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Abstract

To accelerate the translation of cancer nanomedicine, we used an integrated genomic approach 

to improve our understanding of the cellular processes governing nanoparticle trafficking. We 

developed a massively parallel screen leveraging barcoded, pooled cancer cell lines annotated 

with multi-omic data to investigate cell association patterns across a nanoparticle library spanning 

a range of formulations with clinical potential. We identified both materials properties and cell-

intrinsic features mediating nanoparticle-cell association. Using machine learning algorithms, 

we constructed genomic nanoparticle trafficking networks and identified nanoparticle-specific 

biomarkers. We validated one such biomarker, gene expression of SLC46A3, which inversely 

predicts lipid-based nanoparticle uptake in vitro and in vivo. Our work establishes the power 

of integrated screens for nanoparticle delivery and enables the identification and utilization of 

biomarkers to rationally design nanoformulations.

One-Sentence Summary:

Pooled human cell line screening identifies genomic nanoparticle trafficking networks and 

predictive biomarkers.

Nanoparticle (NP)-based therapeutics have enormous potential for personalized cancer 

therapy as they can encapsulate a range of therapeutic cargos including small molecules, 

biologics and, more recently, nucleic acids. Therapy-loaded NPs can be designed to 

prevent undesired degradation of the cargo, increase circulation time, and direct drugs 

specifically to target tumors.(1–3) There have been notable successes in clinical translation 

of nanomedicines, including liposomal formulations of doxorubicin (Doxil) and irinotecan 

(Onivyde).(4) These formulations extend the half-life of the active agent and have the 

potential to lower toxicity, but do not efficiently accumulate in tumors.(5, 6)

Delivery challenges attributed to circulation, immune detection and clearance, as well 

as extravasation and diffusion through tissue all influence NP accumulation at target 

disease sites. Efforts to improve NP accumulation in tumors via active targeting motifs 

have been met with limited success, both in the laboratory and the clinic.(1, 7) Fewer 

efforts have focused on gaining a fundamental understanding of the biological features 

mediating successful NP-cell interaction and uptake. While progress has been made in 

understanding how specific physical and chemical NP properties affect trafficking and 

uptake, comprehensive evaluation of multiple NP parameters in combination has thus far 

been elusive. Additionally, the biologic diversity of cancer targets makes it prohibitively 

challenging to gain a holistic understanding of which NP properties dictate successful 

trafficking and drug delivery.(8, 9) Once NP parameters are considered in combination, the 
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number of unique formulations to test increases exponentially, particularly as comparisons 

across several systems need to be drawn. A further barrier is the need to adapt the 

nanoparticle formulation of each encapsulated therapy for a given drug or target, as each 

formulation has its own unique biological fate.(9) As therapies continue to increase in 

molecular complexity, new nanocarrier formulations capable of delivering such entities will 

need to be developed and examined for their unique trafficking properties.

We and others have designed panels of NPs to elucidate the structure-function relationships 

to cellular targeting and uptake.(10–13) However, there is a need to equally consider the 

influence of biological heterogeneity on interactions at the NP-cell interface, for example 

by probing cells across cancer cell lineages with a range of genetic drivers and cell states. 

In the era of precision medicine, with the desire to deliver molecularly targeted and gene-

based therapies to specific subcellular compartments within cancer cells, it is imperative 

to holistically probe the structure-function relationship of NPs as they relate to cellular 

interactions.

Inspired by recent advancements in cancer genomics,(14) we postulated that applying 

similar techniques to the study of cancer nanomedicine would uncover both the cell- 

and NP-specific features mediating efficient targeting and delivery. The combination of 

pooled screening with multi-omic annotation has accelerated target discovery and uncovered 

previously unrecognized mechanisms of action in small molecule screens. Specifically, in 

the Profiling Relative Inhibition in Mixtures (PRISM) method, DNA-barcoded mixtures of 

cells have recently been used for multiplexed viability screening. In cell line pools grouped 

by doubling time, 500 barcoded cell lines have been screened against tens of thousands of 

compounds to identify genotype-specific cancer vulnerabilities.(15, 16)

To comprehensively capture pan-cancer complexities and enable the statistical power 

to link NP association with cell intrinsic characteristics, we developed a competitive 

phenotypic screen to assess associations of a curated NP library with hundreds of cancer 

cell lines simultaneously. NP-cell association was correlated with genomic features to 

identify candidate biomarkers. Coupling our biomarker findings with k-means clustering, 

we constructed genomic interaction networks associated with NP engagement, enabling the 

identification of genes associated with the binding, recognition, and subcellular trafficking 

of distinct NP formulations. Moreover, through the use of univariate analyses and random 

forest algorithms, we identified that the gene SLC46A3 holds value as a predictive, NP-

specific biomarker. We further validated SLC46A3 as a negative regulator of liposomal 

NP uptake in vitro and in vivo. The strategy outlined herein identifies cellular features 

underlying nanoparticle engagement in cancer nanomedicine.

