal perception, cellular signal transduction 
and regulation of the expressions of genes involved in 
ABA biosynthesis and catabolism, which in turn reg-
ulate the accumulation of ABA and trigger salt stress 
responses. Besides the TFs involved in ABA signal-
ing mentioned in the previous section, some genes 
were also reported to play roles in the ABA signaling 
pathway by altering the expression of ABA-respon-
sive genes.

Various kinases are found to be involved in the 
ABA pathway through altering the activities of ABA-
responsive genes. Arabidopsis overexpressing an 
ABA-induced nodule autoregulation receptor kinase 
GmNARK was more sensitive to salt stress and had 
significantly upregulated ABA-responsive genes, 
ABI3, ABI4, ABI5, RAB18, RD29A, and RD29B, sug-
gesting the role of GmNARK in salt stress through the 
ABA pathway (Cheng et  al. 2018). The role of the 
mitogen-activated protein kinase (MAPK) cascade in 
salt stress signaling is well-known in model plants. In 
soybean, a salt stress-related MAPK, GmMMK1, was 
identified (Liao et al. 2021). GmMMK1-overexpress-
ing plants demonstrated hypersensitivity to salinity 
(Liao et al. 2021). In particular, the transcript levels 
of PYLs and PP2Cs, which are the core components 
in ABA signaling, increased significantly in trans-
genic Arabidopsis overexpressing GmMMK1. There-
fore, GmMMK1 may regulate salt stress response in 
an ABA-dependent manner (Liao et al. 2021). On the 
contrary, the ectopic expression of With No Lysine 
serine-threonine kinase, GmWNK1, and receptor-
like cytoplasmic serine/threonine protein kinase, 
GsRLCK, in Arabidopsis conferred improved toler-
ance against salt stress (Sun et al. 2013a; Wang et al. 
2011b). GmWNK1 regulates the ABA level by alter-
ing the expressions of ABA-responsive genes. The 
downregulation of ABA-catabolic genes, CYP707As, 
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coupled with an increased level of endogenous ABA, 
in GmWNK1-overexpressing Arabidopsis indicated 
that GmWNK1 regulates ABA homeostasis and 
catabolism (Wang et  al. 2011b). Receptor protein 
kinases could work as sensors to trigger a signaling 
cascade. Plants overexpressing GsRLCK had altered 
expressions of ABA-regulating genes, PYR1, ABI5, 
ABF4, and ABI2, and stress-responsive genes induced 
by ABA, such as COR47, RAB18, KIN1, NCED3, 
COR15A, and RD29A, supporting the role of GsR-
LCK in controlling ABA levels and salt sensitivity 
in soybean (Sun et al. 2013a). Notably, GmSK1 was 
induced by various phytohormones including ABA, 
JA, and SA, indicating that GmSK1 may participate 
in multiple stress-signaling pathways (Chen et  al. 
2018b).

Other proteins are also involved in the ABA 
pathway during salt stress responses. For instance, 
the overexpression of GmDi19-5 and GmFBX176 
caused the transgenic Arabidopsis to be more sen-
sitive to NaCl (Feng et  al. 2015; Yu et  al. 2020). 
GmDil19-5 and GmFBX176 regulate the expressions 
of genes related to ABA-signaling. The expressions 
of ABA-related genes, such as CYP707A3, ABF3, 
ABF4, ABI1, ABI5, RAB18, and SOS2, were altered 
in transgenic Arabidopsis, suggesting these genes 
are also involved in the regulation of ABA response 
under stress. Meanwhile, enhanced salt tolerance was 
observed in Arabidopsis overexpressing GmSAP16, 
Gs5PTase8, or GmG6PD7, with alterations in the 
transcript levels of ABA-responsive genes (Jia et  al. 
2020; Jin et  al. 2010; Zhang et  al. 2019b). Specifi-
cally, Arabidopsis overexpressing GmG6PD7 exhib-
ited downregulated AtPYL8, AtABIs, and AtSnKRs, 
and ABA-biosynthesis genes, AtNCEDs, and upreg-
ulated ABA-catabolic genes, AtCYP707As, which 
implies that GmG6PD7 functions by lowering the 
ABA level under salt stress, and resulting in increased 
germination rate (Jin et al. 2010).

