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� A new hybrid explainable AI
pneumonia identification framework
is proposed based on the ensemble
Transformer Strategy.

� The multi-head attention mechanism
is used to address the relationships of
the distant pixels among the chest X-
ray images.

� A comprehensive and robust binary
and multi-class pneumonia
classification study is conducted
using two Chest X-ray datasets.

� The XAI framework improves the
performance by 2.05% (binary) and
1.3% (multiclass) against the
individual ensemble scenarios.
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Introduction: Pneumonia is a microorganism infection that causes chronic inflammation of the human
lung cells. Chest X-ray imaging is the most well-known screening approach used for detecting pneumonia
in the early stages. While chest-Xray images are mostly blurry with low illumination, a strong feature
extraction approach is required for promising identification performance.
Objectives: A new hybrid explainable deep learning framework is proposed for accurate pneumonia dis-
ease identification using chest X-ray images.
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Methods: The proposed hybrid workflow is developed by fusing the capabilities of both ensemble convo-
lutional networks and the Transformer Encoder mechanism. The ensemble learning backbone is used to
extract strong features from the raw input X-ray images in two different scenarios: ensemble A (i.e.,
DenseNet201, VGG16, and GoogleNet) and ensemble B (i.e., DenseNet201, InceptionResNetV2, and
Xception). Whereas, the Transformer Encoder is built based on the self-attention mechanism with mul-
tilayer perceptron (MLP) for accurate disease identification. The visual explainable saliency maps are
derived to emphasize the crucial predicted regions on the input X-ray images. The end-to-end training
process of the proposed deep learning models over all scenarios is performed for binary and multi-
class classification scenarios.
Results: The proposed hybrid deep learning model recorded 99.21% classification performance in terms of
overall accuracy and F1-score for the binary classification task, while it achieved 98.19% accuracy and
97.29% F1-score for multi-classification task. For the ensemble binary identification scenario, ensemble
A recorded 97.22% accuracy and 97.14% F1-score, while ensemble B achieved 96.44% for both accuracy
and F1-score. For the ensemble multiclass identification scenario, ensemble A recorded 97.2% accuracy
and 95.8% F1-score, while ensemble B recorded 96.4% accuracy and 94.9% F1-score.
Conclusion: The proposed hybrid deep learning framework could provide promising and encouraging
explainable identification performance comparing with the individual, ensemble models, or even the lat-
est AI models in the literature. The code is available here: https://github.com/chiagoziemchima/
Pneumonia_Identificaton.
� 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The human lung is seen as one of the vital organs of the human
body; hence lung diseases are hazardous for humans. Pneumonia is
a lung disease that is caused by an acute respiratory infection.
There are several methods for classifying Pneumonia; Infectious
and non-infectious. Pneumonia is classified as infectious according
to the etiologic agents such as bacteria, viruses, mycoplasmas,
chlamydial pneumonia and so on. Non-infectious pneumonia is
seen as the body’s immune caused by chemical, physical, or radia-
tion pneumonia. Pneumonia is further classified as either
ventilator-associated Pneumonia (VAP), community-acquired
pneumonia (CAP), or hospital-acquired pneumonia (HAP). Because
of the broad spectrum of diseases, HAP is more resistant to medici-
nes and easier to proliferate, making the treatment difficult [1,2].
Pneumonia can be caused by various causes including age, malnu-
trition, alcohol consumption, and smoking. Pneumonia may affect
people of all ages although it is more dangerous in two-year-old
and younger newborns as well as persons aged 65 and older due
to their weakened immune systems (https://www.nhlbi.nih.gov/
health/pneumonia accessed on 16 May 2022). In Western nations,
pneumonia is the primary cause of infectious disease-related
death. Pneumonia is a condition that may be controlled if detected
and treated early. Pneumonia kills about 800,000 children under
the age of five every year with over 2,200 dying every day. Pneu-
monia affects almost 1,400 children per 100,000 children [3]. How-
ever, because clinical, biochemical, and imaging symptoms are not
always specific, diagnosing Pneumonia in an emergency context
can be difficult.

X-ray scans of the human body have long been used to detect
sensitive regions such as the head, teeth, chest and bones. For
numerous years, health experts have used this technology to ana-
lyze and see fractures or irregularities in the bodily organ pattern.
X-rays are effective diagnostic instruments for detecting neurotic
changes despite their quasi features and cost. Pneumonia is diag-
nosed using X-ray images of the chest. Even for professional radi-
ologists, diagnosing Pneumonia from chest X-ray images is
challenging. Pneumonia’s appearance on X-ray images is often
ambiguous and it can be mistaken for other diseases and act as
symptoms of other typical disorders. These discrepancies have
resulted in significant subjective judgments and differences in
pneumonia diagnosis among radiologists [4]. To assist radiologists
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in diagnosing Pneumonia from chest X-ray images, computerized
assistance technologies are required. Artificial intelligence has pro-
ven to be more successful in vision tasks, especially its sub-field;
Machine learning [5] and deep learning [6,7] which have been uti-
lized in a variety of disciplines in recent times to aid specialists in
the early diagnosis of diseases such as lung disease prediction, dia-
betic retinopathy, sleep disorders [8,9], stress [10,11], anxiety [12],
and brain tumor detection among others. These models are based
on X-ray images and detect pneumonia disease thanks to their suc-
cess. Although identifying pneumonia from chest X-ray images
remains a challenging task, there is a dire need to develop highly
accurate and efficient automated diagnostic methods for pneumo-
nia identification to facilitate early-stage detection, thereby reduc-
ing the mortality rate yearly.

Deep learning has risen to prominence being one of the most
promising technologies in previous research due to its ability to
handle massive quantities of data [1,13]. The most widely recog-
nized Deep learning approach is the Convolutional Neural Network
(CNN), which has made an outstanding performance in image pro-
cessing, voice recognition and pattern recognition. Their operation
is an end-to-end method where they make predictions from the
extracted useful and relevant features of the input images. CNN
approaches are preferred over the conventional approach due to
their automatic feature extraction from the input image, thus per-
forming much better, making it more popular among researchers
for image classification. According to the findings of the prior stud-
ies, utilizing deep learning algorithms to identify Pneumonia on
chest X-rays can relieve the load on radiologists; however, because
numerous researchers use different deep learning approaches, it’s
uncertain which model is superior. Secondly, most current deep
learning algorithms for pneumonia identification rely on a single
CNN model and the applicability of the ensemble learning method
in this classification problem has yet to be investigated. Finally,
most studies focus on binary categorizing pneumonia vs normal
with just a few capturing multi-class classifications due to the
scarcity of biological data. On the other hand, the CNN model only
analyzes the correlation between spatially neighboring pixels in
the receptive area determined by the filter size [14]. As a result,
it is difficult to identify relationships with distant pixels. Recent
attempts have been made to use attention mechanisms to tackle
this difficulty. Attention is a method of locating and concentrating
on the most informative portion of the data.

https://github.com/chiagoziemchima/Pneumonia_Identificaton
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As earlier stated, Pneumonia impacts a large number of people,
adolescents and children, notably in rural and undeveloped nations
defined by adverse outcomes such as overpopulation, poor sanitary
conditions, hunger as well as a lack of sufficient medical services.
Pneumonia must be diagnosed as soon as possible in order to be
cured. The most prevalent method of diagnosis is the evaluation
of X-ray images. However, it is dependent on the interpretive abil-
ities of the physician and is usually not accepted by other physi-
cians. To detect the condition, a timely and accurate model with
generalizing capacity is necessary. Since Traditional approaches
suffer from the extraction of relevant input image features, current
researchers prefer the use of deep learning models (CNN) that
extract relevant and informative features of the input data auto-
matically to perform much better. However, the CNN model only
analyzes the correlation between spatially neighboring pixels in
the receptive area determined by the filter size. As a result, it is dif-
ficult to identify relationships with distant pixels. Recent attempts
have been made to use attention mechanisms to tackle such diffi-
culty. Also, for result generalization, most researchers applied CNN
focused on single or individual models, thus ensemble model
approaches have not been well investigated. On the other hand,
image enhancement techniques (e.g., adaptive histogram equaliza-
tion, contrast stretching, denoising, etc.) have been employed by
several researchers leading a good classification performance of
the deep learning models. Using the enhancement techniques,
the performance could be slightly improved compared to the raw
image performance [14]. Furthermore, few authors have employed
the attention mechanism which has proven to have more balanced
and accurate image feature extraction techniques than the conven-
tion deep learning models for lung disease identification from
chest X-ray images, however, no focus has been given to the recent
multi-head self-attention which have proven to be more promising
compared to single head attention mechanism in computer vision
tasks.

Having taken note of the drawbacks, this paper proposed an
end-to-end binary and multiclass deep learning framework for
pneumonia identification from chest X-ray images using Trans-
former Encoder: Self-Attention Network and Multilayer Percep-
tron. The proposed framework could directly handle the input
raw images without any prior enhancement on the chest X-ray
images as recently done by several researchers for performance
gain to mitigate these limitations [15]. First, this study is estab-
lished to tackle the issue of feature extraction from the input raw
images by using the latest transformer encoder techniques against
the conventional CNN models. Indeed, the Transformer is a self-
attention-based architecture that emerged as the preferred para-
digm in today’s visual challenges [15–17]. The adoption of trans-
former architecture enabled substantial parallelization and
translation quality optimization. On the other hand, the CNN-
based model worked on a fixed-sized window and struggled to
capture connections at low resolution in both spatial and temporal
domains [15]. Furthermore, because the filter weights in CNN’s
stay constant after training, the process cannot adjust interactively
to changes in input. Objects are processed as sequences in Vision
Transformers (VisTransf) and class labels are inferred, enabling
algorithms to understand image hierarchy autonomously [14]. Sec-
ond, this study overlooked the strategy of employing image
enhancement techniques on the chest X-ray images as done by
other researchers for visual improvement as our proposed model
process the input images as a series of patches, with each patch
squashed into a single feature vector by combining the layers of
all pixels in a patch and then exponentially expanding it to the
appropriate input dimension by so doing, attend to the features
patch by patch yielding better performance. This paper first exam-
ined the performance of six pre-trained deep learning models (i.e.
EfficientNetB7, DensetNet201, VGG16, InceptionResNetV2, Xcep-
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tion, and GoogleNet network) via a transfer learning approach on
the chest X-ray images. The ensemble learning of the pre-trained
models served as feature extractors to the transformer encoder
network in two scenarios: ensemble A (i.e., DenseNet201, VGG16,
and GoogleNet) and ensemble B (i.e., DenseNet201, Incep-
tionResNetV2, and Xception). We propose an automated technol-
ogy that can distinguish between chest diseases like pneumonia
and healthy people to aid medical diagnosis even when profes-
sional radiologists are unavailable. Furthermore, the proposed
method was compared to other baseline models and recently pub-
lished researches to provide a point of comparison for our findings.
The contributions of this paper are summarized as follows;

� Explainability-driven, medically explainable visuals that
emphasize the crucial regions relevant to the model’s prediction
of the input image are proposed based on the Transformer
Encoder and ensemble learning for detecting the pneumonia
disease using chest X-ray images in early stages.