Results

nanoPRISM: screening nanoparticle association with pooled cell lines

To screen hundreds of cancer cell lines simultaneously for NP-cancer cell line association 

patterns, we cultured pooled PRISM cells and incubated them with fluorescent NPs. We then 

implemented a fluorescence-activated cell sorting (FACS) adaptive gating strategy to sort 

cell populations into four bins (quartiles, A-D) based on fluorescence signal as a proxy for 
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the extent of NP-cell association (Figure 1A). Experimental parameters were optimized to 

ensure sufficient cell number and barcode representation post-cell sorting (Figure S1), and 

NPs were incubated for 4 and 24 hours.

For this screen, we designed a modular NP library to capture the effects of NP core 

composition, surface chemistry, and size on cell interactions. This panel of 35 NPs 

encompassed both clinical and experimental formulations. Specifically, anionic liposomes 

were formulated and electrostatically coated with cationic poly-L-arginine (PLR) followed 

by a series of polyanions.(17–21) The polyanions were selected for their synthetic 

(polyacrylic acid, PAA), semisynthetic (poly-L-aspartate, PLD; poly-L-glutamate, PLE), 

or natural (hyaluronate, HA; dextran sulfate, DXS; fucoidan, FUC; alginate, ALG; 

chondroitin sulfate, CS) origin as well as the inclusion of both carboxylate and sulfate 

ions.(22–24) These same electrostatic coatings were used to modify polymeric NP cores 

(polylactide-co-glycolide, PLGA) to test the effects of core composition on NP-cell 

interactions. We optimized formulations to obtain a diameter of approximately 100 nm 

for the liposome and PLGA formulations as the similar sizes would enable cross-core 

comparisons. We also included commercially manufactured fluorescent carboxylate- and 

sulfate-modified polystyrene (PS) nanoparticles in a range of diameters from 20–200 nm, 

enabling study of particle size and surface chemistry. Because of the clinical importance 

of polyethylene glycol (PEG)-containing formulations,(25) PEGylated versions of liposome, 

PLGA, and PS particles were prepared, including the drug-free versions of two commercial 

formulations, liposomal doxorubicin (Doxil) and liposomal irinotecan (Onyvide). The latter 

two formulations are denoted as LIPO-5% PEG* and LIPO-0.3% PEG*, respectively. All 

of the nanoparticles examined exhibited negative or neutral net charge, as the focus of this 

work is on systemic nanoparticle delivery systems. Positively charged nanoparticles have 

been shown to undergo nonspecific charge interactions with cells and proteins, leading to 

toxicity and premature clearance in vivo.(26) Dynamic light scattering (DLS) was used to 

characterize the diameter, zeta potential, and polydispersity index (Figure 1B, Tables S1–S3) 

of this NP library.

To ensure that our methods led to robust and meaningful data we selected an anti-epidermal 

growth factor receptor (EGFR) antibody as an active targeting control. We hypothesized that 

the design of our screen would allow us to identify features relevant to EGFR expression 

with a high level of confidence. A nonlethal EGFR antibody or IgG isotype control was 

covalently incorporated onto a liposome via a PEG tether.(27) We elected to focus on EGFR 

due to the wide range of native EGFR expression of the 488 cell lines included in our screen 

as well as prior evaluation of EGFR-targeting compounds via the PRISM assay (Figure 

S2).(15)

After incubating the cells with the NP library, we utilized fluorescence-activated cell sorting 

to bin cells into quartiles according to fluorescence intensity (Figure S3). Cells were then 

lysed, and the DNA barcodes were amplified, sequenced, and deconvoluted according to 

previously detailed protocols.(15, 28) After quality control analysis of technical (n=2) and 

biological (n=3) replicates, all 488 cell lines met quality control measures and were carried 

forward for downstream analyses (Figure S4). This dynamic gating strategy was used to 
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enable comparison of cell line representation per bin (quartile) independent of fluorophore 

identity or amount incorporated into each tested formulation.

A probabilistic model was developed and applied to the data to infer the relative distribution 

of each cell line into the pre-determined bins (A-D) for each NP formulation. The 

probability of a cell from a given cell line falling into a given bin is used to represent 

those distributions, i.e., PA+ PB+ PC+ PD = 1 (Figure 1C–D). The technical details and 

the model’s implementation are presented in the Supplementary Materials (29). Given 

the concordance of the inferred probabilities among the biologic replicates (Figure S5), 

we collapsed the replicates through their arithmetic average. Probabilities were then 

summarized using a weighting factor alpha (α) to calculate a weighted average (WA) for 

each NP-cell line pair: WA = -αPA-PB+PC+αPD in which a higher WA implies higher 

NP-cell association and vice versa (Figure 1E). We trialed a range of weighting factors (α 
= 2, 10, 20, and 100) and found that downstream results were unchanged with the higher α 
values (Figure S6), and therefore, α = 2 was used for subsequent analyses.

Cancer cells distinguish nanoparticles based on core composition

Pearson-based unsupervised hierarchical clustering of pairwise WAs identified NP core 

material as a strong determinant of cell association, with the three core materials tested 

(liposomal, PLGA, and PS) forming distinct clusters (Figure 1F and S7A). This result 

was unexpected as we hypothesized surface chemistry to be a larger predictor of NP-cell 

interactions. Principal component analysis (PCA) similarly identified core specific trends at 

both the 4 and 24 hour time points (Figures 1G and S7B–C. Further analysis within each 

core material did reveal surface chemistry dependent trends, though they were more subtle 

than core-based clustering (Figure S8).

