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Abstract

The concept of an epigenetic landscape describing potential cellular fates arising from pluripotent 

cells, first advanced by Conrad Waddington, has evolved in light of experiments showing 

non-deterministic outcomes of regulatory processes and mathematical methods for quantifying 

stochasticity. In this Review we discuss modern approaches to epigenetic and gene regulation 

landscapes and the associated ideas of entropy and attractor states, illustrating how their 

definitions are both more precise and relevant to understanding cancer etiology and the plasticity 

of cancerous states. We address the interplay between different types of regulatory landscapes, and 

how their changes underlie cancer progression. We also consider the roles of cellular aging and 

intrinsic and extrinsic stimuli in modulating cellular states, and how landscape alterations can be 

quantitatively mapped onto phenotypic outcomes, and thereby used in therapy development.
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Summary sentence

A Review that discusses how epigenetic stochasticity can connect mutations and environmental 

perturbations to the phenotypic plasticity that drives tumor progression and therapeutic resistance.

Tumor cell heterogeneity and phenotypic plasticity have long been known to be principal 

drivers of invasion and metastasis (1). Complex and diverse behaviors displayed by cancer 

cells frequently involve coordinated expression of multiple genes, constituting programs 

that may be very distinct from those defining the phenotypes of the tissue of origin. 

Since oncogenic transformations are frequently accompanied by extensive mutagenesis, 

analysis of phenotypic heterogeneity displayed by cancer cell populations has typically 

been ascribed to the emergence of multiple genetically distinct clonal cell subpopulations 

within the same tumor (2). This genetic heterogeneity should be distinguished from 

phenotypic heterogeneity (i.e., emergence of stable phenotypic states in an isogenic 

population) and phenotypic plasticity (i.e., the ability of cells to adopt different phenotypic 

states transiently). Phenotypic plasticity is thought to underlie such complex phenotypic 

changes as epithelial-mesenchymal transition (EMT), drug resistance, and increased cell 

proliferation (3–6). Therefore, although genetic mutations may increase the probability 

of new phenotypic states, they may not completely define them and may not be strictly 

necessary for their emergence.

Elucidation of the interplay between epigenetic states and regulation of gene expression is 

crucial for our understanding of phenotypic plasticity. Multiple questions remain regarding 

coupling of these regulatory mechanisms. For example, since many regulators of gene 
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expression may also have epigenetic modification capabilities, e.g., by recruiting DNA 

methylases and histone acetyltransferases, it is not clear whether epigenetic control might be 

viewed as a constituent part of transcriptional regulation, or it has independent and essential 

roles not fully predictable by the analysis of gene networks alone.

In this Review, we argue that epigenetic mechanisms can have several key functions that 

are frequently not evident from traditional quantitative approaches involving the analysis of 

transcriptional regulation or RNA and protein stability. In particular, epigenetic regulation 

may have a critical role in regulating variability of gene expression, accounting for variance 

in the current cellular states and emergence of new ones. Recent methodological advances 

now allow us to explicitly define and measure epigenetic landscapes that, along with 

gene regulation landscapes, can be used to much more precisely understand the etiology 

of cancer, and better understand the mechanisms underlying phenotypic plasticity and 

heterogeneity.

Theoretical approaches to describe genetic and epigenetic landscapes

Regulatory networks impose complex inter-dependencies on gene expression, which are 

commonly modeled using ordinary differential equations (ODEs) (Box 1, Equation 1). 

A related concept of “landscape” introduced by Waddington and further elaborated 

mathematically (7–10) has been instructed for simpler and well characterized systems, but 

has faced important challenges. In particular, molecular interactions constituting regulatory 

networks are frequently unknown and may be restricted by epigenetic mechanisms, such as 

DNA methylation. Furthermore, these interactions and networks are subject to biomolecular 

‘noise’ or variability of molecular concentrations or alterations of molecular states (11–13), 

which are crucial for non-deterministic many-fate behaviors of the system. Although the 

Waddington landscape is frequently interpreted as the epigenetic landscape, these concepts 

may no longer be fully synonymous. Indeed, whereas previously the term “epigenetic” 

referred to any mechanism outside traditional gene expression control, today, it more 

commonly refers to a specific set of regulatory processes, affecting in particular DNA 

methylaiton and chromatin modifications.

The probabilistic nature of biochemical processes has been historically addressed in several 

ways. Most simply, added noise might be described by extending the ODE description 

using the Langevin approach (Box 1, Equation 1). However, this approach can break 

down if the number of molecules becomes very small, making the functions defining 

the ODE system behavior discontinuous. This consideration drove a conceptual quantum 

leap, akin to transition from classical to quantum mechanics in physics. In this new 

view, instead of describing the biological variables, such as molecular concentrations, 

one operates with the probabilities that system-defining variables take on certain values. 

This probabilistic dynamics is captured by the Master Equation, based on the Markovian 

assumption about the system dynamics (Box 1, Equation 2). However, while appearing 

superficially simple, such equations require advanced computational resources to solve 

or estimate, although some success has been achieved for simpler cases (14–16). A 

fundamental challenge facing both the Langevin and Master Equation approaches is the lack 

of complete knowledge of the mechanisms governing interactions between system variables. 
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To date, relatively few biological networks have been fully characterized, and frequently this 

mechanistic characterization is only semi-quantitative. It is therefore difficult to theoretically 

or computationally predict the probability distributions of different molecular and cellular 

states. However, one can now directly experimentally estimate these probabilities (17–19) 

and thus attempt to solve an inverse problem of reconstructing the mechanisms underlying 

gene expression regulation and the corresponding genetic and epigenetic landscapes from 

experimental data.