� Ensemble deep learning-based feature extraction framework
that is significantly discriminative in identifying pneumonia
and COVID-19, as a backbone of the proposed hybrid framework
is investigated in two binary and multiclass classification
scenarios.

� A comprehensive and robust binary and multi-class pneumonia
classification study is conducted using two different public
chest X-ray datasets: Mendeley data [12] and Chest X-ray [18].

� Investigating the classification performance of the several pre-
trained deep learning models in individual and ensemble forms.

� Based on the detailed comprehensive experimental evaluation
of the proposed deep learning scenarios, a robust deep learning
framework compared with the state-of-the-art techniques is
recommended for the early stage of pneumonia disease.

� Lastly, the proposed model shows its ability to improve the
ensemble model identification accuracy, thereby serving as a
robust performance enhancement framework of ensemble
models for disease detection using chest X-ray images.

The remainder of this paper is outlined as follows;
Section ‘‘Introduction” focuses on the introductory part and the
related works of this research. Section ‘‘Related work” describes
the related works in detail while Section ‘‘Materials and methods”
describes the materials, the proposed method, and evaluation met-
rics. Section ‘‘Results and discussion” introduces the experimental
setup and results, the proposed method’s discussion, application,
and limitation. Section ‘‘Conclusion” presents the conclusion and
future works.
Related work

Deep learning models

Chest X-ray Pneumonia detection has been an identified prob-
lem by researchers for a while [19,20]. Researchers in addressing
this issue have identified several approaches. The well-
established approach is the conventional approach. However, this
approach has problems that make it not acceptable in the medical
field. Such problems include the scarcity of publicly available train-
ing datasets, the extraction of pneumonia features etc., which are
time-wasting and inaccurate, resulting in false-positive results.
Recent advancements in the research field have seen applying
the deep learning approach in disease identification and predicting
Pneumonia inclusive. Deep learning is a computational
intelligence-based machine learning algorithm that simulates deep
visual representations in information stored through various input
and output layers with advanced systems or other methods [21].
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Deep learning has risen to prominence being one of the most
promising technologies in previous research due to its ability to
handle massive quantities of data [22]. The most widely recognized
Deep learning approach is the Convolutional Neural Network
(CNN), which has made an outstanding performance in image pro-
cessing, voice recognition and pattern recognition. Their operation
(Classification) [23] is an end-to-end method where they make
predictions from the extracted useful and relevant features of the
input images. CNN approaches are preferred over the conventional
approach due to their automatic feature extraction from the input
image, thus performing much better, making it more popular
among researchers for image classification.

Despite the outstanding performance of CNN models, the prob-
lem of overfitting and spatial information loss induced by normal
convolution operation leading to poor result generalization per-
sists. To tackle this issue of the CNN models, Liang et al. [24] pro-
posed residual blocks and dilated convolution layers in their
network backbone achieving a recall rate of 96.7 % and F1-Score
of 92.7 %. On the other hand, the works of [25,26] claimed that
the Transfer learning (the use of features learned from a substan-
tial trained dataset) accelerated the model training time and over-
came the overfitting. They used the Kaggle competition dataset to
train their proposed model and achieve their experiments. The
dataset is divided into three groups: training, validation, and test-
ing. The transfer learning approach is widely accepted by research-
ers in solving training dataset limitations, especially in the medical
field classification task. This uses previous knowledge gained from
a large trained dataset for a new task of limited training data sam-
ples via finetuning method. The research work presented in [25–
29] employed the Transformer technique for pneumonia disease
classification. In [29], Rahman et al. proposed transfer deep learn-
ing model for pneumonia detection using chest X-ray images. They
used the pre-trained deep learning models of AlexNet, ResNet18,
DenseNet201, and SqueezeNet to classify the chest images into
bacterial, viral, and normal classes using 5,247 images. They
designed their experiments with three classification schemes nor-
mal vs pneumonia, bacterial vs viral pneumonia, and combined
schema with three classes of normal, bacterial, and viral pneumo-
nia. They achieved the overall classification accuracy of 98 %, 95 %,
and 93.3 % over their three schemes, respectively. Similarly, Ayan
et al. [4] fine-tuned two conventional CNN architectures (i.e.,
VGG16 and Xception) via Transfer Learning for pneumonia disease
classification. The authors of [30] pointed out a different approach
to tackle the issue of training dataset samples. They suggested
using the data augmentation method to increase the training sam-
ple. They use the data augmentation functions such as random
rotation and random horizontal and vertical translation to enhance
the representation ability of their CNN model, which resulted in an
outstanding performance. Elshennawy et al. [30] evaluated the
performance of four deep learning models, of which two of the
evaluated models were pre-trained models (MobileNetV2 and
ResNet152V2), from scratch CNN model and an LSTM model. All
models were evaluated with varying parameters using the conven-
tional classification evaluation metrics. Wang et al. [31] stressed
the necessity of early identification of pneumonia illness. They
employed transfer learning and model adaption approaches to pre-
dict the disease using the VGG-16 and Xception models, achieving
87 % and 82 % detection accuracy for the VGG-16 model and Xcep-
tion model, respectively. Talo et al. [32] employed the ResNet152
model to identify pneumonia disease using the transfer learning
technique. It recognized 97.4 % set without any preprocessing or
feature extraction. In DICOM format, O’Quinn, Haddad, and Moore
in [33] attempted to detect the presence of Pneumonia. AlexNet
obtained a recognition success rate of 76 % using the transfer learn-
ing technique. Another study by Varshni et al. [34] examined the
identification of pneumonia using several models based on a con-
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volutional neural network (CNN), which they utilized for extract-
ing features via transfer learning and different classifiers as
predictors. Their findings demonstrate that pre-trained CNN mod-
els combined with supervised classifier models might help assess
chest X-ray images, particularly for detecting Pneumonia. The
authors also reported that utilizing DenseNet-169 for extracting
features and Support Vector Machines (SVM) as the predictor
yielded the best performance. In contrast to works based on trans-
fer learning, such as Stephen et al. [34] used data augmentation to
develop a trained CNN for pneumonia detection. The model’s effi-
ciency was evaluated with various image dimensions with the
maximum performance being 93.73 % for a 200 � 200 RGB image.
Urey et al. [35] pre-processed the chest X-ray data in three distinct
ways before applying three different networks to it. During the fea-
ture extraction phase, they employed the CNN model to extract the
feature maps of the pre-processed chest X-ray images using image
contrast and image unpacking. They identified the chest X-ray
images into three classes which were normal, bacterial pneumonia
and viral pneumonia achieving an overall accuracy of 79 %. Ham-
moudi et al. [36] employed several pre-trained deep learning mod-
els to identify the chest X-ray diseases: ResNet50, ResNet34, VGG-
19, DenseNet169 and Inception ResNetV2, and RNN. They com-
pared the results among all deep learning models but they did
not introduce the Transformer for more improvement of the dis-
ease classification performance. Sirazitdinov et al. [37] used two
pre-trained deep learning models (i.e., RetinaNet and Mask R-
CNN) to diagnose lung pneumonia using Chest X-ray images. The
best classification accuracy was achieved with 79.3 %. Liang and
Zheng [24] provided a transfer learning approach for detecting
kid Pneumonia with a recall rate of 96.7 % and an F1-score of
92.7 % in identifying kid Pneumonia. The Author also employed
the standard CNN and VGG16 deep learning models, recording
90.5 %, 89.1 %, 96.7 %, and 92.7 % for accuracy, precision, recall,
and F1-score for the CNN model, respectively. On the other hand,
the accuracy, precision, recall and F1-score score of the VGG16
were recorded to be 74.2 %, 72.3 % and 82.2 %, respectively.
Guangzhou Women’s and Children’s Medical Center was used by
Chouhan et al. [38] via transfer learning algorithm recording an
accuracy of 96.4 %. Siddiqi [39] proposed a sequential 18-layer
CNN to detect pneumonia disease from chest X-ray images. The
overall accuracy of 93.75 % was achieved and compared with the
accuracy of the CapsNet recorded by 82.50 % [39]. Yadav and Jad-
hav [40] suggested a CNN model that obtained 84.18 % accuracy,
78.33 % recall, 94.05 % precision and 85.66 % F1-score classification
performance. E3CC and VGG16 + CapsNet were used by Asnaoui,
Chawki and Idri in [41] with E3CC achieving an accuracy rate of
81.54 % and VGG16 + CapsNet achieving an accuracy rate of
88.30 %. Mittal et al. [42] attained 85.26 % accuracy, 94 % recall
and 89 % F1-score, respectively, while Jain et al. in [26] earned
95.62 % accuracy, 95 % recall and 96 % precision respectively, for
pneumonia detection from chest X-ray images.