Perspectives

In the past few decades, great strides have been taken 
in identifying and validating soybean salt tolerance 
genes, and in applying such knowledge to germ-
plasm generation (Tran and Mochida 2010; Zhang 
et al. 2022b). Progress has been accelerated by mul-
tiple factors, including the release of reference-grade 

genomes for cultivated and wild soybeans (Liu et al. 
2020; Schmutz et al. 2010; Shen et al. 2018b; Valliyo-
dan et al. 2019; Xie et al. 2019) and advances in next-
generation sequencing that increase the study reso-
lution from the genic to the nucleotide level (Zhang 
et al. 2022b). Functional studies, which examine how 
the overexpression or mutation of salt-responsive 
genes impacts plant phenotypes under salinity, are 
effective in verifying the functions of these genes that 
are potentially useful for improving soybean salt tol-
erance (Tran and Mochida 2010; Zhang et al. 2022b). 
Genome-wide association studies (GWAS), whole-
genome scanning, and functional annotation have 
also assisted in characterizing genes with putative salt 
tolerance functions (Zhou et al. 2015).

In this section, we aim to discuss how to use the 
systemic approach of multi-omics to identify poten-
tial genes and pathways to complement the knowl-
edge gap in genomic studies. Then, we lay out the 
strategic roadmap to incorporate current knowledge 
into molecular breeding, producing salt-tolerant soy-
beans that brings actual societal benefits.

Filling knowledge gaps with multi‑omics

Since salt tolerance involves the simultaneous inter-
actions of various phenotypic traits with multiple 
salt-associated stressors, relying solely on genomics 
is insufficient to resolve the complex mechanisms 
by which soybean exhibits salt tolerance. There-
fore, there have been calls for taking the multi-omic 
approach—combining genomic, transcriptomic, prot-
eomic and epigenomic techniques—to obtain holistic 
insights into the mechanisms underpinning salt stress 
resistance and to expand the toolkit for developing 
salt-tolerant soybeans (Zhang et al. 2022b).

For some gene products, their physiological and 
metabolic mechanisms in conferring salt tolerance in 
soybean remain elusive. Deciphering the pathways by 
which these proteins activate salt tolerance require 
proteomics and metabolomics. Some proteomic stud-
ies have uncovered protein families and biochemical 
pathways that are integral to salt stress mitigation in 
soybean, including ROS scavenging (Pi et  al. 2016; 
Xu et al. 2011), cell wall remodeling (Rehman et al. 
2022) and signal transduction (Ji et al. 2016a). Mean-
while, the metabolomic profiling of salt-tolerant ver-
sus salt-sensitive soybeans has revealed metabolites 
and metabolic pathways that play significant roles in 
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mediating salt tolerance (Das et  al. 2017; Jiao et  al. 
2018; Li et  al. 2017a; Zhang et  al. 2016). Since the 
genes that underlie the synthesis or modulation of 
these proteins, secondary metabolites and their sys-
tems have yet to be pinpointed, combining genomic, 
proteomic and metabolomic approaches could unlock 
a wealth of genetic resources for improving soybean 
salt tolerance.

While proteomics and metabolomics deepen our 
understanding of the downstream effects of genome 
modifications, epigenomics elucidates the mecha-
nisms that control the expressions of stress toler-
ance genes in crops. Epigenetic features, including 
chromatin architecture and small RNA expressions, 
are emergent key players in crop tolerance to abiotic 
stress by regulating the expressions of stress-related 
genes. Chromatin architecture is a major epigenetic 
gateway governing the plant’s response to exter-
nal stresses (Bhadouriya et  al. 2021). Its alteration 
includes DNA methylation and histone modifications, 
where genomic reprogramming could manifest in the 
form of gene silencing or upregulation (Bhadouriya 
et al. 2021). Most fascinatingly, nuclear re-organiza-
tions have been shown to be functionally linked with 
changes in stress conditions, suggesting a mechanistic 
basis of stress memories within the individual plant’s 
soma and across generations (Bhadouriya et  al. 
2021). Adaptive epigenetic memory is manifested in 
priming effects, where an initial exposure to a specific 
stress induces the plant to acquire improved toler-
ance in subsequent exposures (Conrath et  al. 2015). 
Indeed, priming was shown to induce histone modifi-
cations that modulate the transcriptional responses in 
soybean to salt stress (Yung et al. 2022). Given that 
stress memories might be inherited at the somatic, 
intergenerational and transgenerational scales, prim-
ing could help ensure a stable soybean production in 
the changing climate (Wang et al. 2017). Another epi-
genetic feature involves the expression of miRNAs—
short, non-coding RNAs that modulate post-tran-
scriptional gene-silencing by repressing translation or 
inducing cleavage in their target mRNAs (Chaudhary 
et al. 2021). They have been shown to regulate many 
biotic and abiotic stress responses in plants, and could 
be useful for producing stress-resistant crops (Zhang 
2015; Zhang et  al. 2022a). For example, miR172a 
and miR172c, of which expressions are induced 
by salt treatment, have been functionally verified to 
improve soybean salt tolerance through the regulation 

of thiamine production. While miR172a regulates 
long-distance signalling between root and shoot 
(Pan et  al. 2016), miR172c controls ABA signalling 
(Li et  al. 2016a). In their review, Chaudhary et  al. 
(Chaudhary et al. 2021) have explored the functional 
studies of miRNAs that regulate stress responses in 
crops, and summarized the methodologies for mining 
functional miRNAs, which could be adopted in soy-
bean bioengineering.