The inferences based on experimentally obtained probability distributions can be put on a 

solid theoretical foundation that provide specific meanings to the notions of epigenetic and 

genetic landscapes, distinct from those implied by Waddington. Critical to this approach is 

the fundamental connection of potential energy and probability distributions provided by the 

Gibbs-Boltzmann approach (Box 1, Equations 3 and 4), which are particularly useful for 

definition and analysis of landscape attractors corresponding to specific coherent molecular, 

cellular, and phenotypic states. Specifically, this approach associates the probability of 

any outcome, e.g., gene expression or DNA methylation pattern and the corresponding 

phenotypic outcome, with a generically defined quasi-potential energy, a term adapted 

from physics to describe the origin of probability distributions of the possible cellular 

states (states with lower energy are occupied with higher probability; see Fig. 1A, and the 

definition in Box 1, Equation 3). This association allows one to define the corresponding 

genetic (gene expression) or epigenetic (e.g., DNA methylation markers) landscapes as 

the quasi-potential energy distributions. This landscape definition is consistent with the 

one implied by the Waddingtonian ODE approach, affording easy interpretation and 

visualization. The attractors within this landscape representation would be seen as the values 

of biological variables for which the local and global energy minima would be reached, 

thus constituting states with high relative probability values (Fig. 1A). The stability of the 

attractor is further defined by such landscape characteristics as the depth and width of 

the corresponding energy wells, and proximity, and thus accessibility, of other attractors 

(20). Increased variability or noise makes energy wells effectively more shallow, thus 

widening the distribution of biological variables (21). This allows cellular networks to 

explore multiple states across different attractors. The local energy (landscape) minima may 

be realized in different cells within a population or could only be accessible in specific 

developmental, physiological or pathological situations. Below we illustrate and discuss 

these and other important ideas, such as the entropy associated with the whole landscape and 

specific attrctor states, and the information associated with changes of this entropy (Box 1), 

particularly in the context of emergence and progression to cancer.

Landscape models of cancer

Gene regulatory landscapes can be evaluated from experimentally determined gene 

expression probability distributions, particularly those yielded by single cell RNA 

sequencing (scRNA-seq) data or from the analysis of multiple tissue samples (e.g., 

cancerous tissues from multiple patients) (Fig. 1A). The landscape attractors in these 

distributions correspond to groups of coordinately expressed genes and gene products, 

whose abundance and activity may be regulated by self-sustaining feedback interactions, 

endowing cells with specific phenotypic properties. Cancerous states may represent the 
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genetic landscape attractors that are inaccessible in untransformed tissues but can be 

unmasked by oncogenic mutations (20, 22). This is exemplified by the emergence of the 

mesenchymal state in EMT (3). The Langevin ODE approach has been used to analyze 

a tri-stable regulatory circuit assumed to control epithelial-mesenchymal plasticity (23). 

Additionally, four attractor states have been proposed to control EMT, including metastatic, 

anti-metastatic, and two intermediate states (24). These studies illustrated putative feedback-

based mechanisms of emergence of well-defined attractors in cancer-associated gene 

regulation landscapes. However, they were based primarily on theoretical modeling 

constructs that require experimental validation, whereas mechanisms, such as epigenetic 

regulation, may not have been included. Alternatively, the properties of experimentally 

measured regulatory landscapes can be inferred without imposing hypothetical mechanisms.

A key consequence of both the emergence of new attractors and elevated variability within 

the same attractors is the increase in the entropy of the underlying regulatory landscapes 

(Inputs 1 and 1’ in Fig. 1B, see Box 1). Indeed, it is consistently observed that the entropy of 

gene expression increases in cancer versus the corresponding non-cancerous tissue of origin, 

as e.g., revealed by examining gene expression data alone (25), or by integrating these 

data with protein interaction networks (to account for molecular interactions stabilizing the 

attractors) (26). A similar approach using protein-interaction networks and RNA-seq for 

multiple tissue samples, rather than single cells within the same sample, suggested that 

tumor progression is associated with increasing entropy (27). This approach was further 

used to link the entropy of gene expression to the pluripotency of underlying cell population 

(28), and to demonstrate that specific cell differentiation, in contrast to cancer emergence, 

could be represented by emergent attractors, associated with progressively lower variability 

and entropy. Consistent with this analysis, it was shown that cancer stemness may be 

inferred from increased entropy of the attractor defining a specific cell sub-population 

(28). Interestingly, this analysis revealed that decreased entropy was associated not only 

with cell fate-specifying molecular circuits, but also with specific cancer-related phenotypic 

states such as increased cell proliferation (22), implying correlated gene expression and 

molecular interaction of the components of the cell cycle, representing another example of 

a well-defined attractor in the gene expression landscape. However, this high proliferation 

attractor may not be fully stable, with recent studies suggesting that cells may stochastically 

transition into and out of a cell proliferation state (6, 29). Other studies further pointed to a 

transient rather than stable nature of other key cancer-associated phenotypes: drug resistance 

and EMT, indicating that they may be a consequence of phenotypic plasticity within a 

broader attractor state, potentially allowing these phenotypes to be transiently achieved 

(30–33). This broader attractor may be associated with a higher entropy stemness state, 

whereas each of the transiently visited phenotypic states may have much lower associated 

entropy, i.e., they can be considered sub-attractors that can be occupied by the cells either 

stochastically or in response to environmental inputs (34) (Inputs 1 and 2 in Fig. 1B).