In contrast, no clusters were apparent when PCA was performed based on cell line, 

indicating that cancer cells of the same lineage did not have similar NP-association trends 

(Figure 1H, Figure S7B–C). Heterogeneity in NP-cell association in proliferating cells has 

been attributed to various aspects of cell growth and metabolism.(30–33) To ensure that 

differential cell proliferation did not confound our results, we performed a parallel growth 

experiment with the same pooled cells and found no correlation between estimated doubling 

time and WA (Figure S9).

Cell-intrinsic features mediate nanoparticle trafficking

We applied data from the Cancer Cell Line Encyclopedia (CCLE)(34, 35) to identify 

genomic features that act as predictive biomarkers for NP-cell association. To do this, 

we used both univariate analyses and a random forest algorithm to correlate the baseline 

molecular features of each cell line (cell lineage; gene copy number; messenger RNA, 

microRNA, protein or metabolite abundance; function-damaging, hotspot, or missense 

mutations) with NP association (Figure S10A–B).

EGFR-targeting compounds identified relevant biomarkers with high 
confidence—Using univariate analysis for all CCLE features, we identified EGFR gene 

expression and protein abundance as the two most significantly correlated hits (q = 4× 
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10−100 and q= 4×10−76, respectively) with anti-EGFR antibody, but much less significantly 

(q = 6 × 10−9 and q = 4 × 10−10, respectively) associated with the isotype control (Figure 

2A, top panels). We also confirmed that fluorophore identity does not impact biomarker 

identification, demonstrating that both AlexaFluor 488 and Cy5 conjugated anti-EGFR 

antibodies perform similarly (Figure S10C–E).

In EGFR-conjugated liposomes, the same hits were also identified more significantly 

(q=6×10−21 and q=2×10−18, respectively) than the IgG control (q = 3 × 10−9 and q = 3 

× 10−6, respectively) (Figure 2A, bottom panels).

The statistical significance of EGFR biomarkers was lower for the antibody-conjugated 

liposome than the free antibody, which may be due to changes in protein concentration 

across samples or steric blockage introduced by covalently linking an antibody to a NP 

surface that may interfere with binding to its target.(36) Thus, we demonstrated the ability 

to quantitatively compare expected biomarker targets of both free antibodies and antibody-

conjugated NPs using our platform.

Biomarker number and identity are influenced by nanoparticle properties—
We applied univariate analysis to correlate association and CCLE features for each 

NP formulation, both quantitatively and qualitatively using curated gene sets. First, we 

thresholded q-values at less than 1×10−10 to compare the absolute number of candidate 

biomarkers at varying degrees of significance (Figure 2B). Selection of this cutoff was 

guided by the IgG-conjugated antibody analysis, which returned few hits above this 

threshold. For liposomal NPs, we observed that the number of significant biomarkers was 

higher at 4 h than 24 h. We believe this may be indicative of active uptake processes, 

established to take place within the first few hours of NP-cell interactions, whereas at 24 

hours, we may be capturing features associated with less specific interactions.(37, 38) We 

next investigated biomarkers associated with established uptake, transport, and adhesion 

gene sets (Figure 2C). (39–41) To examine the distribution of biomarker significance across 

curated gene sets and NP formulations, each gene was visualized using the -log(q-value) for 

gene expression. As expected, we identified highly significant biomarkers from gene sets 

important in drug import and export such as solute carrier (SLC) transporter family and 

ATP-binding cassette (ABC) family. Our screen provides data on both the significance and 

the relationship to NP delivery. For example, we found that ABCA1, which plays a role in 

cholesterol transport, has a positive relationship with liposomal NPs, while several members 

of the multidrug resistance subfamily (ABCB1/P-GP, ABCC1/MRP, ABCC4/MRP4) have 

a negative relationship with PLGA NPs (Figure S11).(42) We also identified biomarkers 

important for cell engagement (focal adhesion, extracellular matrix) as well as intracellular 

trafficking (vesicular transport, lysosome, and cholesterol transport). This highlights the 

ability of our screen to identify expected biomarkers and enable comparison between drug 

delivery modalities.

We also observed that liposome surface modification influences the number and significance 

of biomarkers. Specifically, liposomes electrostatically coated with polysaccharides (HA, 

ALG, DXS, FUC, CS) had the highest amount of associated biomarkers, which we 

hypothesize is due to the high degree of interactions between sugars and cell surface 
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proteins as well as the potential for naturally occurring polysaccharides to interact with a 

wide range of cell surface elements.(23, 43, 44) In line with this hypothesis, the addition 

of PEG, a well-established antifouling polymer, reduces the number and significance 

of associated biomarkers almost to zero. In light of the highly specific hits generated 

from EGFR-conjugated liposomes (formulated using 25% PEG liposomes), this abrupt 

decrease in significant biomarkers further indicates the ability of our platform to identify 

specific NP binding and recognition elements. In contrast to the liposomal formulations, 

PLGA formulations, regardless of surface modification, resulted in few biomarkers at 

either time point. Lastly, a high number of significant biomarkers was associated with 

both carboxylated and sulfated PS NPs included in our screen, though there was no 

time dependence, in contrast to the liposomal formulation. While this result was initially 

surprising, as the PS formulations are made of synthetic polystyrene polymers, meaningful 

biological interactions with anionic polystyrenes, both in polymer and particle form, have 

been reported. Specifically, it was described that nanoparticles bearing anionic polystyrene 

motifs have the appropriate mix of hydrophobicity and anionic charge character to interact 

favorably with trafficking proteins, including the caveolins.(45)

