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Abstract

Sulfur and selenium occupy a distinguished position in biology owing to their redox activities, 

high nucleophilicity, and acyl transfer capabilities. Thiolated/selenolated amino acids, including 

cysteine, selenocysteine, and their derivatives, play critical roles in regulating the conformation 

and function of proteins and serve as an important motif for peptide design and bioconjugation. 

Unfortunately, a general and concise method to attain enantiopure β-thiolated/selenolated amino 

acids remains an unsolved problem. Herein, we present a photoredox-catalyzed asymmetric 

method for the preparation of enantiopure β-thiolated/selenolated amino acids using a simple 

chiral auxiliary, which controls the diastereoselectivity of the key alkylation step and acts as 

an orthogonal protecting group in the subsequent peptide synthesis. Our protocol can be used 

to prepare a wide range of β-thiolated/selenolated amino acids on a gram scale, which would 

otherwise be difficult to obtain using conventional methods. The effect of our chemistry was 

further highlighted and validated through the preparation of a series of peptidyl thiol/selenol 

analogues, including cytochrome c oxidase subunit protein 7C and oxytocin.

Graphical Abstract

INTRODUCTION

Cysteine (Cys) and its analogue selenocysteine (Sec) play irreplaceable roles in protein 

folding and stability,1 enzymatic activity,2 and redox regulation.3 The intricate design of 

free thiol and selenol is Nature’s way of realizing these critical functions in biology. 

The significance of cysteine and selenocysteine is arguably more conspicuously presented 

in the domain of selective chemical protein modification,4 the construction of native 

peptide bonds (native chemical ligation, NCL),5 late-stage mutagenesis (to Ala and Ser),6 

disulfide bond engineering,7 and the design of peptidyl ligands.8 As a case in point, the 

combination of the NCL–dechalcogenation strategy,9 one of the most efficient approaches 
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used to tether two peptidyl segments, completely relies on the specific chemoselectivities 

exhibited by thiolated/selenolated proteinogenic amino acids (Figure 1A). After ligation and 

selective dechalcogenation, peptides bearing the corresponding native residues are produced. 

Moreover, disulfide bridges are crucial for the stability and activity of many important 

therapeutic peptides and proteins. Recent studies have suggested the use of thiolated amino 

acids as disulfide precursors can also enhance the stability and activity of peptides.10 In 

addition, Cys is a fundamental element for functional peptide design, thus fine-tuning 

the properties of synthetic peptide ligands could be achieved with thiolated amino acid 

preparation.11 Nonetheless, the resultant β-thiolated/selenolated amino acids, in which the 

β-carbon carries the thiol/selenol, are valuable precursors to bioactive peptides and proteins.

In contrast to these powerful applications derived from thiolated/selenolated amino acids, a 

major challenge to their widespread utility is the limited accessibility of these prerequisite 

enantiopure thiolated/selenolated amino acids. Currently, the majority of methods are 

indirect and are confined to certain amino acid scaffolds despite significant research efforts 

toward the preparation of β-thiolated/selenolated amino acids reported by multiple research 

groups.12 Among the methods toward the synthesis of β-thiolated/selenolated amino acids, 

using thiol/selenol reagents and an electrophilic carbon to introduce S/Se is the most 

representative approach with enantiopure β-hydroxyl amino acids or Garner’s aldehyde 

utilized to stereoselectively construct the C–S/Se bond (Figure 1B). Unfortunately, the 

modification of β-hydroxyl amino acids approach is extremely impractical, as it requires 

expensive and rare commercially available β-hydroxyl amino acids as the precursors (e.g., 

$200/gram for β-hydroxy leucine) and it often leads to a diastereomeric mixture of β-

thiol products. The latter tactic could achieve moderate diastereoselectivity, yet multistep 

manipulations are often required before incorporating β-thiol/selenol residues into solid-

phase peptide synthesis.13 Therefore, a more general and concise protocol to high-value 

enantioselective β-thiolated/selenolated amino acids from readily accessible building blocks 

remains elusive.