Multi-omic approaches have been applied to crop 
improvement against abiotic stresses in several major 
cereal crops (Farooqi et  al. 2022; Kaur et  al. 2021). 
Online databases specifically for multi-omic sys-
tem analyses have also been constructed (Scossa 
et  al. 2021; Yang et  al. 2021). With a plethora of 
high-throughput technologies and publicly available 
databases such as the Soybean Proteome Database 
(Sakata et  al. 2009) and SoyNet (Kim et  al. 2017), 
future studies could focus on functional omics analy-
ses, and not just on identifying the specific members 
of different classes of biological molecules.

Priority in selecting salt tolerance genes in soybean

As explored above, the genetic control and effects 
of salt-tolerance mechanisms are highly variable. 
Despite having been functionally verified, genes dif-
fer in their usefulness for real-life molecular breeding.

Given that ion homeostasis is the primary mech-
anism for soybean salt tolerance and its major 
effect gene has been confirmed repeatedly, the most 
straightforward way to develop or screen for salt-
tolerant cultivars is by targeting the selection of ion 
transportation. After discovering the major-effect 
salt-tolerant gene GmCHX1 in the soybean genome, 
marker-assisted breeding has been applied to cross-
breed salt tolerant soybean cultivars with high-yield 
soybean cultivars in China, which yielded three non-
transgenic cultivars, Longhuang #1–3, which exhibit 
dual tolerance towards salt and drought (Li et  al. 
2020d). Such applications will be most useful in a 
locale where salt stress is the primary cause of crop 
penalty.

When soybean is met with a multitude of stressors 
other than salinity, gene components of osmoprotect-
ants and antioxidation have the potential of confer-
ring multi-stress tolerance. Osmolytes like prolines 
increase plant tolerance against drought and heat 
stress, and also act as a ROS scavenger. Antioxidant 
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metabolism, particularly, is crucial in honing overall 
crop resilience as oxidative imbalance is incited by 
a wide range of biotic and abiotic stresses. Target-
ing these two components of salt tolerance, which is 
rarely done in crop improvement studies, might pro-
duce cultivars that can adapt to multiple stressors that 
occur concurrently with salinity.

The potential of utilising cell wall remodelling as 
a salt-tolerant strategy pales in comparison due to the 
unresolved spatiotemporal complexity of this mecha-
nism. We currently lack high-resolution temporal 
characterisation of how plant organs and tissues dif-
ferentially respond to salt stress, and studies on their 
genetic control are scattered and unsystematic. As 
mentioned, plasticity is the key to cell wall modifica-
tion during the course of salt stress. The immediate 
response of salt-induced cell wall reinforcement is 
antagonistic to the subsequent loosening for continu-
ous growth under salt stress. A genetic change that 
permanently stiffen cell wall might confer salt toler-
ance for a short time span, which is often the case 
for lab experiments, but compromise later growth. 
Crucially, the genetic switch governing the response 
transition is still poorly understood. The extent of 
cell wall remodelling’s contribution to overall salt 
tolerance is also unknown. Future studies will have 
to answer these glaring mechanistic questions before 
application.

The pleiotropic nature of transcriptional factors 
and signalling controls render their modification for 
crop improvement a double-edged sword. On one 
hand, being able to unlock a stream of salt stress 
adaptations by modifying a single gene might be 
efficient for gene editing. For instance, signal trans-
duction involving stress hormones regulate not only 
molecular defences, but also anatomical adjustments 
like root system architecture to enhance water and 
nutrient acquisition under salinity (Julkowska and 
Testerink 2015). On the flip side, changes in pleio-
tropic genes could also lead to unintended conse-
quences that may harm crop performance. To resolve 
this, examining both mechanisms could conduct 
higher resolution characterisation of their down-
stream pathways, and to conduct realistic field tri-
als. For transcription regulation, that is to verify the 
functions of their target genes in soybean physiol-
ogy, not just their roles in conferring salt tolerance. 
For tuning plant signal transduction to survive salt 
stress, (Julkowska and Testerink 2015) et al. laid out 

the outstanding questions, particularly in relation to 
plant’s structural acclimation to high salinity. If the 
mechanisms are well understood, transcriptional and 
signalling modifications can best be applied to crop 
improvement by gene editing tools, which will be dis-
cussed below in more detail.