NP biomarkers are connected and create trafficking networks—We then used 

an unbiased approach to identify predictive biomarkers using a random-forest algorithm, 

annotated by feature set: gene expression, gene copy number, and protein abundance. Data 

from the 4 h time point were chosen for this analysis based on the EGFR-related hits 

for liposomes, which were more significant at 4 h than at 24 h. As we were interested 

in applying this approach to identify cellular features positively correlated with uptake 

(for example, increased expression of trafficking proteins), hits negatively correlated with 

NP association were removed from this analysis. Next, we used K-means clustering to 

visualize biomarkers based on their relative importance and presence across formulations 

(Figure 2D). Clusters 1 and 2 contained 205 hits shared across NP formulations and were 

especially enriched for liposomal and PS NPs. These genes and proteins were input into 

the STRING database(46–48) to generate a protein-protein interaction (PPI) network that 

was found to be highly interconnected (PPI enrichment p-value <1×10−16) (Figure 2E). 

Notably, the network is enriched in proteins found in the plasma membrane, extracellular 

region, and extracellular matrix (false discovery rate [FDR] = 8×10−12, 3×10−9, and 3×10−8, 

respectively) based on enrichment analysis with gene ontology (GO) localization datasets 

(Figure S12).(49–51) The identification of overlapping biomarkers that are localized to the 

cell surface and have established protein-protein interactions led us to hypothesize that these 

proteins are important in early NP trafficking. Enrichment analyses using GO molecular 

functions datasets showed enrichment in numerous binding processes (Data S1, Figure S12), 

giving further credence to this theory.

SLC46A3 is a negative regulator of liposomal NP uptake

Evaluating univariate results across NP formulations, we identified one biomarker with 

a strong, inverse relationship with liposomal NP association: expression of solute carrier 

family 46 member 3 (SLC46A3). A member of the solute carrier (SLC) transporter 

family, SLC46A3, is a relatively unstudied transporter that has been localized to the 

lysosome.(52, 53) SLC46A3 was recently identified as a modulator of cytosolic copper 
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homeostasis in hepatocytes, connecting hepatic copper concentrations with lipid catabolism 

and mitochondrial function.(54) This reported relationship between SLC46A3 and lipid 

catabolism may help to explain why SLC46A3 found to have a strong relationship with 

liposomal NP uptake and not uptake of polymeric NPs. In the context of cancer, SLC46A3 

was recently shown to transport non-cleavable antibody-drug conjugate (ADC) catabolites 

from the lysosome to the cytosol, thereby being necessary for therapeutic efficacy.(55) 

Further, downregulation of SLC46A3 was identified as a resistance mechanism for antibody-

drug conjugate delivery in cancer cells, including in patient samples of multiple myeloma.

(55–58) While the biologic function of SLC46A3 in cancer is not yet clear, given the 

potential therapeutic implications and the unusual inverse relationship between SLC46A3 

expression and NP delivery, we sought to validate the predictive power of SLC46A3 as a 

biomarker for liposomal NP association.

SLC46A3 expression was the most significant hit on univariate analysis and also the top 

ranked random forest feature for each liposomal NP tested at 24 h, regardless of surface 

modification (q-values < 10−20, Figures 3A and S13). This inverse relationship between 

SLC46A3 expression and NP association was found to be specific to liposomal NPs, and 

not observed with PLGA or PS NPs, and was maintained regardless of cancer cell lineage 

(Figures 3B and S13).

We selected nine cancer cell lines from the nanoPRISM pool and four additional cell lines, 

spanning multiple lineages, with a range of native SLC46A3 expression levels for screening 

in a non-pooled fashion (Figures 3C–D, S3, S14–S15). Analogous to the pooled screen, 

individual cell lines were profiled using flow cytometry and NP-associated fluorescence 

was quantified after 24 h incubation; here SLC46A3 expression was concurrently quantified 

using quantitative polymerase chain reaction (qPCR) (Figures 3D and S9). In line with 

observations from pooled screening, the inverse relationship between liposome association 

and native SLC46A3 expression was maintained, suggesting that SLC46A3 may play a key 

role in regulating the degree of liposomal NP uptake.

To probe whether SLC46A3 governs cellular association with NPs, we selected the breast 

cancer cell line T47D, which exhibited high native SLC46A3 (Figure 4A). We knocked 

down SLC46A3 with siRNA and evaluated the effect on liposomal NP association. We 

observed that T47D cells with reduced SLC46A3 had higher NP-cell association with both 

tested formulations, suggesting that modulating SLC46A3 expression alone can regulate 

NP-cell association (Figure 4B).

To further functionally evaluate the relationship of SLC46A3 expression and NP-cell 

association, we selected two cancer cell lines from the pooled screen (Figure 4A): the T47D 

cell line and the melanoma cell line LOXIMVI. We developed a toolkit using these two cell 

lines by knocking out SLC46A3 in T47D cells and inducing SLC46A3 overexpression in 

LOXIMVIs (Figures S16A–D).