Herein, we present a general and practical method to access enantiopure β-thiolated/

selenolated amino acids via an asymmetric Giese reaction14 (Figure 1C). Our strategy 

starts from enantiopure selenazoline/thiazoline bearing a chiral pivalaldehyde acetal, which 

is easily prepared from L-Cys/Sec on a large scale. Visible-light photocatalysis generated 

alkyl radicals (including primary, secondary, and tertiary radicals) furnish thiazoline/

selenazoline to produce the β-substituted thiolated/selenolated amino acid framework. The 

chiral pivalaldehyde acetal of thiazoline/selenazoline controls the diastereoectivity of the 

radical addition reaction and acts as a “smart” protecting group, which is orthogonal 

to solid-phase peptide synthesis conditions and eliminates the need for protecting group 

manipulations. This strategy allows the concise stereoselective synthesis of a diverse 

range of β-selenolated/-thiolated amino acids from a common precursor at will with high 

stereopurity and high yield. Products can be rapidly acquired on a multigram scale that are 

not easily accessible using conventional methods. Furthermore, the resulting selenazolidine/

thiazolidine amino acids can be directly used in peptide synthesis after a simple operation 

without complex protecting-group manipulation.
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RESULTS AND DISCUSSION

In contrast to the thiol/selenol nucleophiles used to generate the C–S/Se bond described in 

the existing methods, the stereoselective insertion of an alkylated group onto the β-carbon 

of Cys/Sec is superior. It has been reported that, using the concept of “self-regeneration 

of chirality centers”,15 chiral S,N-acetyl thiazoline served as a good starting point for 

the preparation of β-thiolated amino acids via a Michael-type alkylation.16 However, this 

transformation remains limited in synthesis due to its poor yield and low functional group 

tolerance and diversity, attributed to the severe β-elimination of the thiol group when 

alkyl metal reagents are employed in the reaction. The challenges notwithstanding, we 

envisioned that a radical 1,4-conjugate addition under mild photoredox conditions might 

lead to superior results. It is well-established that convenient radical generation occurs from 

carboxylic acids,17 redox-active esters (RAEs),18 and alkyl halides19 in the presence of a 

photoredox catalyst via single-electron transfer (SET). Mechanistically, production of alkyl 

radical via SET oxidation (carboxylic acids) or reduction (RAEs and alkyl halides) can lead 

to stereoselective radical addition from the reverse face of the bulky tert-butyl group in 

A, which generates radical intermediate B. B is reduced via H atom abstraction (HAT) or 

SET followed by a diastereoselective enolate protonation step to produce the trans product 

C, providing two new stereocenters in one step (Figure 2A). Subsequent deprotection may 

furnish a broad family of β-thiolated/selenolated amino acids (D), which are suitable for 

direct peptide coupling.

The importance of Se in biology causes selenolated amino acids to be in high demand; 

conversely, the sheer difficulty of handling labile Se during reactions prevents securing 

Se-amino acids from a large quantity. We began our exploration with the preparation 

of β-selenolated amino acids as more practical synthetic targets. The starting material, 

pivalaldehyde N,Se-acetal selenazoline 1, was quickly prepared over three steps from the 

diselenide derivative of L-Sec methyl ester on a 20 g scale. An N-formyl group was used 

to protect the nitrogen atom as well as to improve the electrophilicity of the double bond.20 

Under irradiation of blue LED light (10 W), Ru(bpy)3(PF6)2 (PCA, 1 mol %) catalyzed 

the coupling of 1 with isopropyl N-hydroxyphthalimide ester 2a (1.2 equiv) to provide the 

desired product, trans-3a (β-selenolated Leu), as a single diastereoisomer in the presence 

of Hantzsch ester (HE, 1.5 equiv) and DIPEA (2.0 equiv). It is worth noting that 3a was 

obtained on a gram scale as a mixture of rotamers in near-quantitative yield (97%), as 

confirmed by variable-temperature 1H NMR and solvent switching (see page 10 in the 

Supporting Information for details) (Figure 2B). Screening of the solvent system suggested 

that dichloromethane (DCM) afforded the highest yield in comparison to MeCN and DMF; 

other photoredox catalysts such as Eosin Y (PCB) and Ir[dF(CF3)-ppy]2(dtbbpy)PF6 (PCC) 

could also mediate the same reaction with eroded yields. In all cases, only the single 

diastereoisomer trans-3a was obtained (>99:1 dr).