Thus far, the salt tolerance mechanisms covered in 
this review are universal among different crop species 
as these adaptations have been studied extensively. 
Exploring adaptive traits unique to soybean, namely 
its symbiosis with Rhizobia in root nodules, will 
prove crucial to developing salt-tolerant cultivars. 
Rhizobia-legume symbiosis has long been recognised 
for its agronomic and environmental significance. Salt 
stress hampers this interaction by reducing nodulation 
success and nitrogen-fixing abilities of Rhizobia ​​(Sin-
gleton and Bohlool 1984), hence handicapping nutri-
ent acquisition and productivity in soybean. Recently, 
salt-induced expression of the transcription factor 
GmNAC181, renamed from GmNAC11 in Li et al. (Li 
et al. 2017b), was found to promote soybean nodula-
tion under salt stress by binding to and activating the 
GmNINa promoter (Wang et  al. 2022). Future stud-
ies could continue unravelling the interaction between 
salinity and soybean nodulation genetic components, 
thereby providing useful insights into improving 
Rhizobia recruitment efficiency under salt stress.

It might be tempting to combine multiple salt tol-
erance traits in a single cultivar. However, salt toler-
ance mechanisms, such as ion transportation and 
ROS scavenging, are known to incur an energetic cost 
to plants and might affect crop yield (Munns et  al. 
2020; Zorb et al. 2019). Future studies could rate the 
salinity threshold of soybeans and measure their yield 
to quantify and compare the effectiveness of different 
improvement strategies while taking into account the 
energetic trade-off.

Toolkits to improve salt tolerance in soybean

Marker-assisted selection (MAS) and genomic selec-
tion (GS) are conventional methods of applying 
genomic knowledge to crop development (Ashraf 
et al. 2012; Chen et al. 2018a). Thanks to the advance-
ment in artificial intelligence, MAS and GS can now 
be enhanced by machine learning, which leverages 
the big data of soybean phenotypes and genotypes 
(Tong and Nikoloski 2021). Computational modeling 
offers several advantages over conventional MAS and 
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GS. First, it can incorporate multi-omic datasets to 
describe the intermediate phenotypes of crops (Tong 
and Nikoloski 2021). Environmental factors, such as 
soil type and local climate, can also be incorporated 
into the model as genotype-by-environment (G × E) 
interactions (Burgueno et al. 2012), which yield much 
higher trait predictability than models that omit G × E 
effects (Lopez-Cruz et al. 2015). Tools developed for 
crop phenotypic data collection and phenomic data 
analysis have been reviewed and shown great poten-
tial (Zhao et  al. 2019a). A model constructed from 
soybean phenomic data has integrated agro-manage-
ment practices in predicting yield, which takes a step 
forward to informing and optimizing crop production 
(Parmley et  al. 2019). All these show that machine 
learning-facilitated breeding could overcome the dif-
ficulties in applying ex situ experimental knowledge 
in the field. Tong and Nikoloski (2021) have evalu-
ated past applications of machine learning in crop 
trait improvement via GS, and highlighted the poten-
tial of integrating high-throughput multi-omic pheno-
typic data to improve the efficacy of crop breeding, 
serving as a reference point for future improvements 
in soybean salt tolerance.

Genome editing refers to a suite of molecular tech-
niques that induce precise and targeted modifications 
in genomes (Zhang et  al. 2018), offering effective 
tools in generating new germplasms with controlled 
mutagenesis. Since genome editing does not involve 
the transfer of foreign genes, i.e. transgenesis, gene-
edited crops side-step the legal limitations of, or ethi-
cal concerns for, conventional genetically modified 
organisms (GMOs) (Rahman et al. 2022). In soybean, 
a breakthrough occurred when transcription activator-
like effector nuclease (TALENs) was applied to cre-
ate a high-oleic acid soybean cultivar by knocking out 
two fatty acid desaturase 2 genes (GmFAD2-1A and 
GmFAD2-1B) (Haun et al. 2014), which has become 
the first-ever gene-edited crop to be commercialised 
(Calyxt 2019). The oil produced from this new soy-
bean contains 80% oleic acids and 20% less saturated 
fat, thereby significantly improving its health benefits, 
heat stability and shelf life.