As SLC46A3 is a protein associated with lysosomal membranes(55, 56, 59), we used 

LysoTracker dye to evaluate the effect of SLC46A3 modulation on endolysosomal 

compartments in both T47D and LOXIMVI engineered cell lines (Figure 4C). We 
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observed an SLC46A3-dependent change: cells with lower SLC46A3 expression (T47D-

SLC46A3 knockout, LOXIMVI-vector control) exhibited more brightly dyed endolysosomal 

compartments compared to their high SLC46A3 expression counterparts (T47D-vector 

control, LOXIMVI-SLC46A3 OE).

Overexpression of SLC46A3 in LOXIMVI cells significantly abrogated interaction with 

bare liposomes (p = 0.006) using flow cytometry profiling (Figure 4D). The T47D-

SLC46A3 knockout cell line demonstrated significantly increased association with bare 

liposomes compared to parental or vector control lines (p = 0.0017, Figure 4D). We further 

confirmed that these trends are generalizable across a range of surface functionalized 

liposomes (Figure 4E, S16E). Moreover, no significant changes in NP association were 

observed for PLGA and PS NPs (Figures 4E, S16F–G). We also confirmed that the presence 

of serum proteins in cell culture media does not abrogate this trend (Figure S16H). Taken 

together, these data indicate modulation of SLC46A3 alone in cancer cells is sufficient to 

negatively regulate association and uptake of liposomal NPs.

Because flow cytometry does not provide spatial information with respect to NP-cell 

interactions, we used imaging cytometry to characterize NP localization in a high throughput 

manner (Figure 5A–F). We selected four representative formulations: three liposomal NPs to 

probe the relationship of SLC46A3 expression with liposome trafficking and one PLGA NP 

formulation with the same outer layer (PLD).

Consistent with trends observed by flow cytometry, we observed an inverse relationship 

between NP intensity and SLC46A3 expression for liposomal, but not PLGA, NPs (Fig 5A, 

D, S11). Using brightfield images, we applied a mask to investigate cellular localization 

of NPs. All tested formulations were internalized, and this did not change with SLC46A3 

modulation (Figure 5B, E).

We investigated localization of NPs by scoring NP signal based on distribution within each 

cell (Figure 5C, F, Figure S17). We observed stark differences in median cellular distribution 

scores of liposomal NPs in relation to SLC46A3 expression in T47D cells. This was not 

observed for PLGA NPs, mimicking the previously observed core-specific relationship 

between NP-cell association and SLC46A3 expression. Changes in this score, though less 

pronounced, were also observed for liposomal NPs in LOXIMVI cells.

To confirm our findings with higher spatial resolution, we used deconvolution microscopy of 

live cells and incorporated a lysosomal stain to observe changes in intracellular trafficking 

(Figure 5G–H). NPs appeared uniformly distributed within T47D-SLC46A3 KO cells, 

co-localizing with endolysosomal vesicles. In contrast, LIPO-PLD NPs were localized to 

large endolysosomal clusters in T47D-vector control cells. This trend was also observed 

for LIPO-PLE and LIPO-0.3% PEG* NPs and at the earlier time point of 4 h (Figure 

S18). Changes in localization were not observed for the tested PLGA PLD NPs. This again 

indicates a NP core-dependent relationship with SLC46A3.

In the engineered LOXIMVI cell lines, we also observed co-localization of liposomal NPs 

with endolysosomal signal (Figure 5H). However, predictable changes in NP localization 

were not detected, in line with smaller changes in median cellular distribution scores.
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Impact of SLC46A3 expression on endolysosomal maturation is minimal—To 

further probe the relationship between intracellular liposomal NP trafficking and SLC46A3 

expression, we used imaging cytometry to spatially interrogate markers of endolysosomal 

transport. We elected to study markers of early (EEA1, RAB5A), late (RAB7), and 

recycling endosomes (RAB11) as well as lysosomes (LAMP1) in engineered LOXIMVI 

cells (Figures S19–S20, Table S4). While no apparent differences in endolysosomal marker 

signal strength, size, and shape were observed when comparing LOXIMVI-SLC46A3 OE 

and LOXIMVI-vector control cells both in the absence and in the presence of liposomal 

NPs, modest changes in EEA1, RAB7, and LAMP1 texture were noted (Figure S19A–B).

We then assigned values to the colocalization between each endolysosomal marker and NP 

signals and observed increasing colocalization from EEA1 to RAB5 to RAB7, consistent 

with liposome trafficking from early to late endosomes (Figure S19C–F). Colocalization 

between RAB7 and liposomal NPs was higher in LOXIMVI-SLC46A3 OE cells compared 

to vector control and the opposite relationship was observed for LAMP1 colocalization.

Liposome retention and accumulation remains SLC46A3-dependent in vivo—
To evaluate the potential clinical utility of SLC46A3 as a negative regulator of liposomal 

NP delivery, we tested in vivo delivery of an FDA-approved nanoparticle analog, the drug-

free version of liposomal irinotecan (LIPO-0.3% PEG*), in mice bearing subcutaneous 

LOXIMVI flank tumors. Fluorescently-labeled NPs were administered via a one-time 

intratumoral (IT) injection or repeat intravenous (IV) administration to evaluate tumor 

retention and accumulation, respectively (Figure 6A, Figure S21).