These studies reveal that reasons for higher entropy in gene expression networks in cancer 

cells can be complex, because the same increase in entropy could be due to the emergence 

of new stable attractors in the cell population (phenotypic diversity, Input 1’ in Fig. 1B) or 

increased noisiness of the individual attractors that may already be present in the normal, 

pre-cancerous tissue or emerge due to cell de-differentiation (phenotypic plasticity, Input 1 
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in Fig. 1B). Furthermore, phenotypic plasticity can enable emergence of transiently stable, 

stochastically visited attractors that can nevertheless have important functional phenotypic 

characteristics, such as EMT, cell proliferation, and drug resistance (Input 2 in Fig. 1B). 

These phenotypes may be related to those occurring separately in normal development 

and tissue homeostasis, but might become mutually accessible in the context of a larger 

underlying attractor in the phenotypically plastic cancerous states (Fig. 1C). Thus, a 

more detailed landscape analysis is required to understand the mechanisms underlying the 

emergence and dynamics of cancerous cell populations. Furthermore, these studies leave the 

following questions open: what controls the availability of various transcriptional programs 

that enable diverse landscape attractors and what mechanisms regulate the transitions 

between different attractor states and thus the degree of plasticity of various phenotypes?

In contrast to gene regulation landscapes, in which variables, such as molecular 

concentrations, can be viewed as continuously adopting multiple values, epigenetic 

landscapes are essentially binary or “digital” in nature, e.g. the methylation patterns 

of specific CpG sites or the presence or absence of specific histone modifications. 

Nevertheless, the landscape analysis framework can also be used for these types of 

experimental data. For instance, epigenetic variation in the patterns of sets of four 

consecutive CpG sites display increasing stochasticity in aging fibroblasts and in cancer 

cells, within particular regions of the genome (35). The patterns of consecutive CpG sites, 

also known as epialleles, can thus be treated probabilistically, with their distributions within 

the same tumor estimated using a Bayesian model (36). The probability analysis lends itself 

to examination of entropy and information metrics (defined in Box 1), which was applied to 

several brain tumor and normal samples, revealing an increased methylation entropy of Alu 

repeat sequences (37). The epigenetic patterns of epialleles may display certain correlations, 

interpreted as specific attractor states in the underlying landscapes. Mechanistically, these 

correlated patterns may arise because DNA methylation at heritable (i.e. CpG) dinucleotides 

is affected by the state of the cell or location in the genome, as well as the nearest CpG 

neighbors, because DNA methyltransferase I, the enzyme that copies CpG from the parent 

to the daughter strand during DNA replication, resides at the replication fork, conferring a 

nonrandom methylation pattern to nearby CpG dinucleotides.

The underlying landscapes may be more formally defined recognizing the binary nature 

of the experimental data by exploiting the Ising model, introduced in the 1930’s for one-

dimensional magnetic dipoles, whose binary states are also influenced by external forces 

and the nearest dipole neighbors (38). It also allowed a highly accurate computation of 

the Shannon normalized methylation entropy (NME) for DNA methylation. Furthermore, 

the Ising model enabled a more sophisticated analysis, such as the calculation of the 

Jensen-Shannon distance to evaluate the mutual information between two epigenomes, and 

thus to rank genomic features by their relative contribution to epigenetic landscape change 

(39). This more rigorous treatment revealed substantial entropy increases in the epigenetic 

landscapes of a variety of cancer types compared to matched normal tissues of origin (38). 

Importantly, it was found that an increase in disordered methylation patterns predicts poor 

clinical outcomes in chronic lymphocytic leukemia (40) and acute myelogenous leukemia 

(41). This recent progress has been striking because cancer epigenetics was thought to be 
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computationally intractable due to being derived from “hundreds of landscapes” of normal 

tissue (42).

The increase in epigenetic landscape entropy observed in various cancers is accompanied 

by a greater variability in gene expression (43), thus linking epigenetic and gene regulation 

landscapes. A possible explanation for this linkage is that genetic programs accounting for 

new phenotypic properties can become accessible due to increased epigenetic variability, 

leading to the emergence of new gene regulation attractors. This hypothesis is supported 

by the observation that the increased variation in gene methylation and expression is 

often enriched in genomic regions that are larger than a single gene (43, 44), e.g., 

regions associated with EMT (43) or smaller domains, observed in pancreatic cancer 

(45), perhaps related to hypomethylated regions inferred for hematopoietic stem cells (46). 

Thus, epigenetic control of multiple genes needed to enable a specific phenotype could 

“loosen” and the corresponding genetic attractor may emerge and enable variable onset 

of a new phenotypic state in cell population. It was indeed found that the transition to 

the mesenchymal state depends on altered chromatin accessibility of the DNA regions 

incorporating EMT related genes (47). Furthermore, large heterochromatic domains related 

to developmentally regulated EMT (48) are topologically altered in colon cancer (49). 

These data suggest that a key cancer related phenotype is enabled by changes in both gene 

expression landscape (actualization of a cryptic attractor state) and epigenetic landscape 

(changes in DNA and histone markers that enable accessibility to the genetic information 

encoding components of this newly accessible genetic landscape attractor).

Together, these results suggest that a key condition for the emergence of a new attractor 

in the genetic landscape is the epigenetic re-organization of the corresponding genetic 

material, leading to increasing stochastic variability within the current attractor and 

increased probability of transition to a new state (21) (Input 1 in Fig. 1B). It is of interest 

therefore to explore the triggers of epigenetic and gene regulation landscape reorganization 

that occur during carcinogenesis, a task that is complicated by inter-dependencies of 

epigenetic and gene regulation mechanisms. Indeed, epigenetic modification, e.g., DNA 

methylation of gene regulatory sequences, can directly influence gene expression, and many 

transcription factors can recruit epigenetic regulators, suggesting substantial epigenetic and 

genetic landscape interdependence (Fig. 2). To provide more detailed insight into oncogenic 

processes that shape and are shaped by epigenetic and gene regulation landscapes, it will be 

instructive to examine the genetic and environmental inputs that can lead to precancerous 

and cancerous states.