Unfortunately, X-ray-based pneumonia diagnosis remains a
monumental challenge even for trained and experienced clinicians
as X-ray images have identical area information for other illnesses,
such as lung cancer. As a result, diagnosing Pneumonia using tradi-
tional methods is time-consuming and energy-intensive, and it is
hard to use a uniformmethodology to determine whether a patient
has Pneumonia. Many researchers have worked on further improv-
ing CNN’s performance and demonstrated considerable increases
over time. On the other hand, the CNN model only analyzes the
correlation between spatially neighboring pixels in the receptive
area determined by the filter size. As a result, it is difficult to iden-
tify relationships with distant pixels. Recent attempts have been
made to use attention mechanisms to tackle this difficulty. Atten-
tion is a method of locating and concentrating on the most infor-
mative portion of the data.
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Attention mechanism

The current state-of-the-art advancement in computer vision
tasks is the attention mechanism [43–45]. Due to the ability of
the attention mechanism to focus more on the valuable features
while discarding redundant features, it has superseded the conven-
tional CNNs models, which focus on the whole features of the input
image hence paying attention to redundant and essential informa-
tion, thereby leading to false-negative results. Sequel to the atten-
tion mechanism’s ability to boost interpretation and optimize the
classifier’s performance without increasing the computational cost
of the model, it is applied to replace the current CNN framework.
The study of Ref. [46] presented SENet to extract specific image
channel weights, demonstrating that decreasing superfluous infor-
mation may boost the classification strength of a deep learning
model. SENet significantly decreased prediction error while incur-
ring only a little computation complexity. Zhang et al. [47] sug-
gested a unique Shuffle Attention mechanism to tackle the
computation complexity. They subjected the input features to both
channel and spatial attention, achieving a classification improve-
ment on the ImageNet-1 k with more than 1.34 % accuracy. This
approach performs much better in the medical field because it cap-
tures tiny lesions’ information. ECA-Net [47] raised the issue of
SENet’s rising model complexity. ECA-Net eliminates the dimen-
sionality reduction procedure in the fully connected layer via
cross-channel connections using 1D Convolutions. As a result, they
can boost speedwhile loweringmodel complexity. The study in Ref.
[48] employed a two-stage network for Pneumonia diagnosing. The
U-Net architecture was used for the lungs RIO segmentation with
the SE-ResNet34 as the network backbone. Ref [49] saw the
abnormal-aware attention mechanism to transform the input
image low-level features into high-level features based on the fea-
ture relevance, yielding a framework that dynamically gave one
attentiveness score for every densely linked layer. In addition, they
used a unique angular contrastive loss to minimize intra-class loss
and increase inter-class loss. In WCE images, their approach
attained an accuracy of 89.4 %. As a result, embedding spatial and
channel attention in deep learning models to detect Pneumonia.

Vision transformer (VT)

Transformers [15,17] are attention mechanism-based deep neu-
ral network architectures initially designed for natural language
processing (NLP) tasks. After obtaining state-of-the-art perfor-
mance in NLP, it motivated the vision community to investigate
its usefulness in vision challenges to take advantage of its capacity
to represent long-range dependence inside an image [50]. The
Vision Transformer (ViT) is among the successful efforts to deploy
Transformer explicitly on images, obtaining good results in image
classification tests compared to state-of-the-art CNN [51]. Despite
its better performance, it has a simple modular architecture allow-
ing several extensive applicability in various jobs with minimum
alteration. Chen et al. [52] bintroduced an image recognition trans-
former, one of the promising multi-task frameworks for various
computer vision problems, partitioning ViT into the common core
and undertaking heads and tails. This implies that the Transformer
has enough profound architectural body potential to be distributed
among required tasks. Meanwhile, they utilized an encoder-
decoder architecture and the utility of the multi-task ViT concept
was not examined alongside the decentralized learning approaches.
ViT was reportedly and effectively used for the diagnosing and
symptomatic prognosis of COVID-19, demonstrating state-of-the-
art efficiency [53]. To eliminate the over-fitting issue caused by lim-
ited training samples, the total architecture is divided into two
phases: (1) the pre-trained backbone structure is used to categorize
common deep features, and (2) the extracted deep features then
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exploited by the Transformer-based architecture for a high-level
diagnosis and symptomatic prognosis of the COVID-19 chest X-
ray images. Even with a few training samples, the model achieved
a steady result generalization and state-of-the-art performance in
a range of external test sets from various institutions.
Materials and methods

This section presents the proposed hybrid deep learning archi-
tecture in detail as shown in Fig. 1. This model is inspired to com-
bine both deep convolutional networks for strong deep feature
extraction as well as transformer encoder with self-attention and
MLP mechanisms in an end-to-end manner for accurate identifica-
tion performance. As it is known, the deep learning CNN models
could analyze the spatial correlation among the neighboring pixels
in the receptive area determined by the convolutional filter size
ignoring the directional relationships with the distance among
these pixels [15,17]. To solve this, transformers based on the atten-
tion deep learning mechanism have recently been presented and
proven to be more powerful and robust to consider both spatial
pixel correlation with their distance relations for more accurate
visual recognition tasks.

The proposed hybrid deep learning framework has the follow-
ing overall processing steps. First, the data preprocessing tech-
niques were performed to prepare and clean the data including
resizing, rotation, cropping, normalization and data splitting into
training-validation and testing sets. Second, deep learning features
are extracted using the capability of the latest ensemble deep con-
volutional network structures. To select the best backbone net-
work of the proposed hybrid framework, a comprehensive
experimental analysis for six deep learning pre-trained models
were performed. Finally, the ensemble concatenated deep features
of the models are passed through the proposed transformer enco-
der where the self-attention network distinguishes the different
symptoms in the fed images. The block of multilayer perceptron
(MLP) is further applied to enhance the results of the self-
attention network in false symptom detection in the fed dataset.
We further discuss the implementation steps of our proposed
model as follows;

� Step 1: Collection of multiple chest X-ray images from various
benchmark databases, data preprocessing, and splitting.

� Step 2: Proper backbone model selection for deep feature
extraction from various state-of-the-art pre-trained deep learn-
ing models. A comprehensive experimental study is performed
on six deep learning pre-trained models: DenseNet201, Xcep-
tion, VGG16, GoogleNet, GoogleNet, InceptionResNetV2 and
EfficientNetB7. For this purpose, the Chest X-ray dataset is used
for the Multi-classification scenario.

� Step 3: Concatenating the selected pre-trained models for richer
features and accurate results generalization. Experiments were
carried out with only the ensemble models to record their per-
formance. The implemented ensemble models are of two sce-
narios: Ensemble A is the concatenation of DenseNet201,
VGG16 and GoogleNet architecture, while Ensemble B is the con-
catenation of DenseNet201, InceptionResNetV2 and Xception
network architecture.

� Step 4: Employ the proposed fine-tuned Transformer Encoder
(TE) based on the ensemble model features as the network
backbone.

� Step 5: Identification and classification stage which is the last
stage of the proposed hybrid XAI model. The learned features
are passed into the classification layer for the final result predic-
tion. The main components of the proposed model architecture
are explained in the following sections.



Fig. 1. The abstract organizational structure of the proposed hybrid deep learning framework for pneumonia identification from chest X-ray images. The pre-trained
ensemble deep learning models serve as deep feature extractors, while the transformer encoder based on the self-attention mechanism and perceptron multilayer (MLP
Block) is used for pneumonia accurate identification.
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Fig. 1 shows the consecutive processing steps of the proposed
hybrid deep learning framework: data preprocessing, deep feature
extraction via the backbone pre-trained ensemble scenario, and
the feature enhancement using the Transformer Encoder with
and the self-attention and MLP mechanisms for the final classifica-
tion purpose.

Dataset

The proposed deep learning models were trained, validated, and
assessed using two different chest X-ray datasets: Mendeley [54]
and Chest X-ray [31] datasets. The Mendeley dataset represents
the binary classification scenario with two classes of Normal Vs.
Pneumonia, while the Chest X-ray dataset reflects the multi-
classification scenario via three different respiratory disease
classes: Normal, Bacteria Pneumonia, and Viral Pneumonia. Fig. 2
depicts the pictorial representations of some Chest X-ray images
from both datasets.

Mendeley dataset
This dataset was collected for kid patients over the age of one to

five years old at the Guangzhou Women and Children’s medical
center in Guangzhou, China. All images in this dataset were in
the format of the joint photographic experts’ group (.jpeg) but with
different spatial resolutions. Despite this dataset having three dif-
ferent classes of Normal, Bacteria Pneumonia, and Viral Pneumo-
nia, both Bacteria and Viral Pneumonia classes were merged to
form the binary classification dataset set (i.e., Normal vs Pneumo-
nia). The number of normal images for training, validation, and
testing were collected and randomly split to be 1341, 8, and 234,
respectively. Whereas, the number of pneumonia images after
combining was 3875 for training, 8 for validation, and 390 for test-
ing. To enlarge the number of images in a balanced manner, more
additional images are collected, for the respective classes, from
another dataset source, called COVID-19 Radiography Dataset
which is publically available [55]. The final dataset distribution is
reported in Table 1.

Chest X-ray dataset
The Chest X-ray-15 k dataset is collected from eleven different

sources by Badawi et al [18]. This dataset has a balanced number of
Chest X-ray images in terms of training/validation and testing with
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3,500 and 1,500 images, respectively. It has three different chest X-
ray classes: Normal, Bacteria Pneumonia, and Viral Pneumonia. The
data distribution per class is summarized in Table 1. All images in
this category are in the portable network graphics (.png) but with
different spatial resolutions.

Preprocessing

The chest X-ray images employed in this study have varied
width and height values, thus they were resized to 224� 224 pixels
before the training process. The reshape size of 224 � 224 pixels
was selected to allow us to do some data augmentation. Each deep
learning model could internally resize the input images to fit its
structure. Since deep learning models require a massive quantity
of data to increase their performance, data augmentation is one
solution for dealing with sparse data and enlarging the number of
images in the training sets. The images in the training set were
rescaled (i.e., image magnification or reduction) using the ratio of
1.0/255, Zoom range of 0.2, rotation range equal to 1, and horizontal
flip. The rotation range specifies the span under which the images
were spontaneously rotated throughout training. The zoom range
dynamically zooms the images to a ratio of 0.2 percent as well as
the images were eventually flipped horizontally. While noting the
significance of recent data augmentation techniques used by the
researchers such as denoising and histogram equalization and their
contribution to the improvement of model results, this study
focused more on the real-time implementation strategy where
models are applied directly to the whole input chest X-ray images.
Also, this paper is much concerned with the ability of the attention
mechanism to detect the affected pixel of the chest X-ray images.