NP signal was quantified at both 4 and 24 h after IT administration. In line with our 

hypothesis, as well as with in vitro NP-associated fluorescence data (Figure S21A), we 

observed an inverse relationship between SLC46A3 expression and LIPO-0.3% PEG* 

NP retention that became more pronounced over time (p = 0.0115, 4 h; p = 0.0002, 24 

h) (Figure 6B–C, Figure S21B–E). Moreover, these findings also align with our initial 

nanoPRISM findings, in which SLC46A3 expression was a more significant biomarker at 

24 h (q-value=3.49×10−30, Data S2, Figure S13A) than at 4 h (q-value=1.47×10−4, Data S2, 

Figure S13A).

To determine if SLC46A3 expression predictably governs accumulation of nontargeted NPs, 

which bear no specific functional ligands on their surface, after systemic administration, 

we quantified NP signal after IV injections. We observed a significant relationship between 

SLC46A3 and NP accumulation (p = 0.0019) (Figure 6D, Figure S21F). This demonstrates 

that baseline tumor expression of SLC46A3 may influence NP delivery in a physiologic 

setting.

Together, these data highlight the real-world relevance of the nanoPRISM screening assay in 

general as well as the utility of SLC46A3 in particular as a potential biomarker.

Solid lipid nanoparticle uptake and transfection are dependent on SLC46A3 
expression—Given the recent translational success and promising potential of nucleic 

acid-carrying solid lipid nanoparticles (LNPs),(60, 61) we sought to determine if the 
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relationship of SLC46A3 expression extends to LNP association as well as transfection 

efficiency. We generated fluorescently (Cy5) labeled LNPs containing messenger RNA 

(mRNA) encoding green fluorescent protein (GFP) (LNP 1) and incubated these particles 

with engineered LOXIMVI cell lines (Tables S3, S5).

LNP association, as quantified by Cy5 signal, was significantly lower for LOXIMVI-

SLC46A3 OE cells than LOXIMVI-vector control cells, showing the same relationship 

(lower SLC46A3 expression correlating with higher association) for LNPs as for liposomal 

NPs (p = 0.008, Figure 7A–B). A similarly inverse relationship with SLC46A3 expression 

was seen for transfection, as quantified by GFP signal of formulation LNP 1 (Figure 

7C). Taken together, these findings suggest that SLC46A3 regulates cytosolic delivery of 

mRNA cargo by way of LNP uptake. Expanding on this, we generated two additional 

LNPs, analogous to commercial formulations (Table S5).(62–65) While we observed lower 

transfection in LOXIMVI-SLC46A3 OE cells than LOXIMVI-vector control cells, these 

differences were not statistically significant (p > 0.05). Nevertheless, the inverse relationship 

between SLC46A3 expression and cell association in multiple LNP formulations supports 

the relevance of SLC46A3 as a predictive biomarker for lipid-based nanoparticle 

formulations.

Discussion

This work represents high-throughput interrogation of NP-cancer cell interactions through 

the lens of multi-omics. Harnessing the power of pooled screening and high-throughput 

sequencing, we developed and validated a platform to identify predictive biomarkers for 

NP interactions with cancer cells. We used this platform to screen a 35 member NP 

library against a panel of 488 cancer cell lines. This enabled the comprehensive study and 

identification of key parameters mediating NP-cell interactions, highlighting the importance 

of considering both nanomaterials and cellular features in concert.

While pooled screening is a powerful tool, we also note several important limitations. First, 

we primarily focused on lipid-based and polymeric NP formulations with translational drug 

delivery potential. We recognize that there are several additional categories of nanomaterials 

with wide-ranging properties, such as inorganic systems, that can be useful for both 

therapeutic and diagnostic applications(66, 67) and believe additional biomarkers mediating 

the trafficking of inorganic NPs may be identified using similar screening approaches. 

Second, the results of in vitro screens are often met with limited success when translated in 

vivo, as NP-mediated delivery is dependent on many factors beyond the nano-cell interface.

(8) However, the level of molecular characterization and statistical/computational power 

afforded by annotated biological datasets, such as the Cancer Cell Line Encyclopedia, is 

currently unrivaled. Therefore, existing in vivo screens cannot yet provide this breadth or 

statistical power. Keeping translational barriers in mind is key to successful validation of 

candidate biomarkers, and for this reason we used multiple isogenic models and tested a 

range of lipid-based nanoparticles across in vitro and in vivo conditions. Third, an additional 

limitation of this screen is related to the availability of genomic datasets for each cell line 

tested, as dataset completeness contributes to the power of detection for both univariate 

and multivariate analyses. At the time of analysis, ten feature sets were available for the 
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majority of cell lines in our pool. However, as datasets expand over time, it will be possible 

to re-analyze our data in the future. Especially for emerging fields such as proteomics 

and metabolomics, the opportunity to intersect nanoparticle delivery metrics with additional 

datasets could add a new dimension to our existing findings.

One strength of our screening approach is the use of robust analytical tools, such as 

univariate analyses and random forest algorithms, enabling us to identify biomarkers 

correlated with NP association. The robust and quantitative manner in which we detected 

EGFR hits for antibodies as well as antibody-targeted NPs shows the utility of this 

platform for the development and optimization of targeted drug delivery platforms, including 

antibody-targeted NPs, and its potential to apply to other targeted therapeutics, including 

ADCs. This method of analysis will provide therapeutic insights in the design of antibody-

drug conjugates, specifically in evaluating the effects of conjugation site or linker chemistry.