Interplay between epigenetic and genetic landscapes

How can the large number of recurrent somatic mutations that drive carcinogenesis be 

connected to the pathways and genes responsible for cancer phenotypes (50)? Traditionally, 

this question has been addressed by analyzing the effects of various mutations on 

the magnitude of phenotypic changes, such as increased proliferation, in response to 

overexpression of diverse mitogenic regulators. What is currently less understood is how 

the increased variability (and thus entropy) of epigenetic and gene expression regulation 

is linked to cancer progression. Such analyses are now progressively enabled by the rank-
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ordering of oncogenic mutations using metrics such as Jensen-Shannon distance (Box 1, 

Equation 7), which establish the effect size and its importance in epigenetic control of 

cancer etiology (39).

The roles of mutations affecting molecules that directly (so-called, epigenetic modifiers) 

and indirectly (epigenetic modulators) control epigenetic landscape through their enzymatic 

functions (51) can be elucidated in cancerous states (Fig. 2). For example, in acute 

myelogenous leukemia (AML), driver mutations can affect both epigenetic modulator 

molecules [such as transcription factors and signaling pathways that can recruit epigenetic 

modifiers to specific gene targets (52)] and modifier molecules [such as the DNA 

demethylation-related gene TET2, which is directly mutated in a subset of AML patients 

(53)]. Analysis of epiallele distribution across AML patients with different driver mutations 

indicated an increase in the entropy of epiallele distribution, consistent with other cancers. 

Importantly, this analysis revealed a more fine-grained epigenetic landscape structure 

underlying entropy increase. In particular, epialleles commonly showed specific patterns 

for a subset of modulator mutations, whereas the distribution was much broader for 

modifier mutations. This study further indicated that tighter and more specific epiallele 

distributions were corelated with better clinical outcomes, whereas broader distributions 

were generally associated with poor clinical prognoses. Furthermore, higher epiallele 

diversity was associated with gene expression hypervariability and, thus, likely higher 

phenotypic and developmental plasticity. This result was consistent with an independent 

analysis of AML involving genetic rearrangement of the the histone methyltransferase 

gene KMT2A (also known as MLL) which, when compared to untransformed controls, 

also demonstrated a greatly increased epigenetic entropy (more specifically, NME) and 

high expression variability of genes implicated in AML etiology (54). Importanlty, animal 

models of AML revealed that epigenetic variability was a precursor of transformation to 

AML, pointing to the causal rather than correlative nature of the greater entropy states 

(53). Overall, these data suggest that mutations affecting particular regulatory pathways may 

result in adoption of specific genetic and epigenetic states (narrow and stable landscape 

attractors). Conversely, dysregulation of epigenetic modifiers can lead to a much broader 

epiallele distribution, which may result in broader, more ‘noisy’ attractors, phenotypic 

plasticity and poorer prognosis (Input 1 in Fig. 1B and Fig. 2). Indeed, a greater phenotypic 

plasticity enabled by a more global epigenetic dysregulation may enhance escape of cancer 

cells from various treatments and other pressures, including immune surveillance.

Whereas mutational alterations of some modulators can lead to emergence of specific 

attractor states, mutations of other modulator proteins may exert their effect indirectly, 

by regulating the broad specificity epigenetic modifiers, thus also leading to extensive 

epigenetic alterations, and broader, more plastic attractor states. For example, inhibition 

of DNA methylation was highly effective in AML patients harboring TP53 mutations 

(encoding the tumor suppressor p53), but had much lower effects in tumors with wild 

type TP53 (55). These results were supported by lung cancer xenograft studies and in 
vitro experiments (56), together suggesting that p53 is an epigenetic modulator that is 

critically important for epigenetic stability. Indeed, in ESCs, p53 restricts the expression 

of modifiers Dnmt3a and Dnmt3b thus inhibiting methylation, as well as regulating Tet1 
and Tet2, making the loss of Trp53 a major driver of epigenetic heterogeneity (56, 57). 
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Other genes commonly mutated in AML, WT1, IDH1 and IDH2 can also have more 

global effects on epigenetic landscapes, through inducing loss of TET2 function (58). These 

results suggest that, although epigenetic modifiers may not be mutated in specific tumors, 

in many cases the effect of modulator mutations can lead to changes in the methylation 

status of a large number of genes, similar to the effects of modifier mutations. The more 

specific, targeting effects of modifiers can be revealed through comparative gene expression 

analysis, e.g., by searching for enrichment of binding sites for specific transcription factors 

in the control regions of epigenetically variable genes. Enrichment of specific binding 

sites would suggest that a particular transcription factor can both recruit an epigenetic 

modifier to a particular gene and more directly control the expression of this gene, once 

it is epigenetically modified. This type of analysis yielded a number of putative modulator 

proteins, including GATA2, coupled to epiallele variation in many AML subtypes driven 

by distinct mutation events (53). Similar studies further suggested specific roles of NFKB1 
and MYBL1 as modulator proteins, controlling the drug resistance phenotype in chronic 

lymphocytic leukemia (59).