Pre-trained models

The selected pre-trained backbone deep learning models are
DenseNet201 [56], Xception [57], VGG16 [4], GoogleNet [58],
InceptionResNetV2, and EfficientNetB7 [59] are discussed as
follows;

� DenseNet201 [56]: This model ensures information flow across
layers in the network by connecting each layer to every other
layer in a feed-forward approach (with equal feature-map size).
It concatenates (.) the previous layer’s output with the output of



Fig. 2. Some samples of the deployed chest X-ray datasets. The first row depicts some images from the Mendeley dataset, while the second row depicts some images from the
chest X-ray dataset.

Table 1
Chest X-ray dataset distribution over binary and multiclass classification scenarios. Training and validation images are combined for fine-tuning the deep learning models.

Dataset Partition Normal Viral Pneumonia Bacteria Pneumonia Total/Partition Total

Mendeley [54]: Binary Task: Two classes Train 3,600 3,900 – 7,500 8,124
Test 234 390 – 624

Chest X-ray [4]: Multiclass Task: Three Classes Train 3,500 3,500 3,500 10,500 15,000
Test 1,500 1,500 1,500 4,500
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the future layer. The transition layers are 1 � 1 convolution, fol-
lowed by 2 � 2 average pooling. The global pooling is used at
the end of the last dense block before the SoftMax is applied.

� VGG16 [4]: VGG16 has 16 layers. After the preprocessing step,
the extracted values are passed into a stacked Convolutional
layer with 3 � 3 receptive-field filters, a fixed stride of 1. After
that, spatial pooling is done by five max-pooling of several con-
volutional layers. The max-pooling layer of a 2 � 2 filter is per-
formed with a stride of 2. At the end of the last convolution, two
fully connected layers (FC) and SoftMax (for the output) are
added to complete the architecture.

� GoogleNet [58]: This architecture was built to overcome the
problem of overfitting while going deeper with the network
layer. The idea was basically of having multiple filters that
can work on the same level, thus making the network broader
instead of deeper. A typical GoogleNet architecture has 22 lay-
ers and 27 max-pooling layers with nine linearly stacked Incep-
tion modules. The global average pooling is at the end of the
inception module.

� Xception [57]: This is a stack of the depth-wise separable con-
volution layers linearly with residual connections. It consists of
36 convolutional layers structured into 14 modules with linear
residual connections around each, serving as the feature extrac-
tion backbone of the network.

� InceptionResNetV2 [60]: This is an improvement of Incep-
tionResNetv1 as the network schema is that of Incep-
tionResNetv1, and the stem is that of InceptionV4. Each
module has a shortcut connection at the left. It combines incep-
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tion architecture with residual connections to improve classifi-
cation accuracy. For the residual links to be effective, the
inception module convolutional operation must have the same
input and output; thus, 1 � 1 convolution must be used after
the original convolution to match the depth sizes. The addition
of the residual connections replaced the pooling operations.

� EfficientNetB7 [59]: EfficientNetB7 is a non-linear and non-
recurrent neural networks search that balances network depth,
breadth, and resolution to maximize accuracy and FLOPS. The
architecture employs seven inverted residual blocks, each with
its parameters. Squeeze and excitation blocks as well as swish
activation, are used in these blocks.

Multi-model ensemble deep learning

Indeed, deep learning networks are non-linear models and they
could provide great flexibility to the scarcity amount of training
datasets [42]. They are very sensitive to the training data details
since they are fine-tuned via random algorithms and produce some
variation in the weight sets every training time. This pushes the
neural networks to achieve different predictions at a time giving
the neural network a high variance. To reduce such variance of
deep neural networks, the ensemble learning technique is recently
used to learn multiple deep learning models instead of a single one
[47]. Then, the final prediction result is achieved by combining the
predictions of these multiple models. Indeed, ensemble learning
allows the fusing of different models’ decisions, thus allowing
more detailed salient image features and capturing more useful
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information from the different classifiers hence yielding more
robust classification results. In the literature, we found that the
majority of cutting-edge deep learning techniques for pneumonia
identification rely on a single convolutional network. Ensemble
learning perspective has received little attention in the context of
the pneumonia identification and classification task. In this paper,
ensemble deep learning models were investigated and considered
for designing the backbone network. This paper defines its ensem-
ble method as the concatenation of different pre-trained deep
learning models for rich feature extraction and enhancement of
performance results as shown in Fig. 3. The ensemble method var-
ies on the choice of researchers. We experimented with two
ensemble scenarios as explained below,

� Ensemble A is the concatenation of deep learning architectures
of DenseNet201, VGG16, and GoogleNet. The first top layer
which is the classification layer of each model is removed, while
the deep features were extracted from the last block convolu-
tion layer of each model. The DenseNet architecture outputted
(None, 7, 7, 1920) after the classification layer was removed,
while the VGG16 and GoogleNet architecture output are formed
to be (None, 7, 7, 512) and (None, 5, 5, 2048), respectively. Look-
ing at the 3 models, the GoogleNet architecture had a different
output hence there is a need for uniformization of all the output
features. The GoogleNet architecture was zero-padded before
the features were concatenated.

� Ensemble B is the deep learning concatenation of DenseNet201,
InceptionResNetV2, and Xception convolutional networks.
Same as ensemble A, the classification layer of the three models
were removed and the outputted features from the last convo-
lutional block/layer were concatenated. The output of the deep
learning models of DenseNet, InceptionResNetV2, and Xception
network is formed to be (None, 7, 7, 2048), (None, 7, 7, 1920),
and (None, 5, 5, 1536), respectively. Just the GoogleNet in
Fig. 3. Diagrammatical illustration of th
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Ensemble A, we zero-padded the InceptionResNetV2 architec-
ture for uniformity of the outputted features before concatenat-
ing them.

Transformer encoder (fine-tuned vision transformer)

A transformer is a deep learning model that uses the self-
attention mechanism to weigh the importance of each element of
the input data differently. It is presented in an encoder-decoder
manner. In this paper, we adopt and fine-tune the vision trans-
former (ViT) via encoder approach for early pneumonia disease
detection from chest X-ray images. The proposed transformer
encoder consists of a self-attention network, a multi-linear percep-
tron block, and a classification layer. Two output results are yielded
from a given input image by the ViT encoder; the total input token
embedding vector (i.e., image and class tokens), all layers and head
attention weights. The number of tokens makes up the dimension
of the embedding tensor. Since we are interested in only the
embedding vector of the class token to be used as the image fea-
ture vector for classification, we extracted it at index 0 before pass-
ing it through the classifier to yield a given input of length
equivalent to the total number of classes. The fine-tuned model
components are described in detail as follows,

Self-attention network
The self-attention mechanism could compute a representation

of a single input sequence by linking distinct places of the same
series [15]. The self-attention network and MLP block represent
the encoded structure where the normalization layer with residual
connections is used in each block intermediately. The attention
function is the mapping to an output of a set of keys, value pairs,
and a query [16]. The weights allocated to each value are deter-
mined by the query compatibility function with the relevant key,
whereas the weighted sum of the values results in the output. Con-
e proposed Ensemble architecture.
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sidering an input with dimension dk of queries and keys and
dimension dv , the dot product of all queries with keys are com-

puted by dividing each with
ffiffiffiffiffi
dk

p
, while using SoftMax to ascertain

the weights on the value pairs. The attention matrix contains the
set of queries (Q), the keys (K), and values (V), which are used to
compute the attention function simultaneously. The attention (Q,
K, V) is computed as follows,

Attention Q ;K;Vð Þ ¼ softmax
Q � KTffiffiffiffiffi

dk

p !
� V : ð1Þ

Multi-headed attention allows the model to simultaneously
attend to input from several representation subspaces at various
locations. Fig. 4 elaborates on the computation done by the
multi-head self-attention in the encoder.

MultiHead Q ;K;Vð Þ ¼ Concat head1; � � � ;headhð ÞWO; ð2Þ

headi ¼ Attention QWQ
i ;KW

K
i ;VW

V
i

� �
:

The parameter matrices are the projections

WQ
i 2 Rdmodel�dk ;WK

i 2 Rdmodel�dk ;WV
I 2 R

dmodel�dk and WO
i 2 R

hdi�dmodel .

Multilayer perceptron layer (MLP)
The multilayer perceptron (MLP) is referred to as a feed-forward

neural network model with some dense and dropout layers [15]. In
this study, the MLP is designed using two non-linear layers of
Gaussian error linear units (GELU). The MLP blocks receive identi-
cal stacked layer blocks and structures. For instance, let X 2 Rn�d be
the token features with its length of sequence denoted n and
dimension denoted d. Defining each block mathematically;

Z ¼ r XUð Þ; eZ ¼ s Zð Þ;Y ¼ eZV ; ð3Þ

z0 ¼ xclass; x1pE; x
2
pE; � � � ; xNp E

h i
þ EPOS; E 2 R p2�Cð Þ�D; Epos 2 R Nþ1ð Þ�D;