By clustering NP-specific biomarkers across formulations, we constructed interaction 

networks, identifying and connecting genes associated with NP binding, recognition, and 

subcellular trafficking. This provides the scientific community with a blueprint for the 

fundamental study of cellular processes mediating NP engagement, with applications for 

both basic and translational research.

We identified expression of SLC46A3, a lysosomal transporter, to be a negative regulator 

and potential biomarker for lipid-based nanoparticle uptake and downstream functional 

efficacy. While SLC46A3 has recently been implicated in hepatic copper homeostasis as 

well as sensitivity to ADCs in cancer cells,(54–56) its role in NP delivery was previously 

unexplored. We first validated SLC46A3 as a negative regulator of lipid-based NP uptake in 

a panel of non-pooled cell lines, as well as engineered isogenic cell lines with modulated 

SLC46A3 expression. Because all current FDA-approved NPs for anticancer applications 

are liposomal formulations, there is notable potential for this biomarker to be quickly 

implemented in clinical studies with existing, approved formulations. To this end, we 

recapitulated our findings in an in vivo model using an analog of an FDA-approved 

liposomal NP formulation.

Moreover, we demonstrated that SLC46A3 has potential as a predictive biomarker beyond 

liposomal nanoparticles by investigating solid lipid nanoparticles. Both LNP-cell association 

and mRNA transfection were inversely correlated with SLC46A3 expression. These 

preliminary findings suggest that SLC46A3 expression may serve as a predictive biomarker 

for functional delivery of nucleic acid cargo via lipid nanoparticles. Our findings support 

the continued exploration of SLC46A3 as a potential biomarker for therapeutic nanoparticle 

delivery.

In summary, we present a platform to study NP-cancer cell interactions simultaneously 

through the use of pooled screening, genomics, and machine learning algorithms. 

Application of this integrated platform should advance the rational design of nanocarriers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Assessing NP-cell interactions across hundreds of cancer cell lines simultaneously.
(A) Schematic of the nanoPRISM assay: Fluorescently-labeled NPs are incubated with 

pooled cancer cells before fluorescence-activated cell sorting (FACS) by NP-association and 

sequencing of DNA barcodes for downstream analyses. (B) Characterization of the diameter 

and zeta potential of the NP library via dynamic light scattering. Data are represented as 

the mean and standard deviation of three technical repeats. Formulations marked with an 

asterisk represent drug-free analogs of clinical liposomal formulations as described in the 

text. (C) Raw data from the screen were obtained in the form of barcode counts, with similar 
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numerical distribution of barcodes in each bin, represented as a stacked histogram. (D) 

Accounting for baseline differences in barcode representation yields the probability (P) that 

each cell line will be found in a particular bin. (E) Probabilities are collapsed into a single 

weighted average (WA) for each NP-cell line pair. (F) A similarity matrix collapsing WA 

values for 488 cell lines reveals clusters of NP formulations with the same core formulation. 

(G) Principal component analysis (PCA) of NP-cell line WA values at 24 h confirms distinct 

clustering of NP formulations based on core composition (left) but cell lines do not form 

clusters (right).
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Figure 2. Correlative genomic analysis identifies expected validation biomarkers as well as 
hundreds of formulation- and time-dependent biomarkers.
(A) Cells with high EGFR antibody association are strongly correlated with EGFR gene 

expression and protein abundance (via reverse phase protein array; RPPA) (top left). 

These correlations are diminished in the isotype control-treated sample. The same EGFR-

related hits, in addition to NP specific markers, are observed for cells treated with 

antibody-conjugated liposomes (bottom row). (B) Univariate analysis identifies genomic 

features correlated with NP association. All biomarkers meeting a significance threshold 
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of -log10(q-value) >10 are shown as stacked bar graphs separated by NP formulation 

and time point. PEGylated NP formulations are highlighted with a gray background. (C) 

A heatmap showing the significance of biomarkers associated with established transport, 

uptake, and adhesion gene sets. Gene set headings are bolded and subsections are listed 

below respective headings. (D) A heatmap showing all gene- and protein- expression 

features with positive correlation identified by random forest algorithm in columns, and NP 

formulations in rows. Features are colored based on their Pearson correlation and clustered 

using k-means clustering, with clusters 1+2 highlighted as features present across multiple 

NP formulations. (E) Visual representation of the STRING network generated by inputting 

the 205 features from clusters 1+2, with network statistics. Each node represents a feature, 

and the edges represent predicted functional associations. The most interconnected nodes are 

labeled in the zoomed inset.
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Figure 3. Native expression of the lysosomal transporter SLC46A3 predicts NP-cell interaction 
for liposome formulations.
(A) Univariate analysis identified SLC46A3 expression as strongly inversely correlated 

with liposome association, regardless of liposomal surface modification. (B) Using 

linear regression to evaluate the biomarker relationship across core formulations revealed 

SLC46A3 expression was inversely correlated with NP association in liposome-cell line 

pairs (p < 0.001) but not PLGA- and PS-cell line pairs (p > 0.05); n=488 for each plot. 