An ideal method is one where an inexpensive or readily accessible starting material 

can be converted into a diverse family of members with higher values via a single-step 

reaction. Subsequently, a broad scope of carboxylic acids was evaluated, including primary, 

secondary, and tertiary carboxylic acids with various functionalities. RAEs derived from 

secondary and tertiary carboxylates were initially examined (Figure 3A, Protocol A). 
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Reaction of selenazoline 1 with a series of cyclic carboxylate N-hydroxyphthalimide esters 

(cyclobutyl, 2b; cyclohexyl, 2c; adamantyl, 2d) and fluorinated cyclobutyl carboxylate 

ester 2e yielded the desired products 3b–e in excellent yields and high diastereoselectivity 

on a gram scale. Notably, product 3d bearing an adamantyl substituent was obtained in 

>90% yield, which suggested that generating sterically bulky quaternary centers could be 

accomplished. The absolute configuration of 3d was confirmed via X-ray crystallography 

(Figure 3B).

Coupling with selenazoline 1 and primary alkyl carboxylic acids could not be accessed 

effectively by PCA and PCC catalysis. After extensive investigations, the optimized 

conditions were obtained using a 40 W household compact fluorescent light (CFL) bulb 

to irradiate 1 in the presence of 2.0 equiv of RAEs (2f–i) and DIPEA (2.5 equiv) in DCM 

using PCB (Eosin Y), which gave the desired coupling products 3f–i in good yield at room 

temperature (Figure 3A, Protocol B).21

Moreover, carboxylic acids bearing a stabilizing α-heteroatom (O, N, and S) were evaluated. 

Compounds 2j–l were added to 1 in the presence of PCC directly, giving products 3j–l in 

excellent yields (Figure 3A, Protocol C). In all cases, we were pleased to find that excellent 

diastereoselectivity was obtained under our reaction conditions.

We next sought to convert products 3 into the target amino acids 4, which might be used 

directly as SPPS-compatible amino acids. The desired products 4a–g,k,l can be generated 

from their parent compounds after saponification of methyl ester and acidic removal of the 

N-formyl group over two steps (Figure 3A, conditions a). Substrates 4a,l represent β-seleno 

Leu and Met, respectively. After acidic treatment, epimerization of the stereogenic center in 

the auxiliary was observed and the α,β-chiral center of the amino acids remained untouched. 

In the case of 3h,j, a further Boc protection step was required to form β-selenolated Lys 

4h,j (Figure 3A, conditions b). Guanidinylation was performed to yield β-selenolated Arg 4i 
from ornithine 3i (Figure 3A, conditions c). For most cases, only a single purification was 

needed after these deprotection conditions, minimizing a time-consuming isolation process.

We further expanded the reaction scope to a number of β-thiolated amino acids, which are 

given in Figure 4. In line with the β-selenolated amino acid preparation, all of the RAEs 

(2a–d,f–2i,m,n) and carboxylic acids (2j–l,o) smoothly conjugated with thiazoline 5, which 

was readily obtained from L-cysteine methyl ester hydrochloride ($0.20/g) and pivalaldehyde 

($0.25/mL) over three steps on a 100 g scale (see page 4 in the Supporting Information for 

details). Products 6a–d,f–o were acquired in high yields using Protocols A–C (Figure 4A). 

Notably, reaction of 5 with 2-iodoacetamide 2p under photoredox dehalogenation conditions 

(Figure 4A, Protocol A’) gave 6p in 63% yield. Synthetically valuable handles such as 

the sulfide of methionine (6l), pyridine (6m), acetal (6n), ketone (6o), and amide (6p) 

were well tolerated, and the incorporation of an adamantyl nucleus (6d) offered a ready 

protocol to modify peptide distribution and lipophilicity/hydrophobicity. The structure and 

stereochemistry of 6d were confirmed by X-ray crystallography. Pyridine-containing amino 

acids have significant effects on the biological properties of peptides and are often found in 

therapeutic peptides; therefore, substrate 6m was used to demonstrate that the pyridine motif 
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can be smoothly introduced. Compound 6a exists as a mixture of rotamers, as confirmed by 

variable-temperature 1H NMR and solvent switching.