ð4Þ
Fig. 4. Visualization of a Multi-head self
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zIl ¼ MSA LN zl�1ð Þð Þ þ zl�1; l ¼ 1:::::L; ð5Þ
zl ¼ MLP LN zIl
� �� �þ zIl ; l ¼ 1 � � � :L; ð6Þ
y ¼ LN z0l
� ð7Þ

r is an activation function, U and V denote the dimension of the
channel’s linear projections and s denotes the identity mapping.
From Eq. (3), the spatial interaction is captured by the layer denoted
as s �ð Þ where the individual tokens are computed separately with-
out any token interactions. Eqs. (4) and (5) explain in detail the indi-
vidual layers class token, learnable imbedding positioning and the
patch embedding before being stacked as shown in Eq. (3). Eq. (7)
depicts the final output of the Encoder as formulated to be,

s Zð Þ ¼ Z � f W;b Zð Þ; ð8Þ
where � reflects the dot product or the element-wise

multiplication.
Classification layer
The classification head is implemented with one hidden layer

during pre-training (Eq. (5)) and a single linear layer (Eq. (6)) dur-
ing fine-tuning by the MLP. We use the SoftMax layer after the MLP
block to accurately detect a sample. The SoftMax layer’s primary
function converts the encoding layer’s output information into a
likelihood interval [0,1]. In this work, we consider pneumonia
identification for binary and multi-classification scenarios. After
that, the input samples are sent to the encoding network, whose
outputs are then transferred into the likelihood interval [0,n] via
the SoftMax layer, as seen below:

li ¼ P tijSið Þ ¼ 1
1þ e� Wcuþbcð Þ e 0;nð Þ; ð9Þ

where the weight matrix and the bias term are denoted as
Wc and bc , respectively. The categorical smooth loss function is
used to calculate the loss between the ground truth and the
-attention Network and MLP blocks.
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detected labels. This loss function is the addition of smoothing
of the labels function to the cross-entropy loss function as pre-
sented here,

L hð Þ ¼ � 1
N

�
XN
i¼1

yT
i log byi

� �þ 1� yið ÞTlog 1� byi

� �þ labelsmoothing ¼ n
� �

:

ð10Þ
Despite the fact that VisTransf architectures demand a greater

number of training samples than CNN architectures, the most com-
mon strategy is to utilize a pre-trained network and afterward
fine-tune it on a smaller undertaking sample which was done in
this paper. The following are the benefits of our fine-tuned archi-
tecture over CNN design: (1) The proposed hybrid architecture
integrates more spatial information than ResNet (CNN) at lower
layers, resulting in statistically distinct features. (2) In the imple-
mented model, skip connections are significantly more prominent
than in ResNet (CNN), with significant effects on efficiency and rep-
resentation comparability. (3) ResNet needed lower layers to cal-
culate representations that were equivalent to a limited number
of the implemented lower layers. (4) Using bigger pre-training
samples, our models create much better intermediary
representations.

Experimental setup

The proposed model is trained in an end-to-end manner. The
training parameters used in this experiment include a learning rate
of 0.0001 with a reduced learning rate by 0.2 factors, epsilon of
0.001, and patience of 10 were utilized. Early stopping strategy
of es_callback with the patience of 10 was considered as well. An
es_callback is a component that may execute operations at multiple
phases of learning at different batch intervals, different epoch
intervals, etc. For hyper-parameter optimization, Adam optimizer
with clip value of 0.2 and epoch of 100 was utilized. During the
selection of the pre-trained models, we used an epoch of 50, while
other parameters remain constant as in the main experiment. In
the encoder part, a patch size of 2, a drop rate of 0.01 for all layers,
and 8 heads were used. Meanwhile, embed_dim of 64 (i.e., em-
bed_dim indicates the dimension by which high-dimensional vec-
tors are converted to low-dimensional vector without any loss
during conversion), num_mlp of 256 (i.e., this indicate the number
of Multi-linear perceptrons), a window size of 2 and global average
pooling (GAP) for the shift size were utilized. The comparison
among all deep learning models, used in this study, in terms of
the final output shape and number of the trainable parameters
were summarized in Table 2. The ensemble deep features were
extracted via ensemble learning scenario and passed as an input
to the transformer encoder for the final prediction purpose. We
fine-tuned the vision transformer to suit our identification task
where the transformer received an input size of (12, 12, 4480)
and (12, 12, 5504) in terms of Ensemble A and B, respectively. Since
different deep learning models are used for this study, the ReLU
activation function is used in the internal convolutional layers,
while the the softmax is used for the output layer as a prediction
regression to find the final class probabilitieis.

Experimental environment

All experiments were performed on PC with the following hard-
ware specifications: Intel(R) Core (TM) i9-10850 K CPU @ 3.60 GHz,
64.0 GB RAM, and an NVIDIA Geforce RTX-3080 Ti 10 GB graphical
processing unit (GPU). This paper utilized the open-source library
of Keras and TensorFlow for the implementation purpose.
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Evaluation metrics

Various evaluation matrices were used to evaluate the perfor-
mance of the proposed hybrid deep learning framework including
Accuracy (ACC), Precision (PRE), Specificity (SPE), Sensitivity (SEN),
F1-score, and area under the receiver operating characteristic
(ROC) curve [61]. The overall classification accuracy (ACC) was
defined as,

Accuracy ACCð Þ ¼ TP þ TN
TP þ FN þ TN þ FP

: ð11Þ

where TP denotes the marked positive and were correctly pre-
dicted as positive (True Positive, TP), TN denotes observed negative
and was correctly predicted as negative (True Negative, TN),
P ¼ TP þ TN and N ¼ FP þ FN denote the positive and negative pre-
dictions, respectively. Precision (PRE) can also be referred to as the
percentage of the predicted positive value and is defined as,

Precision PREð Þ ¼ TP
TP þ FP

; ð12Þ

where FP denotes the marked negative but was predicted posi-
tive (False Negative, FN). Specificity is the percentage of the classi-
fication of marked negative and was correctly predicted to be
negative and is defined as,

Specificity SPEð Þ ¼ TN
TN þ FP

: ð13Þ

The percentage of correctly classified and positively marked
was referred to as sensitivity (SEN) and is mathematically repre-
sented by,

Sensitivity SENð Þ ¼ TP
TPþ FN

: ð14Þ

The precision and sensitivity harmonic mean was referred to as
the F1 � score mathematically represented as,

F1 � Score ¼ 2� TP
2� TPþ FPþ FN

: ð15Þ

TP, TN, FP, and FN were driven based on the confusion matrices.
The AUC measures a classifier’s performance, while the probability
curve is gotten from plotting at different threshold settings, the FP
rate is referred to as the receiver operating characteristic (ROC)
curve. The AUC indicates how well the model distinguishes
between Pneumonia and non-Pneumonia instances. A higher AUC
means better identification performance. The AUC equals one
implies a perfect classification performance, whereas AUC = 0.5
suggests a classifier randomizing class observation [1]. To deter-
mine the area under the ROC curve, AUC is calculated using the
trapezoidal integration process. Moreover, the precision-recall
(PR) curve is also used to check the average precision (AP) evalua-
tion performance.
Results and discussion

The experimental results of the proposed deep learning models
were presented and explained in this section. First, the parameter
sensitivity analysis of the proposed models was investigated and
the research findings were reported accordingly. The classification
performance of the deep learning models in terms of individual
and combined models were presented and discussed. In addition,
the explainable visual heat maps of the attention mechanism were
performed in an ablation study scenario.



Table 2
The parameters of the proposed deep learning models in terms of the final output shape and number of the trainable and non-trainable parameters.

Models Last Convolution Layer Output Trainable Parameter Non-Trainable Parameter Total Parameter

DenseNet201 None, 7, 7, 1920 1,106,179 18,321,984 19,428,163
VGG16 None, 7, 7, 512 598,403 14,714,688 15,313,091
GoogleNet None, 5, 5, 2048 524,547 21,802,784 22,327,331
EfficientNetB7 None, 7, 7, 2560 1,474,819 64,097,680 65,572,499
InceptResNetV2 None, 5, 5, 1536 393,475 54,336,736 54,730,211
Xception None, 7, 7, 2048 1,179,907 20,861,480 22,041,387
Ensemble A None, 7, 7, 4460 286,979 54,839,456 55,126,435
Ensemble B None, 7, 7, 5504 352,515 93,520,200 93,872,715
Proposed hybrid model with Ensemble A backbone – 1,290,579 54,839,632 56,130,211
Proposed hybrid model with Ensemble B backbone – 1,552,723 93,520,376 95,073,099
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Parameter sensitivity analysis of the proposed hybrid deep learning
method

Before going straight into the implementation stage of the pro-
posed hybrid deep learning model, the parameter sensitivity anal-
ysis was carried out to select the optimal number of Transformer
heads and the best configuration of the ensemble deep learning
feature extractors. During this analysis, the number of epochs
and learning rate were kept constant at 50 and 0.0001, respec-
tively. Due to the computation cost and time effort, this study
had been experimented with using transformer heads of 2, 4, and
8 with different ensemble deep learning options. For each trans-
former head, three different ensemble models were used with 1,
2, and 3 deep learning models. The combination number of the
ensemble deep learning models was randomly selected without
any priority from the six deep learning models: DenseNet201,
VGG16, GoogleNet, InceptionResNetV2, Xception, and Effi-
cientNetB7. Table 3 shows the classification evaluation results via
the multiclass classification scenario using overall identification
accuracy (ACC), precision (PRE), and F-1 score. The best classifica-
tion performance of the proposed model was achieved while using
three ensemble feature extractor models with 8 heads of the self-
attention network. Although with the minor difference of using
four heads with three ensemble models, the eight heads with three
ensemble feature extractors were used to perform all the experi-
ments in this study.
Classification results

This section presents the classification results of the various
approaches implemented in this paper. The model’s classification
performances were evaluated over three scenarios: (1) individual
pre-trained transfer deep learning models, (2) ensemble deep
learning models: Ensemble A and Ensemble B, and (3) the proposed
hybrid deep learning model based on the ensemble transformer
encoder mechanism. All experiments in this study, for all different
scenarios, were carried out using the multiclass classification task
via the Chest X-ray dataset. This is because the performance with a
Table 3
Parameter sensitivity analysis of the proposed hybrid deep learning model in terms of the

No. of Pre-trained Ensemble Models Transformer Head

One Model 2
Two Models
Three Models
One Model 4
Two Models
Three Models
One Model 8
Two Models
Three Models

