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Abstract

Pathologists worldwide are facing remarkable challenges with increasing workloads and lack of time to provide consistently high-
quality patient care. The application of artificial intelligence (AI) to digital whole-slide images has the potential of democratizing the
access to expert pathology and affordable biomarkers by supporting pathologists in the provision of timely and accurate diagnosis as
well as supporting oncologists by directly extracting prognostic and predictive biomarkers from tissue slides. The long-awaited adop-
tion of AI in pathology, however, has not materialized, and the transformation of pathology is happening at a much slower pace than
that observed in other fields (eg, radiology). Here, we provide a critical summary of the developments in digital and computational
pathology in the last 10 years, outline key hurdles and ways to overcome them, and provide a perspective for AI-supported precision
oncology in the future.

In the last 10 years, artificial intelligence (AI) has been demon-

strated as a useful tool in histopathology image analysis (1,2). In

particular, AI can directly extract much information from hema-

toxylin and eosin–stained sections. Multiple approaches have

been tested for the deployment of AI in pathology, including

“strongly” supervised approaches, which emulate what patholo-

gists do, and weakly supervised approaches, which, theoretically,

can equal or surpass what pathologists do (3). Strongly super-

vised AI methods are mostly used for automation, can reduce

variability in cancer typing and grading and automate immuno-

histochemistry scoring, and thus can help pathologists arrive at

more precise and consistent diagnoses. Weakly supervised meth-

ods can use AI to predict a ground truth derived from the tissue

slide itself: for example, predicting the presence of prostate can-

cer from slides by using a single label per slide, which can be

affected by the subjectivity or lack of precision of a given diagno-

sis (4,5). Exceeding this, weakly supervised AI can be trained on

an orthogonal ground truth: for example, information derived

from molecular diagnostics or clinical follow-up. Hence, weakly

supervised AI can define new biomarkers; it can predict genetic

alterations (6,7) and clinical endpoints (1,3), tasks currently not

routinely possible for pathologists (Figure 1, A).

The promise of AI in pathology
On the surface, AI is ready for prime time; however, in reality,

limitations of AI have hindered its broad adoption (Figure 1, B).

Despite the enthusiasm with the utilization of digital pathology

and AI, why has AI not yet become a reality? Here, we discuss

what we perceive to be key limitations to the transformative

potential of AI in pathology and potential strategies to overcome

them.

Challenges in the adoption of AI in pathology
Paradigm shifts
The first challenge is conceptual and cultural, given that the

adoption of AI in pathology requires 2 fundamental paradigm

shifts: the introduction of digital pathology for diagnosis and

pathological assessment of cancers, as well as the transition

from a human-based diagnosis or assessment system to one

where AI will render the final diagnosis or provide the final

results for a given biomarker. New technologies require the dis-

continuation of established practices, and this can cause distress

for users. For example, the introduction of microscopes for the

diagnosis and characterization of diseases was met with consid-

erable resistance by physicians, perhaps best exemplified by the

great microscopy debate at the Paris Academy of Medicine in the

19th century (8). Similarly, abolishing the traditional microscope

and moving to routine digitalization of glass slides was successful

in a few institutions in the 2010s but is still met with broad resist-

ance. Even the first step for digitalization of pathology, the transi-

tion from a traditional histology workflow to a “radiologist-like”

workflow in which the user looks at images on a computer

screen, is still not yet a reality. And indeed, why should patholo-

gists move from microscopes to computer screens if the current
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workflows are inexpensive and effective and the training of new
pathologists is primarily based on microscope-based diagnoses?
Digital pathology measuring tools and remote work are strong
incentives, but the ultimate incentive could be the development
of AI-based biomarkers. Once clinical evidence supports the pre-
dictive and prognostic power of these biomarkers and clinical
guidelines recommend AI biomarkers, pathology departments
will, inevitably, have to become digital; otherwise, assays essen-
tial for patient care will not be available. Hence, we contend that
evaluation and, ultimately, validation of AI biomarkers in sam-
ples from prospective clinical trials will likely serve as a catalyst
for the digitalization of histopathology. At present, however,
access to the algorithms being developed is limited, given the lim-
ited digitalization of pathology. In some countries such as
Sweden, the United Kingdom, or the Netherlands, large-scale
efforts are underway or have been completed to digitize most
large pathology departments. In many other countries, digitaliza-
tion of pathology is not yet a national priority and has not begun
on a large scale.