Overall, these studies suggest the following refinement of our understanding of the interplay 

between genetic and epigenetic landscapes in the emergence of genetically driven cancers 

(Fig. 2). The effect of mutations in mediator and a subset of modulator genes may be 

broad, encompassing multiple genes across the genome and generating a high degree of 

epiallelic and genetic heterogeneity, which correlates with poor clinical outcome. The effect 

of mutations in another subset of modulators may be more specific, leading to emergence of 

less variable epiallele distributions and coordinated gene expression patterns, corresponding 

to a limited number of coupled attractors in genetic and epigenetic landscapes. In both 

cases, the entropy of epigenetic and genetic landscapes goes up, but for different reasons: 

in the former case, a more plastic state implies a noisy and relatively unstable attractor 

state, whereas in the latter case, increased entropy may correspond to the emergence and 

co-existence of new stable attractors in the genetic and epigenetic spaces (Fig 1B). This view 

implies that there may be different landscape paths to cancer, but the emergence of a more 

plastic, less defined attractor state may be particularly interesting to consider, because it may 

be related to both more pluripotent, stem cell-like states and increased plasticity of cancer 

cells.

Stabilization of attractor states by endogenous and exogenous inputs

Exogenous inputs.

Enhanced variability of both gene expression and epiallele abundance indicative of broad 

genetic and epigenetic attractors may permit cells to transiently achieve multiple alternative 

states that could be potentially further stabilized by additional inputs. For example, genetic 

perturbations of DNMT3A and DNMT3B dramatically increase genetic and epigenetic 

entropy in embryonic stem cells, whereas the effects on mean methylation were much more 

modest (60). Furthermore, several genes that are differentially controlled by this perturbation 

can promote cellular differentiation. Importantly, genetic perturbations of DNMT and TET 

genes revealed that the differentiated state is a separate attractor in the genetic landscape, 

and that this attractor exists dynamically, with cells reaching and leaving it according to the 
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relative activities of DNMT and TET enzymes (61). These results are consistent with the 

current understanding of the importance of epigenetic regulation of induced pluripotency 

by the Yamanaka factors, particularly the increased expression of TET enzymes to stabilize 

this state (62). Critically, this differentiation attractor can also be regulated by modulators in 

the form of signaling pathways, particularly dual inhibition of MAPK signaling and GSK3β 
(63–65), suggesting that external signaling inputs can stabilize the differentiation state.

The insights from epigenetic regulation of stemness can elucidate how conditional attractors 

can emerge and be stabilized e.g., by exogenous signaling inputs in cancer (Input 2 

in Fig. 1B). As an example of signaling attractor stabilization, it was found in two 

independent studies that paracrine signaling involving IGF-1 receptor activation or NOTCH 

pathway signaling can lead to an altered chromatin structure that is mediated by the 

histone demethylases KDM5A and KDM6A/B respectively, which in turn control the drug 

resistance phenotype (66). The acquisition of this phenotype was, in both cases, transient 

and stochastic, suggesting continuous transitions between distinct states associated with two 

or more attractors in the underlying landscape. The dynamic acquisition can be analyzed 

in substational detail in vivo, as was the case for AML in a genetically engineered mouse 

model (67).

Metaplasia.

The landscape-based analysis implies that a loss of stabilizing inputs, exogenous or 

endogenous, may make transitions to other available attractors more likely, maintaining a 

plastic state and metaplastic tissue composition. A particularly interesting example of this is 

found in kidney differentiation. WT1, a tissue specifying transcription factor that is critical 

for embryonic kidney development, can be seen as a molecule stabilizing the corresponding 

differentiation program attractor. Loss-of-function mutation of WT1 leading to a loss of 

DNA binding in the germline causes Denys-Drash syndrome with renal dysplasia (68). 

The resultant absence of WT1 in somatic cells leads to metaplastic trans-differentiation 

of early pronephric cells into other mesodermal elements such as skeletal muscle, fat and 

cartilage and generation of pre-neoplastic “intralobar nephrogenic rests,” relatively early 

in the developmental axis, increasing the risk of Wilms tumor development (69). WT1 

also controls EMT, likely through interaction with the YAP transcriptional co-regulator 

in controlling E-cadherin expression (70), which may modulate the tissue organization 

and further influence the metaplastic state. Timed experimental activation of stem cell 

reprogramming factors in the developing mouse kidney can induce Wilms tumor in the 

absence of other perturbations, including absence of any WT1 mutations (71). This same 

effect arises from loss of imprinting (LOI) of IGF2 in Beckwith-Wiedemann syndrome, 

or sporadically in the general population, with hyperproliferation of developing nephrons 

also creating predisposition for Wilms tumor development. These results are consistent with 

losses of stabilizing control leading to a broad, variable and plastic landscape attractor, 

which can also decrease the probability of occupying the attractor corresponding to a stably 

differentiated nephron state (Figs. 1B and 3).

Metaplastic states do not need to involve processes that occur early in development or 

depend on reprogramming cues. Rather they may arise from stabilization of one of the 
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mutually accessible attractors even in the mature adult tissue (Input 2’ in Fig. 1B). Acinar-

ductal metaplasia (ADM; i.e., the process in which acinar cells in the pancreas differentiate 

into ductal cells) can occur in the untransformed adult pancreas as a part of the tissue 

repair process (72), but may also lead to pre-neoplastic lesions and, ultimately, progression 

to pancreatic ductal adenocarcinoma (PDAC) (73). In addition to ADM, which may occur 

as a normal adaptive process, de-stabilization of the attractor corresponding to the acinar 

cell type can lead to the emergence of pancreatic intra-epithelial neoplasms (PanINs). 

Furthermore, other cell types may also emerge in this process, e.g., tuft cells. This attractor 

destabilization may involve mutations of modulators KRAS and DPC4 (also known as 

SMAD4) and upregulation of KLF4 during inflammation or injury (74, 75), as well as 

changes in the epigenetic control of key regulators, such as AATK, as revealed by studies of 

a mouse model of ADM and pancreatic cancer (76).