201
multiclass scenario could be more reliable and show the capability
of the models to deal with multiple classes at once.
Individual Pre-trained transfer deep learning models
Six state-of-the-art deep learning models were selected and

investigated for the backbone ensemble network: DenseNet201
[56], Xception [57], VGG16 [4], GoogleNet [58], InceptionResNetV2
[60], and EfficientNetB7 [59]. The individual classification perfor-
mances of each model were recorded in Table 4. Same training set-
tings and system setup were used for these models. The
DenseNet201 shows superiority in the classification result among
the other pre-trained models in terms of accuracy, sensitivity,
specificity, precision, F-1 score and AUC. Among all the pre-
trained models, efficientNetB7 had the lowest classification perfor-
mance. Thus, the efficientNetB7 was excluded during the forma-
tion of our proposed ensemble deep learning scenarios. To
further evaluate the classification performance of the transfer
learning models, we assessed with the PR and ROC curves as shown
in Table 5. The normal class received the lowest AUC and AP scores
among other pneumonia classes. For the Bacteria Pneumonia class,
the DenseNet201 and VGG16 achieved the highest identification
accuracy with 97.01 % and 97.38 %, respectively. The best AP score
was achieved by DenseNet201 for viral pneumonia class with
95.78 % accuracy, while it was 94.74 % and 85.15 % for bacteria
pneumonia and normal classes, respectively.
Ensemble deep learning classification results
Based on the classification performance of the former individual

deep learning models, two ensemble learning scenarios were
designed and carried out using the selected best five performing
pre-trained models: Ensemble A (i.e., concatenation of the Dense-
Net201, VGG16, and GoogleNet) and Ensemble B (i.e., concatenation
of the DenseNet201, InceptionReseNetv4, and Xception). The clas-
sification performance of each ensemble deep learning model is
reported in Table 6. Meanwhile, the classification evaluation
results in terms of ROC and PR curves were presented in Table 7
and Table 8 for binary and multiclass classification scenarios,
respectively.
number of transformer heads with three ensemble deep learning options.

ACC PRE F1-score

0.9684 0.9612 0.9602
0.9695 0.9711 0.9608
0.9771 0.9721 0.9729
0.9696 0.9623 0.9609
0.9770 0.9801 0.9711
0.9820 0.9756 0.9744
0.9699 0.9701 0.9703
0.9799 0.9800 0.9708
0.9898 0.9806 0.9801



Table 4
Classification evaluation performance of the individual pre-trained deep learning models.

Pre-trained Models ACC SEN SPE PRE F1-score AUC

DenseNet201 0.9695 0.9542 0.9771 0.9551 0.9544 0.9657
VGG16 0.9585 0.9378 0.9689 0.9392 0.9378 0.9533
GoogleNet 0.9446 0.9169 0.9584 0.9214 0.9178 0.9377
EfficientNetB7 0.9276 0.8913 0.9457 0.9214 0.8930 0.9185
InceptResNetV2 0.9444 0.9167 0.9583 0.9197 0.9169 0.9375
Xception 0.9579 0.9369 0.9684 0.9397 0.9374 0.9527

Table 5
The individual Pre-trained deep learning model classification performance in terms of the ROC and PR evaluation curves.

Deep Learning Model Receiver Operating Characteristic (ROC) curve

Macro-Average Area Micro-Average Area Bacteria Pneumonia Area Normal Class Area Viral Pneumonia Class Area

DenseNet201 0.97 0.97 0.9701 0.9548 0.9723
VGG16 0.95 0.95 0.9738 0.9363 0.9498
Xception 0.95 0.95 0.9627 0.9432 0.9522
GoogleNet 0.94 0.94 0.9438 0.9231 0.9518
InceptResNetV2 0.94 0.94 0.9681 0.9258 0.9487
EfficientNetB7 0.92 0.92 0.9383 0.9023 0.9248

Deep Learning Model Precision-Recall (PR) Curve

Micro-Average Precision-Recall Bacteria Pneumonia Class AP Normal Class AP Viral Pneumonia Class AP

DenseNet201 0.9322 0.9474 0.8915 0.9578
VGG16 0.9051 0.9238 0.8639 0.92765
Xception 0.9016 0.9302 0.8524 0.9224
GoogleNet 0.8761 0.8901 0.8164 0.9219
InceptResNetV2 0.8751 0.8864 0.8202 0.9188
EfficientNetB7 0.8399 0.8734 0.7614 0.8868

Table 6
Ensemble learning classification evaluation performance for ensemble A and ensemble B with binary and multi-class identification scenarios. These results were recorded as an
average for all respiratory classes.

Models Accuracy (ACC) Sensitivity (SEN) Specificity (SPE) Precision (PRE) F1-score AUC

Binary Classification Results
Ensemble A 0.9723 0.9722 0.9722 0.9724 0.9722 0.9722
Ensemble B 0.9644 0.9644 0.9644 0.9651 0.9644 0.9644
Multi-class Classification Results
Ensemble A 0.9720 0.9580 0.9790 0.9583 0.9580 0.9686
Ensemble B 0.9643 0.9464 0.9732 0.9493 0.9468 0.9598
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For both binary and multiclass identification performance,
Ensemble A achieved always better and more accurate results than
Ensemble B in terms of all quantitative evaluation results as well as
the ROC and PR evaluation curves as reported in Tables 6, 7, and 8.
For the binary classification class performance, Ensemble A
achieved higher and better AUC of the ROC against Ensemble B in
terms of macro and micro average areas with more than 97 %. Sim-
ilarly, the average precision was better achieved in the Ensemble A
scenario with more than 94 % for all classes. For the multiclass
identification scenario, the best macro and micro AUC areas of
the ROC curves were recorded to be 97 %, while the micro average
precision-recall rate of the PR curve was 93 %.
Table 7
Ensemble learning evaluation performance of the binary identification scenario using the

Ensemble Learning Scenario Receiver Operating Characteristic (ROC) curve

Macro-Average Area Micro-Average Area B

Ensemble A 0.9722 0.9722 0
Ensemble B 0.9644 0.9644 0

Ensemble Learning Scenario Precision-Recall (PR) Curve

Micro-Average Precision-Recall Bacte

Ensemble A 0.96 0.948
Ensemble B 0.95 0.930
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The proposed hybrid deep learning model classification results
Based on the recommended ensemble learning investigation

results, the Ensemble Amodel with DenseNet201, VGG16, and Goo-
gleNet achieved better classification performance than Ensemble B.
As presented in Table 9, the proposed hybrid deep learning model
(i.e., a hybrid Ensemble Transformer Encoder) recorded much bet-
ter classification performance with overall accuracies of 99.21 %
and 98.19 % for binary and multiclass scenarios, respectively. This
means the proposed hybrid transformer based on ensemble A
improves the overall classification performance by 2.05 % and
1.3 % compared with the individual ensemble A scenario for binary
and multiclass identification tasks, respectively. Meanwhile, the
Mendeley dataset. These results were recorded as per class of the respiratory classes.

acteria Pneumonia Class Area Normal Class Area Viral Pneumonia Area

.9722 0.9714 0.9722

.9644 0.944 0.9644

ria Pneumonia Class AP Normal Class AP Viral Pneumonia AP

8 0.9488 0.96
1 0.9301 0.95



Table 8
Ensemble learning evaluation performance of the multiclass identification scenario using the Chest X-ray dataset. These results were recorded as per class of the respiratory
classes.

Ensemble Learning Scenario Receiver Operating Characteristic (ROC) curve

Macro-Average Area Micro-Average Area Bacteria Pneumonia Class Area Normal Class Area Viral Pneumonia Area

Ensemble A 0.97 0.97 0.9771 0.9541 0.9741
Ensemble B 0.96 0.96 0.9745 0.9517 0.9533

Ensemble Learning Scenario Precision-Recall (PR) Curve

Micro-Average Precision-Recall Bacteria Pneumonia Class AP Normal Class AP Viral Pneumonia AP

Ensemble A 0.93 0.9461 0.9077 0.9574
Ensemble B 0.91 0.9538 0.8687 0.9460

Table 9
Identification evaluation performance of the proposed hybrid deep learning framework (i.e., Transformer Encoder based on the ensemble backbone feature extractor). These
experimental findings were performed in terms of binary and multiclass recognition scenarios using Mendeley and Chest X-ray datasets, respectively. These results were recorded
as an average and per class of the respiratory classes.

Models ACC SEN SPE PRE F1-score AUC

(1) Binary Classification
Scenario

Hybrid TE with Ensemble
A backbone

0.9920 0.9919 0.9920 0.9921 0.9921 0.9918

Hybrid TE with Ensemble
B backbone

0.9828 0.9828 0.9828 0.9828 0.9828 0.9828

Models Receiver Operating Characteristic (ROC) curve

Macro-Average Area Micro-Average
Area

Normal Area Pneumonia
Area

Hybrid TE with Ensemble
B backbone

0.9921 0.9921 0.9921 0.9921

Hybrid TE with Ensemble
A backbone

0.9828 0.9828 0.9828 0.9828

Models Precision-Recall (PR) Curve

Micro-Average
Precision-Recall

Normal AP Pneumonia AP

Hybrid TE with Ensemble
A backbone

0.9921 0.9920 0.9921

Hybrid TE with Ensemble
B backbone

0.9828 0.9828 0.9828

(2) Multiclass
Classification Scenario

Hybrid TE with Ensemble
A backbone

0.9819 0.9729 0.9864 0.9729 0.9729 0.9810

Hybrid TE with Ensemble
B backbone

0.9784 0.9676 0.9838 0.9680 0.9676 0.9757

Models Receiver Operating Characteristic (ROC) curve

Macro-Average Area Micro-Average
Area

Bacteria
Pneumonia Area

Normal Area Viral
Pneumonia
Area

Hybrid TE with Ensemble
A backbone

0.98 0.98 0.9842 0.9700 0.9848

Hybrid TE with Ensemble
B backbone

0.98 0.98 0.9868 0.9681 0.9720

Models Precision-Recall (PR) Curve

Micro-Average
Precision-Recall

Bacteria
Pneumonia AP

Normal AP Viral
Pneumonia
AP

Hybrid TE with Ensemble
A backbone

0.96 0.9796 0.9606 0.9785

Hybrid TE with Ensemble
B backbone

0.95 0.9802 0.9541 0.9691
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qualitative evaluation results in terms of ROC and PR curves
depicted similar findings as shown in Fig. 5. For the binary classi-
fication scenario, the macro and micro-average ROC, as well as
the micro-average PR, were equally recorded to be 99.21 %. A com-
prehensive experimental study with several different scenarios
was performed to prove the capability and reliability of the pro-
posed hybrid deep learning framework. For the multiclass classifi-
cation scenario, the bacteria pneumonia samples were predicted
more correctly than the other two classes in terms of the ROC
and the precision-recall curves as depicted in Fig. 6. The bacteria
pneumonia class had an AUC of 98.42 % with the viral pneumonia
203
class, while the AP was more significant than the viral pneumonia
class with an average of 96.0 %. The bacteria pneumonia had an AP
of 97.96 %, while viral pneumonia recorded 97.85 %. In the case of
normal class, the evaluation results were achieved with light lower
AUC and even PR rates with 97 % and 96.06 %, respectively. This
was due to the random deep learning process for fine-tuning the
trainable parameters as it is commonly known. To measure the
number of accurately and mistakenly identified samples, the con-
fusion matrix or contingency table was used for binary and multi-
class scenarios as shown in Fig. 7. It is shown that the ensemble
strategy alone could not accurately identify the pneumonia respi-



Fig. 5. Evaluation results of the proposed hybrid deep learning model in terms of ROC and PR curves for the binary classification scenario. Class 0 and 1 reflect the normal and
pneumonia classes from Mendeley Dataset, respectively.