In comparison with the delicate selenolated analogues, β-thiolated amino acids are more 

robust in nature. Thus, methods used for the deprotection of these compounds are more 

straightforward. The deprotection conditions used to yield β-thiolated amino acids are 

summarized in Figure 4A Hydrolysis using 6 N HCl led to substrates 6a–d,f,g,o,l) directly 

in a single step (Figure 4A, conditions a), including β-thiolated Leu (6a) and Met (6l). 
Deformylation of 6k,m was carried out using 0.5 N HCl followed by saponification to give 

7k,m in high yields (Figure 4A, conditions b). Similarly, acidic removal of the N-formyl 

group, followed by hydrolysis of the methyl ester and Boc group, gave the free amines from 

6h,j, which were reprotected with Boc to give β-thiol Lys 7h,j in high yields, respectively 

(Figure 4A, conditions c). After acidolysis and guanidinylation, β-thiol Arg 7i was produced 

in three steps starting from β-thiolated Orn 6i (Figure 4A, conditions d). β-Thiol Trp 

analogues 7n,n′ were constructed via Fischer indole synthesis from γ-aldehyde dimethyl 

acetal 6n (Figure 4A, conditions g and h). β-Thiol Gln 7p and Glu 7p′ were obtained 

in good yields starting from 6p, respectively. Selective deformylation in the presence of 

the side-chain amide moiety in 6p was achieved using 33% HBr in acetic acid, and a 

subsequent saponification step provided β-thiol Gln 7p in 70% yield (Figure 4A, conditions 

e). Maintenance of the methyl ester during acidic removal of the N-formyl group together 

with hydrolysis of the side-chain amide moiety of 6p was possible using 6 N HCl at 90 °C 

for 30 min, leaving the methyl ester untouched. Functional group manipulations eventually 

produced β-thiol Glu 7p′ in good yield (Figure 4A, conditions f). Gram quantities of the 

β-thiolated amino acids could be easily prepared in the majority of these cases.

Mirror-image proteins have important therapeutic potential.22 Thus, we further explored the 

preparation of D-β-thiolated amino acids. With 8 (the enantiomer of 5) as the starting 

material, an adamantyl radical was introduced in the same manner. Compound 9 (the 

enantiomer of 6d) was obtained and subjected to acidolysis to produce 10 in high yield 

(Figure 4B). The absolute configuration of 9 was confirmed using X-ray crystallography 

(Figure 4C).

With these β-thiolated/selenolated amino acids in hand, we next explored their utility in 

peptide synthesis. Selenolated amino acids 4a,e,i,l were introduced onto a solid-supported 

polypeptide N-terminus. After subsequent acidic cleavage from the resin and removal of 

the side-chain protecting groups using TFA, peptides 11a,e,i,l were prepared, respectively 

(Figure 5A). In all cases, no double-coupling products were observed due to the steric 

bulkiness of the neighboring t-Bu group. Next, after deprotection of the auxiliary in the 

presence of excess MeONH2, diselenide dimer peptides 12a,e,l were obtained in good 

yield after HPLC purification (Figure 5A, conditions a, entries 1, 2, and 4). Unfortunately, 

the deprotection of the pivalaldehyde acetal of β-selenolated Arg peptide (11i) failed 

in the presence of MeONH2 due to the decomposition of peptide. As such, we opted 

for the employment of milder conditions. Interestingly, we observed that this auxiliary 

was stable under NCL conditions in the presence of MPAA and TCEP, yet complete 

acetal removal of N-terminal selenolated amino acids was achieved in the presence of 
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1.5 equiv of MPAA in 6 M GND·HCl/0.2 M Na2HPO4 at pH 7.0, generating the MPAA-

adduct peptide 12i in good yield (Figure 5A, conditions b, entry 3). Mechanistic studies 

suggested that the selenazolidine ring was opened via the in situ produced disulfide 

of MPAA (see page 84 in the Supporting Information for details). To the best of our 