Quality control, biases, and ground truth
A second challenge is related to the quality and diversity of the
source data (Figure 1, C). Tissue fixation and cutting and staining
procedures vary between laboratories and cause differences in
morphology. This heterogeneity of input data is a challenge for
AI methods. There are 2 fundamental approaches to address this.
The traditional approach holds up the “garbage in, garbage out”

paradigm: according to this approach, preanalytical and data
handling workflows should be perfectly standardized. However,
this is not always possible: for example, whenever algorithms are
trained based on subjective ground truth data. An alternative to
striving for perfect standardization is to accept the diversity of
pathology slides, accept some diversity in the ground truth labels,
and train large models on diverse data. An intermediate way is to
accept varying quality of training data but to mandate local cali-
bration of the AI model at every institution to ensure the data are
“in domain.” Many “weakly supervised” AI training methods
require training on thousands of slides and are therefore more
data intensive than the traditional “strongly supervised”
approaches (3,4). Computational methods to augment data are
helpful, including style transfer (9) or other synthetic data gener-
ation methods (10,11). In addition, federated learning (12) and
swarm learning (13) are emerging technologies that can help
algorithms to access sufficiently diverse training data. Subtler
and possibly more important issues emerge during the process of
training the AI model and include overfitting, systematic biases,
performance drift, and an imperfect ground truth (14-16). These
can be immensely challenging to detect but do adversely influ-
ence the performance of AI systems, even leading to undetected
AI malpractice over long periods. There is no universal remedy
for these, but adherence to Good Machine Learning Practices (17)
during development of AI methods helps to mitigate some of the
risk. The single most important measure is to gather empirical
evidence for the generalization of AI systems on external cohorts
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Figure 1. History, potential and challenges of computational pathology. A) Key use cases of artificial intelligence (AI) in pathology. Strongly supervised
AI has mostly been used for diagnostic purposes or to generate input data for downstream models of prognosis or treatment response. Weakly
supervised AI can directly yield diagnosis, prognostic, or predictive models. B) Challenges of AI in histopathology. C) Histopathology workflows in the AI
era. D) Simplified timeline of developments in histopathology. H&E: Hematoxylin and eosin.
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representing different patient populations. Also, it is important
that end users critically evaluate the results of AI assays, like
they do with any diagnostic assay, and place it in context with
information obtained through other techniques. For example,
clinically approved methods for cancer detection in pathology
slides are developed to assist pathologists, but in case of a dis-
cordance between the AI model and the human pathologist, the
pathologist makes the final decision.

Validity as a biomarker
A third challenge is the technical validity of AI assays, which
should be considered de facto biomarkers. Biomarkers constitute
a characteristic that is objectively measured or evaluated as an
indicator of normal biological or physiological processes, patho-
genic processes, or pharmacologic responses to a therapeutic
intervention and must be fit for their intended purpose. AI bio-
markers clearly fall under this definition. For example, in breast
cancer, AI has been used to classify benign vs atypia vs ductal
carcinoma in situ and to predict hormone receptor and HER2 sta-
tus, PAM50 subtypes, and other genomic features as well as out-
come directly from routine pathology slides (7,18,19). Similarly in
colorectal cancer, AI has been used to predict microsatellite
instability (7,20,21) and other genetic alterations (22) as well as
molecular subtypes (23) and outcomes (24) from hematoxylin
and eosin slides. Some studies have expanded these findings in a
“pan-cancer” approach to any tumor type (18,25,26). Although
these biomarkers do not reach perfect concordance with the
ground truth methods and therefore cannot completely replace
current sequencing methods, they can be used as prescreening
tests to reduce the load of molecular tests (27,28). Independently
of their position in a diagnostic cascade, however, AI biomarkers
need to be assessed with exactly the same rigor as “traditional”
biomarkers. Many academic studies of AI biomarkers, however,
are based on small datasets and/or the analysis of tissue microar-
rays, utilize the digital whole slide images from The Cancer
Genome Atlas as the primary dataset, and/or report incomplete
performance metrics that can obscure deficiencies (29). Even
worse, when an AI method is turned into a commercial product,
it does not even necessarily have to demonstrate a high general-
izability to be approved for clinical routine use. Reaching a
demonstrable “clinical-grade” performance requires training data
in the order of thousands to tens of thousands of patients (4,30).
The most fundamental piece of evidence required to demonstrate
the robustness is a true external validation (ie, an application of
the trained model to a dataset that is completely independent of
the training dataset) (5). Another fundamental requirement for
AI biomarkers is reproducibility. This has increasingly come into
the focus of computational pathology research (5,31), and several
large-scale studies have evaluated AI systems on multiple
cohorts, demonstrating its clinical validity. An important element
of the analytical validity of AI algorithms is to test its reproduci-
bility at the level of deployment, including endeavors testing the
accuracy, reproducibility, and consistency for the deployment of
the algorithm for its use by an individual pathologist, by different
pathologists at the same institution, and by different pathologists
at other institutions (20,24,32). We argue that like any biomarker,
AI biomarkers need empirical proof demonstrating that they are
fit for purpose in all intended use cases. We would also contend
that the lessons learned in the process of incorporating genomics
biomarkers (33-35) could serve as a framework for the assess-
ment of the analytical validity, clinical validity, and clinical util-
ity of AI-based biomarkers. This should be combined with the

development of levels of evidence for the validity of this new cat-
egory of biomarkers.