Another example of an environmentally induced metaplastic process occurs in Barrett’s 

esophagus. In this case, the environmental stimulus (modulator) is acid reflux and 

inflammatory cytokine enrichment, which promote trans-differentiation of normal squamous 

epithelium of the esophagus into intestine-like columnar epithelium (77). Animal and human 

data suggest that, in this setting, the attractor corresponding to the esophageal cell type is 

compromised due to induction of intestinal-specific factors CDX1 and CDX2, which might 

be induced by inflammatory inputs and can self-stabilize due to auto-regulation (78). This 

process is associated with a bimodality in the DNA methylation distribution reflective of 

co-existence of esophageal and intestinal attractors, characteristic of this type of metaplasia 

(79). Trans-differentiation in this setting is again a major risk factor of ensuing development 

of esophageal adenocarcinoma.

Together, these observations suggest that metaplasia or alternative differentiation can be an 

important characteristic of pre-malignant tissue states. Consequently, the new states explored 

by the cells may not be random but frequently belong to closely related lineages (80), in 

agreement with the expectation that cells explore adjacent attractors along the underlying 

epigenetic and genetic landscapes, due to an increased stochasticity and thus entropy of the 

regulatory networks (Fig. 1C). Intriguingly, upregulation of epigenetic modifiers, such as 

ARID1A, is commonly observed both in the metaplastic states and multiple cancers (81–83). 

Tissue disorganization related to metaplasia as well as the common dysregulation of the 

EMT-MET program can further perturb local cell-cell interactions leading to hyperplasia and 

the onset of neoplastic growth (84–86).

Therefore, if these genetic or environmental inputs occur in tissues with a high potential 

for meta-plasticity, the occupancy of the attractors may change. The occupancy of the 

previously dominant attractors may become less likely, whereas pre-existing alternative 

attractors can be occupied with higher probabilities, leading to further metaplasia and 

potentially cancerous states (Fig. 1B). In another scenario, if epigenetic modulators are 

directly affected by genetic mutations or environmental inputs, even tissues with low initial 

plasticity can become more plastic and permit occupancy of previously inaccessible, cryptic 

attractors (Input 1’ in Fig. 1B). These attractors can become stable due to either internal 

feedback or additional stabilizing mutations, or can remain transient and stochastically 

visited, depending on the presence of an external cue. The higher degree of epigenetic 
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plasticity and conditional, rather than stable, attractors can increase the corresponding 

phenotypic plasticity which can result in poor prognosis due to increased metastatic 

propensity, drug resistance, or immune escape. In this sense, stabilization of particular 

attractors, by reducing the plasticity of cell regulation, can make cancer progression more 

predictable and potentially increase the probability of success of personalized therapeutic 

interventions.

Attractor stability and aging

Stabilization of conditional attractors by an environmental cue enabled by dysregulated 

epigenetic control can occur through a variety of mechanisms, but particularly through 

activation of intracellular signaling networks. Indeed, new attractors, such as the 

mesenchymal cell state emerging in EMT, can be triggered by biochemical and 

biomechanical inputs from the microenvironment, and increased cell proliferation can be 

controlled by a progressive accumulation of growth factors and other ligands in the cellular 

milieu (87). Attractor stabilization may result in a decrease in entropy of gene expression 

and epiallele occurrence, which can be precisely quantified experimentally and used to 

evaluate the information carried by the signaling input (88) (see Box 1; information is 

defined as the decrease in entropy following an input). The entropy decrease is frequently 

modest, with only 1 bit of information about the signal amplitude commonly transferred 

in such events, on a cell-by-cell basis (89–96). Coordination of signaling between multiple 

cells can allow for an increase in this information transfer and thus further entropy decrease, 

although, since cellular communication is noisy, the effect may also not be very substantial 

(97). A further entropy decrease can occur if cells are engaged in response to the same input, 

but are not necessarily communicating (98).

One bit of information is sufficient to define a binary phenotypic outcome, such as cell 

death/survival, differentiation/self-renewal, or proliferation/migration. This binary outcome 

frequently reflects occupancy of alternative attractor states modulated by the signaling input 

(Inputs 2 and 2’ in Fig. 1B). In the context of cancer progression, multiple external cues 

can trigger signaling events, leading to diversification of cell responses through conditional 

occupancy of different attractors, as a function of the combinations of different cues (and 

their persistence) in a specific tumor location or the cues received by cancer cells during 

metastatic spread. Similar quantitative analysis can be used to gauge the effects of different 

mutations and drug treatments that can perturb the entropy of different attractors more 

specifically or the entropy associated with the overall epigenetic or genetic state more 

generally (93).

In contrast to the entropy decrease due to signaling inputs, entropy of a particular attractor 

and thus the associated phenotypic plasticity can also naturally increase due to epigenetic 

drift (Input 1 in Fig. 1B). Epigenetic drift occurs both in tissue culture and in vivo with 

increasing age of cells and organisms (99–102). In the context of hyper-proliferation 

associated with cancer, epigenetic drift is due to epimutations accumulating with the 

increasing number of cell divisions, which can happen at a high frequency (103). This 

increasing entropy of the epigenetic landscape is distinct from the recurrent changes in DNA 

methylation serving as a basis for the epigenetic clocks (104). Unlike the age related DNA 
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hyper- or hypomethylation signatures at specific CpG sites, epigenetic drift is a reflection of 

increased DNA methylation variability which frequently occurs at loci related to malignancy 

and can be predictive of cancer emergence (105). One example of this site specificity is 

methylation at the locus encoding polycomb repressive complex-2 (PRC2, itself responsible 

for trimethylation of H3K27) (103). The entropy increase associated with epigenetic drift 

may also explain the emergence of a rare 5% subpopulation of bipotent-like breast cancer 

progenitor cells (106). Intra-tumor epigenetic drift may be dependent on the replication 

history of the individual clones, leading to a continually expanding spectrum of EMT 

identities in colorectal tumors (107). Overall, the landscape entropy is not static and can 

decrease and increase in a quantifiable fashion, even without genetic alterations, creating a 

more complex context for normal tissue function and progression to cancer.