knowledge, the deprotection of selenoazolidine described here has some of the mildest 

conditions reported to date. Meanwhile, one-pot diselenide-selenoester ligation (DSL)–

deselenizations23 between peptide selenoester 13 and selenolated peptides 12a,e,i,l were 

conducted. Peptides 14a,e,i were obtained according to a ligation and deselenization 

protocol in good yields (Figure 5A, conditions c). A low yield of 14l was observed 

during deselenization. The deselenization proceeded well when excess amounts of DTT 

and TCEP were used (Figure 5A, conditions d). We further examined NCL–desulfurization 

using β-thiolated amino acids. Peptides 15c,d,n,o were prepared via Fmoc-SPPS and TFA 

deprotection. Next, auxiliary removal was achieved successfully using an excess amount of 

MeONH2, providing thiolated peptides 16c,d,n,o in good yields (Figure 5B, conditions a, 

entries 1–4). Ligation of peptide 16 with peptide 13 under NCL conditions, followed by one-

pot desulfurization, yielded peptides 17c,d,o smoothly (Figure 5B, conditions e). Though 

peptide 17n was obtained in 20% yield after desulfurization, the reaction could be improved 

upon treatment of a large excess of TCEP and VA-044 (Figure 5B, conditions f). Therefore, 

this method not only significantly expanded the utility of NCL–dechalcogenation to generate 

native peptides but also provided a simple strategy to access peptides containing unnatural 

amino acids.6a,9f,24 For example, the synthesis of fluorinated peptide 14e represents a 

general strategy to incorporate fluorinated amino acids into peptides, which opens up a 

new avenue to access fluorinated peptides.25

To further exhibit the practicality of this method, cytochrome c oxidase subunit protein 7C26 

(22) was prepared by a one-pot synthesis using the selenolated Lys building block 4h as 

an example. As shown in Figure 5C, MPAA-thioester 18 and peptide 19 were combined 

under NCL conditions to yield peptide 20 via in situ production of MPAA disulfide from 

18. Without separation, the crude reaction mixture was directly combined with selenoester 

21, followed by an in situ chemoselective deselenization reaction using DTT and TCEP 

to give protein 22 in 38% isolated yield over four steps. Overall, we have successfully 

synthesized cytochrome c oxidase subunit 7C (22) via sequential one-pot NCL activation of 

the auxiliary and DSL–deselenization chemistry without any purification or solvent removal. 

The facile synthesis of 22 demonstrated the application of construction of β-selenolated 

amino acids, and the MPAA-mediated deprotection of selenazolidine could expand and 

enhance selenolated amino acid mediated ligations.

Disulfides have been extensively used to stabilize peptide conformations and confine 

structure rigidity. Current methods for disulfide bond engineering are limited to the 

replacement of the disulfide bond with thioether, selenoether, diselenide, and hydrocarbon 

bridges.27 In order to further understand the effect of introducing cysteine analogues on 

protein stability, a series of oxytocin (a hormone stimulating parturition and lactation 

drug) analogues (23a,d,h) were prepared via SPPS and subsequent oxidative folding, 

which contain various N-terminal β-thiolated amino acid residues (Figure 6A). The thermal 

stability of native oxytocin and its analogues were evaluated at 50 °C by LCMS analysis.28 

Yin et al. Page 7

J Am Chem Soc. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubs.acs.org/doi/suppl/10.1021/jacs.0c04994/suppl_file/ja0c04994_si_001.pdf


Native oxytocin degrades with a half-life of 3.9 days, whereas the synthetic analogues 

demonstrate significant stability (23a, 18.8 days; 23d, 68.6 days; 23h, 23.1 days) (Figure 

6B). The introduction of β-thiolated amino acid residues is simple and straightforward; 

more importantly, our approach enables the construction of peptides bearing novel disulfide 

bridges with high stability and structural diversity.

This method is not without limitations. For example, the reaction is performed under 

photoredox conditions, and thus it will be difficult to introduce radical-sensitive groups 

(cyclopropyl methyl, disulfide). Furthermore, only the trans diastereomer is obtained, which 

is another limitation of this strategy. Considering the elegant work reported by Knowles and 

Miller,11b a kinetic- and catalyst-controlled H atom transfer from B to C might serve as an 

alternative way to the other diastereomer (Figure 2A).