(C) Cell lines in the nanoPRISM pool exhibited a range of native SLC46A3 expression 
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and a log linear correlation with uptake of bare liposomes. (D) This same correlation was 

also exhibited when assessing liposome-cell associations via flow cytometry in a non-pooled 

fashion (p = 0.025). Cell lines in red were not part of the pooled PRISM screen. Data 

represented in D are shown as the mean and standard deviation of four biological replicates. 

Error bars are not shown when smaller than data points.
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Figure 4. Modulating SLC46A3 expression in cancer cell lines is sufficient to negatively regulate 
interaction with liposome NP formulations.
(A) T47D and LOXIMVI cells have high and low SLC46A3 expression, respectively, among 

the cells in the nanoPRISM cell line pool. (B) T47D cells treated with siRNA to knock 

down SLC46A3 have higher uptake of Lipo-PLD compared to T47D cells treated with 

a scrambled siRNA control (**** p < 0.0001, Mann-Whitney test). (C) Representative 

micrographs of Lysotracker signal in engineered cell lines showed endolysosomal 

compartments. Scale bars = 10 μm. (D) Using lentivirus to overexpress SLC46A3 in 
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LOXIMVI cells and CRISPR/Cas9 to knock out SLC46A3 in T47D cells, we showed that 

modulation results in significantly changed liposome association, as determined by flow 

cytometry (** p < 0.001, Kruskal-Wallis test). NP-associated fluorescence is defined as 

median fluorescence intensity normalized to untreated cells. Data are represented as the 

mean and standard deviation of four biological replicates. (E) Shifts in NP association were 

consistently observed across all tested liposomes, independent of surface modification. No 

shifts were observed with PLGA or PS formulations.

Boehnke et al. Page 24

Science. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. High-throughput imaging cytometry confirmed NP internalization and revealed 
SLC46A3-dependent changes to intracellular trafficking.
(A) Imaging cytometry was used to investigate the intensity (x-axis) and distribution (y-axis) 

of NPs in a high-throughput manner. Bivariate density plot of n=10,000 cells (T47D-vector 

control) after 24 h incubation with LIPO-PLD NPs, with representative cell images at low 

and high NP signal. (B) Cellular distribution patterns of NPs were scored such that scores 

greater than 0 indicate cells with internalized NPs. Representative data from LIPO-PLD NPs 

in engineered T47D cells are shown. (C) Representative cell images at the median cellular 

Boehnke et al. Page 25

Science. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distribution score for engineered T47D cells treated with LIPO-PLD NPs. (D) Quantification 

of median intensity of tested NP formulations in engineered T47D and LOXIMVI cell lines 

demonstrated SLC46A3-dependent changes. (E) NPs remained predominantly internalized 

independent of SLC46A3 expression. (F) Shifts in the median cellular distribution scores 

were observed in response to SLC46A3 modulation. Live cell micrographs of (G) T47D-

vector control and T47D-SLC46A3 knockout cells and (H) LOXIMVI-vector control and 

LOXIMVI-SLC46A3 OE cells incubated with LIPO-PLD and PLGA-PLD NPs for 24h. NP 

signal is pseudo-colored magenta, LysoTracker signal yellow, and CellTracker cyan. For A 

and C, scale bar = 7 μm. For G-H, scale bar = 5 μm.
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Figure 6. Retention and accumulation of PEGylated liposomes (LIPO-0.3% PEG*) in LOXIMVI 
tumors is dependent on SLC46A3 expression.
(A) Fluorescently labeled LIPO-0.3% PEG* NPs were administered to mice bearing 

LOXIMVI flank tumors via a one-time intratumoral injection or repeat intravenous 

injections. (B) Whole animal fluorescence images of mice (4 males, 6 females per group) 

24 h after being intratumorally injected with LIPO-0.3% PEG* NPs. (C) Quantification of 

LIPO-0.3% PEG* NP retention 24 h after intratumoral administration to LOXIMVI flank 

tumors. (D) Quantification of LIPO-0.3% PEG* NP accumulation after repeat IV injections. 
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In panels C-D, nanoparticle signal is expressed on the y-axis as total radiant efficiency 

divided by tumor mass, units provided in figure. The mean and standard deviation of n = 

10 are shown with the exception of the LOXIMVI-vector control, repeat IV injection group, 

where n = 9 (** < 0.01, *** < 0.001, Mann-Whitney test).

Boehnke et al. Page 28

Science. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Solid lipid nanoparticle-cell association and transfection are SLC46A3-dependent, as 
determined via flow cytometry.
(A) Contour plot of Cy5 signal and GFP signal indicating decreased LNP-cell association 

and transfection efficacy in LOXIMVI cells overexpressing SLC46A3. (B) Quantification 

of LNP signal revealed a significant change in LNP-cell association across control and 

SLC46A3-overexpressing LOXIMVI cells (** p = 0.008, Mann-Whitney). LNP-associated 

fluorescence is defined as median fluorescence intensity normalized to untreated cells. 

(C) LOXIMVI-SLC46A3 OE cells exhibited lower transfection efficiency than LOXIMVI-
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vector control cells following dosing of three different LNP formulations (Mann-Whitney). 

Normalized transfection is defined as median GFP intensity normalized to untreated cells.
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