Mapping regulatory landscapes onto phenotypic responses

Can quantitatively assessed changes in epigenetic and genetic landscapes inform selection 

of appropriate treatments? Since treatments are driven by disease specific phenotypes and 

alterations of lanscapes occur at the level of DNA modifications and molecular networks, 

it is important to consider in more detail how the specific phenotypes are controlled. In 

many cases, a phenotypic state is defined by a specific bio-molecular circuit. For instance, 

cell migration phenotypes are controlled by cytoskeleton reorganization, which in turn, is 

frequently controlled by a subset of Rho-family small GTPases (108, 109). Similarly, cell 

proliferation is phenotypically driven by the circuit involving regulation of cyclin-dependent 

kinases (110). It is therefore important to understand how the function of these specific, 

phenotype defining circuits may be influenced by the more global changes in cellular 

regulatory networks, as discussed below for the case of apoptosis.

Although the molecular circuits controlling apoptosis are complex, one can use the relative 

abundances of pro- and anti-apoptotic members of the BCL protein family controlling 

the phenotypic outcomes of either regulated cell death (relatively higher abundance of 

pro-apoptotic proteins, such as BAX) or cytoprotection (relatively higher abundance of 

anti-apoptotic proteins, such as Bcl2) (111, 112) (Fig. 3A). The equally matched abundance 

of pro- and anti-apoptotic proteins defines the boundary between these states within a 

phenotypic space (life versus death) onto which the epigenetic and genetic landscapes can be 

mapped (Fig. 3B). This mapping is based on biochemical input-output relatonships between 

the phenotype-defining molecules and the upstream genetic and epigenetic mediators, is 

a natural dimensionality reduction mechanism allowing the evaluation of effects of the 

underlying molecular network variability and regulation. In many circumstances, e.g., in the 

turnover of multiple epithelial tissues, the entropy associated with the underlying landscape 

and thus variability in the expression of apoptosis proteins can result in a subset of cells 

undergoing cell death even under homeostatic conditions. The distribution of cells across 

the epigenetic landscape can therefore define the fractions of cells displaying different 

phenotypes.

The mapping of signaling network activity onto this apoptosis-regulating circuit (Fig. 

3B) can be established experimentally and visualized in 2D as the joint single cell 

distributions of BCL2-BAX pairs. The regulatory landscapes upstream of the phenotype-
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defining molecular circuit control the relative abundances of the proteins in these pairs, 

which can alter in response to an epigenetic change, such as LOI of IGF2 (113). The 

mis-regulation of the signaling inputs resulting from epigenetic alteration (particularly, 

the re-balancing of signaling through growth factor responsive ERK-MAPK and AKT 

pathways) is the key aspect of the newly emerging attractor state that translates into a 

new BCL2-BAX distribution, resulting in a higher propensity for cell death (Fig. 3C). 

Therefore, an epigenetic landscape change, in addition to promoting higher cell proliferation 

and tissue hyperplasia, creates a vulnerability (an increased propensity to undergo apoptosis) 

that can be exploited to selectively eliminate the cell population undergoing IGF2 LOI. 

These landscape perturbations cause the LOI cells but not wild type cells to cross the ‘death 

boundary’ (Fig. 3C), thus predicting the therapeutic window relevant to this pre-cancerous 

state for specific drugs, such as receptor tyrosine kinase inhibitors (113). This analysis 

highlights the direct translation of landscape concepts to the development of more targeted 

therapeutic approaches, particularly if an epigenetic alteration is considered an important 

therapeutic target (114).

This phenotypic mapping analysis can be further extended within the recently introduced 

framework of cellular archetypes in tissues (32, 33). Archetypes are defined as extreme 

phenotypic states spanning the available optimized phenotypic space and thus reflecting 

the available degrees of freedom of the phenotypic plasticity. The analysis of Wilms tumor 

patient samples revealed three archetypal phenotypic states, suggesting a more complex 

landscape distribution in vivo. More advanced stages of the disease, accompanied by 

emergence of IGF2 LOI, lead to a shift of cell population from a relatively uniform 

distribution across three archtypes: an epithelial and two mesenchymal states (one of 

which is also characterized by higher cell proliferation), towards a greater abundance of 

mesenchymal states versus the epithelial one (31). This result suggested a specific landscape 

change, potentially due to an increased expression of IGF2 promoting more aggressive cell 

behaviors related to cell proliferation and EMT. In spite of this more complex landscape 

structure, we suggest that phenotypic mapping analysis can still be employed to target 

specific cell states.

In general, measuring and mapping genetic and epigenetic landscapes onto phenotypic 

spaces can be an effective strategy to both infer the corresponding phenotypic diversity 

and target specific subpopulations defined by landscape attractors. Importantly, it can also 

elucidate the effects of phenotypic plasticity and guide corresponding treatment strategies. 