CONCLUSION

In summary, we have developed a practical and general strategy for the diastereoselective 

preparation of β-thiolated/selenolated amino acids via a photoredox-catalyzed asymmetric 

Giese reaction. In contrast to existing methods using nucleophilic and electrophilic thiol/

selenol reagents to construct C–S/Se bonds, this method unprecedentedly combines the 

concept of “self-regeneration of chirality centers” with modern photoredox catalysis. 

Nevertheless, the described convenient approach allowed the scalable and diverse synthesis 

of proteinogenic amino acid analogues, including β-thiolated amino acids (Leu, Glu, Gln, 

Lys, Arg, Trp, Met), β-selenolated amino acids (Leu, Lys, Arg, Met), and a broad scope 

of unnatural β-thiolated/selenolated amino acids via a single-step asymmetric alkylation 

on a multigram scale. We believe that this methodology will not only significantly 

expand the utility of the ligation–dechalcogenation strategy but also allow the design and 

implementation of amino acids at will and the construction of disulfide-engineered peptides 

and proteins in academic and pharmaceutical settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Development of a general method used for the preparation of enantiopure β-thio/selenolated 

amino acids. (A) NCL–dechalcogenation. (B) Representative methods for constructing 

thiolated/selenolated amino acids.(C) The photoredox-catalyzed asymmetric Giese reaction 

as a general solution to this synthetic problem.
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Figure 2. 
Design plan and optimization of the reaction conditions used in the preparation of β-

selenolated Leu. (A) Symmetric Giese reaction via photoredox catalysis. (B) Standard 

conditions: PC (1 mol %), 2a (1.2 equiv), HE (1.5 equiv), DIPEA (2.0 equiv), DCM, blue 

LED (10 W), 25 °C. Legend: (a) 18 h; (b) 48 h; (c) isolated yield; (d) diastereoselectivity 

determined by 1H NMR and GC analysis of the crude reaction mixture. Abbreviations: 

PC, photoredox catalyst; HE, Hantzsch ester; DIPEA, N,N-diisopropylethylamine; DCM, 

dichloromethane; DMF, N,N-dimethylformamide.
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Figure 3. 
Asymmetric alkylation of selenazoline under photoredox conditions and their derivatization. 

(A) Scope of the β-selenolated amino acids. Deprotection conditions: (a) (1) LiOH (10.0 

equiv), H2O/MeOH (1/3 v/v), 25 °C, 6 h, (2) 6 N HCl in dioxane, 50 °C, 8 h; (b) (1) 

LiOH (10.0 equiv), H2O/MeOH (1/3 v/v), 25 °C, 6 h, (2) 6 N HCl in dioxane, 50 °C, 8 

h, (3) (Boc)2O (1.0 equiv), THF/H2O (10/1 v/v), DIPEA (2.0 equiv), 25 °C, 1 h; (c) (1) 

LiOH (10.0 equiv), H2O/MeOH (1/3 v/v), 25 °C, 6 h, (2) 6 N HCl in dioxane, 50 °C, 

8 h, (3) N N′-bis-Boc-1-guanylpyrazole (1.0 equiv), DIPEA (2.0 equiv), MeOH, 25 °C, 

3 h. (B) Absolute configuration of 3d as confirmed by X-ray crystallography. Legend: (i) 

diastereoselectivity determined by GC analysis of the crude reaction mixture; (ii) brsm, 

based on recovered starting material; (iii) mixture of diastereomers found.
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Figure 4. 
Asymmetric alkylation of thiazoline under photoredox conditions and derivatization. (A) 

Scope of β-thiolated amino acids. Deprotection conditions: (a) 6 N HCl, 90 °C, 8 h; (b) 

(1) 0.5 N HCl in MeOH, 25 °C, 12 h, (2) LiOH (10 equiv), H2O/MeOH (1/3 v/v), 25 °C, 

6 h; (c) (1) 6 N HCl, 90 °C, 8 h, (2) (Boc)2O (1.0 equiv), DIPEA (2.0 equiv), THF/H2O 