Among various gene editing methods, CRISPR/
Cas9 (clustered regularly interspaced short palindro-
mic repeats/CRISPR-associated protein 9) stands out 
for being rapid and cost-effective. It involves inducing 
mutations in target genes by cleaving specific DNA 
strands via the action of the Cas9 enzyme guided by 

the CRISPR sequence (Zafar et  al. 2020), offering 
an effective tool in the molecular breeding of new 
germplasms with controlled mutagenesis. In soybean, 
CRISPR/Cas9 has been applied in different forms of 
mutation, namely targeted addition, deletion, replace-
ment and correction (Lu and Tian 2022; Xu et  al. 
2020). Most notably, Do et al. (Do et al. 2019) were 
able to reproduce the high-oleic acid phenotype by 
using CRISPR/Cas 9 instead of TALEN and yielded a 
higher dual-mutation efficiency. However, in relation 
to soybean salt tolerance, the application of CRISPR/
Cas 9 has mostly been limited to performing func-
tional analyses on target genes (Sun et al. 2021; Wang 
et  al. 2021b). The potential, application, challenges 
and key to the success of utilizing CRISPR/Cas9 to 
develop stress-resistant crops have been discussed in 
several reviews (Rahman et  al. 2022; Shelake et  al. 
2022; Zafar et al. 2020; Mao et al. 2019).

Beyond the above methods, an excellent review 
by Varshney et  al. (2021) has presented a holistic, 
strategic pipeline to fast-forward crop improvement. 
It starts from developing system-level understand-
ing of crop phenotype via multi-omics and machine 
learning, to genomic prediction and speed-breeding 
approaches. We encourage future studies to reference 
this roadmap when developing salt-tolerant soybeans 
if we were to move on from laboratory experiments to 
field application.

From lab to field: strategies to apply current 
knowledge

Given the socio-economic importance of soybean, the 
value of genomic research can only be fully realized by 
applications. The goal of improving salt tolerance in 
soybean is to optimise crop production in spite of the 
saline farmland, not maximising salt tolerance per se. 
As agronomic viability is the prerequisite of applying 
lab-based knowledge to field production, newly devel-
oped soybean lines must be evaluated in the field while 
considering the local production context.

Laboratory or greenhouse settings are unrealistic, 
hence, inadequate in testing crop performance. The 
screening for soybean salt-tolerance is often limited to 
seedlings, with the assumption that higher survival or 
vigor during the vegetative stage is a good proxy for its 
crop performance. This is, however, not guaranteed as 
too high a salinity could cause plants to divert most pho-
tosynthetic energy to stress tolerance rather than growth 
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and reproduction (Zorb et  al. 2019). Interestingly, salt-
tolerant soybeans might even exhibit the same level of 
early vigor as salt-sensitive lines under salt stress despite 
performing better in field (Liu et al. 2016). Tolerant soy-
beans are not immune to salt-induced crop penalty, which 
might occur in form of reduced number pods per plant, 
seed multiplication ratio, hundred-seed weight et cetera. 
All these point to the necessity of field trials. Studies that 
improve soybean salt tolerance on a molecular basis sel-
dom quantify the yield performance of their product, but 
examples include those developed from the introgression 
of GmCHX1 into salt sensitive cultivars with MAS (Do 
et al. 2016; Liu et al. 2016) and CRISPR/Cas9-induced 
mutagenesis of GmAITR, which increased ABA sensitiv-
ity (Wang et al. 2021a). All three studies demonstrated 
that the salt-tolerant line outperformed salt-sensitive 
ones in terms of yield-related traits. Future studies could 
consider quantifying the raise in salinity threshold of 
improved soybeans (Zorb et al. 2019).

Same as the selection process of other agro-
nomic traits, the evaluation of salt tolerance should 
consider the local environment and the need of 
producers. While most lab-based soybean salt tol-
erance experiments use NaCl for salt treatment, salt-
affected land worldwide vary in their chemical char-
acteristics like pH and the presence of other types 
of salt (Rengasamy 2010). Developing salt-tolerant 
soybeans, whether by breeding or gene editing, 
can be based off landraces that are adapted to local 
conditions. These include, but are not limited to, 
soil physicochemical properties, climate, irrigation 
regime, pest and disease. Despite having undergone 
domestication, cultivated soybeans are reasonably 
high in genetic diversity (Hyten et  al. 2006). This 
corroborates the well-recognised importance of pre-
serving local seed resources, of which genetic diver-
sity could improve crop resilience, avoid genetic 
bottleneck and inbreeding depression.
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