Regulatory approval
A fourth challenge is the complexity and rapid changes in regula-
tory approval. For AI-based diagnostic assays to be used clini-
cally, they must pass the regulatory process for medical devices.
This process differs between the United States, the European
Union, and other large markets. In the European Union, the rele-
vant rule set since May 2020 is the Medical Device Regulation and
the In Vitro Diagnostic Medical Devices Regulation, and in the
United States, the relevant rule set for any laboratory test is
defined in the Clinical Laboratory Improvement Amendments
statute. Due to the involved nature of regulatory processes, the
clinical deployment of AI methods developed by academic groups
is remarkably challenging; in fact, partnerships with an existing
company or the development of a “spinoff” company from aca-
demic groups are approaches rather commonly being employed
(36). It is increasingly clear, however, that obtaining regulatory
approval does not mean that the algorithm is actually being used
in clinical routine or will result in clinical adoption. Several com-
panies struggle to commercialize their AI methods, leading to a
plethora of “orphan” products that have been formally approved
but not incorporated in pathology practice. Without the approval
of algorithms that can de facto improve pathology practice (not
incremental improvements), these approvals may not translate
into wide adoption of algorithms. We argue that only by the
approval of transformative AI-based biomarkers would there be a
clear incentive for pathology departments to undergo the
required digital transformation that will ultimately enable the
adoption of AI in pathology. Germane to the successful adoption
of AI algorithms in pathology is clarity in terms of the type of reg-
ulatory approval sought as well as regarding the required levels
of analytical validity for the use of these algorithms as laboratory
developed tests.

Financial challenges
Converting a pathology laboratory to digitized workflows is
costly. Hardware cost and set-up incurs a high fixed cost, and
slide scanning and backing up data incur a smaller but persistent
variable cost. Furthermore, fixed costs repeat every couple of
years as devices reach their expiry date and a new technical gen-
eration of devices becomes available. It is important to consider,
but is still mostly unclear, how these technologies will be priced
and whether they will be covered by insurance. Unlike many
other laboratory equipment (eg, massively parallel sequencers)
where the actual costs of the hardware are included as part of
the cost of the consumables needed, whole-slide scanners at
present require an initial investment. From the perspective of
health insurance providers or single payers, reimbursement of AI
technologies will depend on their potential to reduce costs and
improve clinical trial evaluation as well as patient outcomes.
Ideally, we would quantify how many pathologist-hours auto-
matic scoring systems can save or how many life years are gained
by a treatment informed by an AI biomarker compared with the
standard of care. These measurements, however, are difficult to
obtain in an unbiased manner, and, in their absence, it is unclear
how AI-based diagnostic assays and biomarkers should be priced.
Conversely, however, AI provides a unique opportunity to deliver
expert pathology, with algorithms benchmarked against the top
experts in the field or orthogonal data and to democratize access
to biomarkers in the context of health-care systems with less
abundant resources. In fact, good performance of AI biomarkers
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can be achieved with only a basic microscope and a mobile
phone, illustrating the potential of these approaches in providing
equity and inclusion for diagnostic pathology and biomarker
assessment in more remote and less affluent regions (37).

Outlook
In 2012, deep neural networks beat any previous handcrafted tech-
nology in image processing, and this trend has been a reality in
medical image processing since 2017. Hence, the last 10 years
have been regarded as an inflexion point for AI, and almost as a
plateau, with the task being to find new use cases for a technology
that was essentially mature. The years 2021 and 2022 revealed
that the technological aspects of AI are still expected to massively
evolve (Figure 1, D). In particular, the zero-shot capabilities of large
language models or diffusion models for data generation have
yielded astonishing successes, and the commercial and societal
disruption resulting from the surrounding software ecosystem is
expected to be transformative. It seems plausible that this techno-
logical advance will spill over to pathology and lead to previously
unimaginable use cases (10). Diagnostic pathology, however, still
seeks to find solutions for the successful implementation of the
2012-2022 generation of AI systems. Hence, it becomes even more
important that solutions to these challenges are enacted and that
this process ought to be driven by medical expertise and patient
benefit, ultimately resulting in the latest AI technologies being
sensibly applied for the benefit of patients and caregivers.
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