(10/1 v/v), 25 °C, 1 h; (d) (1) 6 N HCl, 90 °C, 8 h, (2) N,N′-bis-Boc-guanylpyrazole (1.0 

equiv), DIPEA (2.0 equiv), MeOH, 25 °C, 3 h; (e) (1) 33% HBr in AcOH, 80 °C, 1 h, (2) 

LiOH (10.0 equiv), H2O/MeOH (1/3 v/v), 25 °C, 6 h; (f) (1) 6 N HCl, 90 °C, 30 min, (2) 
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p-TsOH (1.0 equiv), isobutylene in DCM (50.0 equiv), 40 °C, 12 h, (3) LiOH (10.0 equiv), 

H2O/MeOH (1/3 v/v), 25 °C, 6 h; (g) (1) PhNHNH2(2.0 equiv), TFA/DCM (1/3 v/v), 25 °C, 

30 min, 97%, (2) 0.5 N HCl in MeOH, rt, 12 h, (3) LiOH (10.0 equiv), H2O/MeOH (1/3 

v/v), 25 °C, 6 h; (h) (1) p-MeO-PhNHNH2 (2.0 equiv), TFA/DCM (1/3 v/v), 97%, (2) 0.5 

N HCl in MeOH, 25 °C, 12 h, (3) LiOH (10.0 equiv), H2O/MeOH (1/3 v/v), 25 °C, 6 h. 

(B) Synthesis of D-β-thiolated amino acids from D-cysteine. (C) Absolute configuration of 

9 as confirmed by X-ray crystallography. Legend: (i) diastereoselectivity determined by GC 

analysis of the crude reaction mixture; (ii) brsm, based on recovered starting material; (iii) 

mixture of diastereomers found.
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Figure 5. 
Exploiting the utility of β-thio/selenolated amino acids. (A) DSL–deselenization using 

β-selenolated amino acids. (B) NCL–desulfurization using β-thiolated amino acids. (C) 

One-pot synthesis of cytochrome c oxidase subunit 7C (22). (D) Crude HPLC trace 

of the final deselenization to give 22 and ESI mass spectrum of 22. Conditions for 

auxiliary removal: (a) 6 M GND·HCl, 0.2 M Na2HPO4, 0.2 M MeONH2, pH 4.0; (b) 

6 M GND·HCl, 0.2 M Na2HPO4, MPAA (1.5 equiv), pH 6.8. Conditions for ligation, 

13 (1.2 equiv), 6 M GND·HCl, 0.2 M Na2HPO4, TCEP (2.0 equiv), pH 6.2, 25 °C, 16 
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h. Conditions for deselenization: (c) 6 M GND·HCl, 0.2 M Na2HPO4, DTT (9.0 equiv), 

TCEP (50 equiv), pH 5.2, 25 °C, 16 h; (d) 6 M GND·HCl, 0.2 M Na2HPO4, DTT (250 

equiv), TCEP (50 equiv), pH 5.2, 25 °C, 16 h. Conditions for desulfurization: (e) 6 M 

GND·HCl, 0.2 M Na2HPO4 200 mM TCEP, 10 mM VA-044, 50 mM GSH, 37 °C, 16 

h; (f) 6 M GND·HCl, 0.2 M Na2HPO4, 500 mM TCEP, 30 mM VA-044, 150 mM GSH, 

37 °C, 16 h. Legend: (i) yield according to the original loading of the resin; (ii) yield 

of ligation and deselenization; (iii) yield of ligation and desulfurization. Abbreviations: 

GND, guanidine; MPAA, 4-mercaptophenylacetic acid; TCEP, tris(carboxyethyl)phosphine; 

VA-044, 2,2′-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride; DTT, dithiothreitol; 

GSH, glutathione; Fmoc SPPS, Fmoc solid-phase peptide synthesis.

Yin et al. Page 18

J Am Chem Soc. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Thermal stability of synthetic oxytocin analogues. (A) Synthetic oxytocin analogues. (B) 

Thermal stability of oxytocin (OT) and 23a,d,h in water at 50 °C.
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