Fig. 6. Evaluation results of the proposed hybrid deep learning model in terms of ROC and PR curves for the multiclass identification scenario. Class 0, 1, and 2 reflect the
bacteria pneumonia, normal, and viral pneumonia classes from Chest X-ray Dataset, respectively.
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ratory diseases where the number of misclassified cases was larger
compared with the proposed hybrid deep learning model. The
improving rate of the misclassification identification cases was
almost twice improved for both binary and multiclass scenarios.
For the binary classification, 12 normal samples were wrongly
identified with the ensemble A model, while the misclassification
cases decreased to 5 samples with the capability of the proposed
204
hybrid deep learning model. Similarly, 17 pneumonia samples
were misclassified with the ensemble learning strategy compared
with only 9 cases of the proposed hybrid model as shown in
Fig. 7 (a) and (b). For the multiclass identification scenario via
the proposed hybrid model, the same findings were concluded
where the number of misclassified bacteria pneumonia was
decreased from 31 and 3 to 9 and 0 as a normal and viral pneumo-



Fig. 7. The identification evaluation performance of the binary and multicalssification scenarios in terms of confusion matrices. (a), and (b) represent the binary classification
confusion matrices of the Ensemble A model and the proposed hybrid deep learning model, respectively. Whereas, the (c) and (d) depict the multiclassifcation confusion
matrices of the Ensemble A model and the proposed hybrid deep learning model, respectively.
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nia case, respectively. Fig. 7 (c) and (d) shows an example of con-
fusion matrices of the proposed hybrid models in the case of mul-
ticlass identification task vis Chest X-ray dataset. In a summary, in
terms of all quantitative and qualitative evaluation results, the pro-
posed hybrid deep learning framework performed well compared
with the ensemble models individually. This means besides the
extracted deep features by the ensemble backbone network, the
transformer encoder contributed well to improving the identifica-
tion performance in general. Such findings were concluded in the
literature as mentioned in Section ‘‘Related work”.

Visualization of the transformer encoder implementation steps

To implement and evaluate the TE, as shown in Fig. 8 (b), the
input chest X-ray image was equally split into multiple non-
overlapping fixed-size patches and projected after flattening to a
feature space where the encoder could process them to provide
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the final prediction score [17]. By combining the pixel layers in a
patch and then immensely extending it to the suitable input
dimension, each patch was squeezed into a vector representation.
Fig. 8 (c) demonstrates the model understanding to encrypt dis-
tance within the input image in the comparability of position lin-
ear embeddings. The relatively close patches have much more
position similar embeddings. The reason for the patches and the
learnable embeddings was to treat each patch separately for accu-
rate feature extraction and identification. The positional embed-
ding helps the model to know where each patch was at the
initial input during the output. The patches were first converted
using 2D learnable convolutions to further analyze the impact of
the patch and embedding combinations. Fig. 8 (d) validates the
envisaged approach efficacy in improving the prospective patches
enabling the model to efficiently and successfully concentrate on
these areas and determine abnormalities. Finally, Fig. 8(d) shows
how the Self-attention heads enable the transformer encoder to



Fig. 8. The visualization steps of the proposed transformer encoder model: (a) depicts the input chest X-ray image, (b) illustrates the divided input image into equal size non-
overlapping patches, (c) shows learnable position embeddings of the input image patches, and (d) demonstrates the corresponding attention matrix.
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generalize across the input frame, even within the minimum lay-
ers. Accordingly, the total distance in the input images across
which relevant data is assimilated is comparable to the receptive
scale factor in CNNs and is highly recognized in our model due to
our network backbone, which is an ensemble A, and thus we
observed continuously small attention scales in the small layers.
Indeed, implementing the transformer encoder model without a
backbone ensemble network, i.e. generating features from scratch,
causes the attention heads to focus on the majority of the image in
the lowest layers. Then, it demonstrates that the model’s potential
to consolidate information globally was really useful for more
accurate identification results. Furthermore, as the network depth
increases, so does the attention proximity. We discover that the
model focuses on visual features that are semantic information sig-
nificant for classification as depicted in Fig. 9.

Ablation studies of the proposed hybrid Model: Explainable Artificial
intelligence (XAI)

Fig. 10 shows the explainable deep learning results in terms of
heat maps (i.e., saliency maps). Such qualitative heat maps were
Fig. 9. The transformer Encoder visualization based on the
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achieved using the recent attention mechanism to depict the most
important disease-related geographic localization on the chest X-
ray images that the AI model was paying attention to [62]. Indeed,
the visual heat maps are powerful for visualizing the areas that the
neural network focuses on for classification and also it could
explain, in some sense, the internal working of the black-box deep
learning models [63]. This is especially significant considering that
AI functions in a high-dimensional environment. These heat maps
allow for repetitions and render AI readable and understandable in
terms of clinical results. In this study, the heat map generation was
done using the Grad-CAMwhich is a method that uses the gradient
of a subject idea to ‘‘conveys information” to neural network mod-
els. The subject (i.e., derived feature maps) was sent into the last
convolutional layer, which generates a fine localization map that
highlights the significant locations via the classification feature
maps. In this study, the attention mechanism helps our model
highlights the useful features in the Chest X-ray images that will
guide the model’s prediction capability. Fig. 10 illustrates the
derived explainable heat maps from different implemented models
for the same input chest X-ray image: pre-trained deep learning
models (i.e., DenseNet201and VGG16), the ensemble A model, and
attention mechanism via the input chest X-ray image.



Fig. 10. Visual explainable heat maps (i.e., saliency maps) of the chest X-ray pneumonia image: (A) Depicts the heat maps of the pre-train DenseNet201and VGG16 models,
(B) shows the heat map of the ensemble A deep learning model, and (C) illustrates the saliency map for the proposed hybrid deep learning framework.
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the proposed hybrid deep learning model (i.e., Transformer Enco-
der based on the ensemble convolutional networks). As shown in
Fig. 10, more robust and powerful visualization explainable results
were achieved using the proposed hybrid model which determined
the disease localization well. Using ensemble strategy alone was
not enough to produce more powerful and feasible classification
results. Table 10 shows the quantitative ablation study of the pro-
posed deep learning models over all scenarios: individual pre-train
deep learning models, ensemble strategy, and the proposed hybrid
framework (i.e., ensemble backbone and Transformer Encoder). To
achieve the desired results for this study, the Mendeley data with a
binary classification scenario was used. We set the performance
threshold limit of 90 % to investigate the contribution of each
model starting from the individual pre-trained models to the pro-
posed fine-tuned hybrid model.

Validation and statistics of false positive (FP) on unseen data using the
CheXpert dataset

To validate the capability of the proposed hybrid deep learning
model on unseen data, we used the CheXpert Dataset [64]. The
CheXpert dataset is a huge medical chest X-ray dataset that is used
for computerized chest X-ray diagnosis competitions with confi-
dence labels annotated by radiologists. It consists of 224,316 chest
radiographs (i.e., chest X-ray images) and accompanying imaging
records from 65,240 patients. It was gathered and collected across
both outpatient and inpatient departments from the Stanford
Hospital in ‘‘COUNTRY” between October 2002 and July 2017.
Every study was categorized as + ve (i.e., positive case), -ve (i.e.,
negative or healthy case), or Nil based on the existence of 14 vari-
ables (blank = unmentioned, 0 = -ve, �1 = uncertain, and 1=+ve).
During this experiment, we preprocessed the dataset into a binary
classification set: Normal vs pneumonia. The pneumonia and
Table 10
Quantitative ablation study of the proposed deep learning models to illustrate the contribut
ensemble deep learning models, and (3) the proposed hybrid deep learning model based

Model ACC SEN

DenseNet201 0.695 0.542
VGG16 0.585 0.378
GoogleNet 0.446 0.169
EfficientNetB7 0.276 –
InceptResNetV2 0.444 0.167
Xception 0.579 0.369
Ensemble A 0.723 0.722
Ensemble B 0.644 0.644
Proposed hybrid TE with Ensemble A backbone 0.921 0.921
Proposed hybrid TE with Ensemble B backbone 0.828 0.828
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pneumothorax are/were combined to represent the anomaly class
(i.e., pneumonia class 1), while the rest of the images are/were
gathered to reflect the normal class 0). From the preprocessed
dataset, we randomly selected 1,500 each and performed our
experiments for ensemble strategy against the proposed hybrid
model. The classification evaluation results in terms of accuracy,
sensitivity, specificity, precision, F1-score, and AUC were reported
in Table 11.

Comparison with the latest state-of-the-art deep learning models

To check the availability of the proposed hybrid deep learning
mode, we compared its performance with the latest state-of-the-
art deep learning models for binary and multiclass identification
scenarios. For this comparison, we focused only on the published
findings in the literature starting 2019 up to date. The comparison
evaluation results were summarized in Tables 12 and 13 for binary
and multiclass scenarios, respectively.

From Table 12, transfer learning techniques were seen as the
primary approach for detecting pneumonia from normal using
the chest X-ray images. The models built from the scratch achieved
lower performance compared with the recent transfer learning
methods which also affect the employed dataset. Analyzing the
transfer learning approaches, the authors of Ref. [21] employed
the AlexNet architecture via transfer learning and achieved a bin-
ary classification of 72 %. In [22], several deep learning models
were implemented for pneumonia detection feature extraction.
Among the implemented models the DenseNet169, DenseNet121,
Xception, VGG16, VGG19 and ResNet50 were the best. The conven-
tional models were also experimented with for such X-ray pneu-
monia classification tasks as K-Nearest Neighbor (KNN), Naïve
Bayes (NB), Support Vector Machine (SVM), and Random Forest
(RF). The authors concluded that DenseNet-169 followed by opti-
ion rate of each scenario: (1) individual pre-trained transfer deep learning models, (2)
on the ensemble transformer encoder.

SPE PRE F1-score AUC

0.771 0.551 0.455 0.657
0.689 0.392 0.378 0.533
0.584 0.214 0.178 0.377
0.457 0.214 – 0.185
0.583 0.197 0.169 0.375
0.684 0.397 0.374 0.527
0.722 0.724 0.722 0.722
0.644 0.651 0.644 0.644
0.9212 0.9212 0.921 0.921
0.828 0.828 0.828 0.828



Table 11
Validation and statistics false positive (FP) result using the unseen chest X-ray dataset: CheXpert Dataset. This is to validate the reliability and feasibility of the proposed hybrid
deep learning model based on the new and unseen dataset.

Models ACC SEN SPE PRE F1-score AUC

Ensemble A 0.4973 0.4973 0.4973 0.4464 0.4973 0.4973
Ensemble B 0.4857 0.4857 0.4857 0.4857 0.4857 0.4857
Proposed Model With Ensemble A backbone 0.5053 0.5053 0.5053 0.5053 0.4088 0.5053
Proposed Model with Ensemble B backbone 0.5013 0.5013 0.5013 0.5013 0.5013 0.4991

Table 12
Evaluation performance comparison with the latest state-of-the-art deep learning models for the binary classification scenario.

Ref. Year AI Model Architecture ACC (%) PRE (%) SEN (%) F1-Score (%)

Ayan et al. [4] 2019 VGG16
Xception

87
82

–
–

82
85

–

Chouhan et al. [38] 2020 CNN 96 96 95 –
Yadav et al. [40] 2019 CapsNet 83 – – –
Liang et al. [24] 2020 CNN

VGG16
91
74

89
72

97
95

93
82

Asnaoui et al. [41] 2020 CNN 84 94 78 86
Mittal et al. [42] 2020 E3CC

VGG16 + CapsNet
82
88

– – –

Jain et al. [26] 2020 CNN 85 – 94 89
ERDEM et al. [65] 2020 CNN 87 86 97 92
Darici et al. [66] 2020 CNN

Ensemble
95
95

95
94

95
95

95
95

Talo et al. [32] 2019 ResNet152 97 – – –
O’Quinn et al. [33] 2019 AlexNet 76 – – –
Stephen et al. [67] 2019 CNN 93 – – –
Urey et al. [35] 2019 ResNet 78 – – –
Khalid et al. [41] 2020 CNN

VGG16
VGG19
InceptionV3
Xception
DenseNet201
MobileNetV2
InceptionResNetV2
ResNet50

84
86
86
95
83
94
96
96
97

94
88
80
94
96
99
98
99
98

–
–
–
–
–
–
–
–
–

86
86
85
95
85
94
96
96
97

Mohammad et al. [68] 2021 ResNet50
Compound Scaled ResNet50

97
98

97
98

98
98

98
98

Chomsin et al. [69] 2021 UBNetV1 95 86 97 91
Shazia et al. [70] 2021 VGG16

VGG19
DenseNet121
InceptionResNetV2
InceptionV3
ResNet50
Xception

99.09
99.10
99.18
98.21
98.96
99.12
98.34

99.28
99.14
99.14
98.79
99.17
99.12
98.83

99.09
99.18
99.18
98.21
98.96
99.12
98.34

99.14
99.12
99.19
98.38
99.02
99.15
98.49

Juan et al. [71] 2020 Xception CNN 97.3 84.3 99.2 91.2
Rohit et al. [72] 2021 Ensemble 98.81 98.82 98.80 98.79
The proposed Hybrid Deep Learning Model 2022 Transformer Encoder 99.21 99.21 99.21 99.21

Table 13
Evaluation performance comparison with the latest state-of-the-art deep learning models for the multiclass identification scenario.

Reference Year AI Model Architecture ACC (%) PRE (%) SEN (%) F1-Score (%)

Darici et al. [66] 2020 CNN
Ensemble

78
75

80
77

78
75

78
75

Al-antari et al. [61] 2021 End-to-end CAD-based YOLO 97.40 – 85.15 84.81
Hammoudi et al. [36] 2020 VGG19

ResNet + RNN1
ResNet + RNN2
DenseNet169

83
78
80
96

–
–
–
–

–
–
–
–

–
–
–
–

Chuhan et al. [38] 2021 UBNetV1
UBNetV2

88
88

89
89

86
85

86
86

Ibrahim et al. [27] 2020 AlexNet 97.40 – – –
The proposed Hybrid Deep Learning Model 2022 Transformer Encoder 98.19 97.29 97.29 97.29
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mal SVM RBF kernel hyper-parameter values beat all other exper-
imented models. The authors of Ref. [24] stated that the several
deep learning customized models had demonstrated encouraging
classification results as they all outperformed the pneumonia pre-
208
diction results by more than 84 % accuracy. They further reported
that the InceptionResNetV2 model achieves better results. Judging
from experimental results using the same dataset [29], the authors
employed several deep learning pre-trained, models, via transfer
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learning for the task of pneumonia disease identification where the
DenseNet121 achieved the best result among the used networks,
whereas the InceptionResNetV2 had the lowest performance score.
In contrast, the authors of Ref [46] employed the same pre-trained
deep learning models via transfer learning for the same task of
early pneumonia detection where the Resnet50 achieved the best
classification accuracy, while the Xception had the lowest results.
Both authors argued that shallow models perform poorly com-
pared to deeper models. Thus, we used the pre-trained models as
the network backbone for this experimental study, Table 8 indi-
cated that only a few authors have considered ensemble models
[42], which was the second step of the proposed model. Ensemble
models give room to understand the task better and yield better
results. Since this paper architecture summarizes the identified
research, the results of the proposed hybrid model presented its
superiority over all other deep learning models listed in the litera-
ture by recording 99.21 % in term of evaluation metrics. From the
literature, only a few works were seen for multi-class detection
as indicated in Table 13. The employed models were basically
trained from scratch networks compared to the binary classifica-
tion, thus meaning that deeper networks are preferred for multi-
class tasks and the single models achieved less performance. The
proposed architecture attains the best result using the employed
evaluation metrics where it achieved an overall accuracy and F1-
soce of 98.19 % and 97.29 %, respectively. In general, the improve-
ment of our proposed model is achieved in the range of 0.01 %–24.
19 % for the binary classification and in the range of 0.79 %–20.19 %
for multi-classification performance in terms of accuracy, preci-
sion, sensitivity and F1-Score.

Applications and limitations

This paper presents the early identification of pneumonia from
chest X-ray images using the transformer encoder strategy: self-
attention network and multilinear perceptron block. This approach
would provide more accurate detection and classification accuracy
of various lung diseases such as COVID-19 detection, heart dis-
eases, oral cancer, skin cancer, breast cancer, microscopic images
for various medical applications. As much as the proposed method
outperforms the state-of-the-art AI models, it still has some limita-
tions. The exact affected pneumonia area of the chest X-ray image
was not accurately enough indicated. Also, the chest X-ray dataset
depicts just a single series for a patient, which supports the argu-
ment that a limited dataset (a patient single chest X-ray series)
cannot determine if a patient developed or will develop a radio-
graphic finding as the disease progresses.

Future works

Future research will investigate the ability to use the proposed
hybrid deep learning for different medical imaging modalities. Fur-
thermore, we would experiment with an automatic parameter-
tuning approach and apply the suggested algorithm to numerous
medical image collections to conduct a statistical study of its per-
formance. In addition, detecting and classifying X-ray images of
pneumonia and lung cancer has become a significant difficulty in
recent years, and the proposed technique could be addressed for
such issue. The textual explainable besides the visual heatmaps
could be more useful once the appropriate annotated text dataset
becomes available.
Conclusion

This paper explores the ability of early pneumonia identifica-
tion from chest X-ray images using the capability of backbone
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ensemble deep learning as well as Transformer Encoder: Multi-
Head Self-Attention Network and MLP Block for better, accurate,
and generalized identification performance. Thus, preventing the
acute inflammation of the lung cells, which has become one of
the commonest among kids under the age of 5, accounting for
15 % of all mortality in underdeveloped nations each year. The
backbone architecture of the proposed hybrid framework was an
ensemble of pre-trained deep learning models for more successful
feature extraction. An end-to-end training using binary and multi-
class datasets was carried out using accuracy, F-1 score, sensitivity,
specificity, precision, confusion matrix, ROC and PR curves for the
model evaluation. We recorded the model’s performance devel-
oped in three stages, (1) individual pre-trained transfer learning,
(2) ensemble deep learning, and (3) the proposed hybrid XAI model
based on the ensemble transformer encoder. The proposed hybrid
deep learning model recorded 99.21% classification performance in
terms of overall accuracy and F1-score in the case of binary classi-
fication, while it achieved 98.19% accuracy and 97.29% F1-score for
multiclass identification performance. The proposed model has
better binary and multi-class classification results than the state-
of-the-art deep learning methods based on the employed evalua-
tion metrics, thus showing its superiority and efficiency in the
early identification of pneumonia from chest X-ray images. More-
over, the proposed hybrid XAI model shows its capability to pro-
vide better and more accurate explainable identification results
in terms of heat maps or saliency maps.
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