If mutations, epigenetic changes or environmental inputs leading to the emergence of 

pre-cancerous and cancerous states also increase the plasticity within emerging attractors, 

cell populations may be substantially less targetable due to a larger overlap with wild 

type attractors and faster escape from a vulnerable area of the attractor (Fig. 3C). This 

consideration both provides further interpretation for poor prognostic correlates of the more 

plastic tumor attractors and suggests that cancer treatment should reduce plasticity. More 

specifically, the clinical intervention would be aimed at reshaping the underlying landscape 

to first stabilize the cancer specific attractors by perturbing the attractor-defining pathways 

and molecular circuits, and then eliminate cells occupying these attractors, while minimizing 

the effect on untransformed cells.
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Conclusions and future directions

The studies reviewed here support the utility of the genetic and epigenetic landscape 

approaches in our understanding of cancer etiology, ultimately allowing us to arrive at a 

more general and conceptual understanding of carcinogenesis. Importantly, this approach 

presents a detailed view of the system, which may focus on a specific attractor, but also 

a combination of multiple attractors and dynamic transitions between them. Conversely, 

entropy is frequently a less resolved and more global metric of the overall diversity 

of cell states. Both approaches are useful and frequently complementary. For example, 

the landscape view may be better at capturing the difference between an increase in 

phenotypic plasticity, i.e., the ability of cells (and their molecular networks) to dynamically 

‘explore’ diverse states and corresponding phenotypes, from phenotypic diversity, i.e., stable 

occupancy of different attractors by different cells in the population (Fig. 3C). In both 

cases, the entropy of the tumor tissue may be higher compared to the parental wild-type 

tissue state, but the landscapes would be distinct, which can be a crucial level of resolution 

to determine prognosis and possible interventions. Nevertheless, entropy can still be a 

convenient metric, particularly in assessing the effects of signaling inputs, mutational and 

epigenetic perturbations or medical interventions. In particular, changes in entropy [assessed 

e.g., through different information theory-based measures (Box 1)] can quantitatively 

characterize the effects of these diverse inputs, or evaluate how long-term processes, such as 

cellular aging, may affect cellular landscapes.

New experimental approaches may also allow further analysis of causality versus correlation 

in the relationship between landscape alterations and the emergence of cancer states. For 

instance, new CRISPR methods can allow recruitment of specific epigenetic modifiers to 

a targeted locus within the genome and direct control of epigenetic and gene expression 

variability and attractor properties (30). Studies such as this, combined with further analysis 

of pre-cancerous states in patients and animal models involving specific perturbations of 

genetic and epigenetic mechanisms can provide further data to refine our understanding of 

cancer-specific lanscapes.

Within oncology applications, key advantages of the landscape and entropy concepts 

lie in an improvement of our understanding of cancer etiology and development of 

approaches to targeted and personalized cancer treatments. Indeed, more plastic attractors 

can allow cells to potentially rapidly adjust to both pharmacological and immune therapeutic 

interventions, as well as enable cells to dynamically switch between diverse phenotypic 

states required, e.g., for metastatic spread. Therefore, arguably, further approaches may 

focus on a combination of treatments that would not only attempt to eliminate specific cell 

sub-populations but also reduce the phenotypic plasticity of tumor cells. In developing these 

approaches, characterization of the underlying landscapes will be of particular importance. 

In these efforts, it will be important to refine our understanding of how the landscapes 

determined on the epigenetic and gene regulation levels can be quantitatively translated into 

the corresponding descriptions of the activity of the molecular circuits controlling specific 

phenotypes. Such phenotypic mapping can direct more specific drug development efforts 

and quantitatively establish the therapeutic windows of specific compounds.
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In this Review we primarily focused on DNA methylation as a key epigenetic mechanism 

whose landscape and entropic analysis has already been performed in diverse biological 

systems. However, epigenetic control can occur on other levels, including through histone 

modifications. As rich data accounting for further levels of epigenetic control are gathered, 

an important challenge will be to understand whether extensive, landscape-based description 

of all levels of epigenetic and gene regulatory controls is necessary, or whether this 

complexity and data dimensionality can be reduced to a simpler measurement set. In 

these efforts, a key role may be played by various machine learning techniques to reveal 

mutual interdependencies of various molecular control mechanisms and their influences on 

phenotypic plasticity.
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Box 1.

Mathematical analysis of stochastic biological systems

Biological systems are governed by underlying interactions that could be described 

mathematically. These interactions can be stochastic due to the variability of the 

participating elements (molecular modifications, molecular and cellular numbers, etc.). 

The mathematical approach frequently used to capture stochastic interactions is the 

Langevin approximation based on the Ordinary Differential Equations (ODEs) describing 

temporal dynamics of variables xi, using the function f(x) of the vector x of all variables 

xj, with the added noise terms η xi :

dxi

dt = fi x + ηi xi (1)

An alternative but equivalent description that is particularly useful for systems with very 

small values of xi that are expressed as whole numbers is to consider the dynamics of 

probabilities of xi, rather than the dynamics of xi themselves. This is done using the 

so-called Master Equation based on the assumption that the underlying processes are 

Markovian (memoryless):

dP(xi)
dt = ∑j

kijP xj (2)

Unfortunately, other than for a few relatively simple systems, the mechanistic information 

that would define the functions f(x) and kij is largely incomplete for most biological 

systems. Therefore, it is frequently hard to use these models for real biological systems 

to characterize their dynamic behavior and thus landscapes. Instead, it has proven easier 

to experimentally measure the distributions P xi . Therefore, the problem can be inverted, 

i.e., reconstruct the underlying regulatory landscape from the knowledge of P xi . The 

recipe for doing so is provided by statistical mechanics (Boltzmann-Gibbs distribution), 

and in particular the relationship between the energy U xi  associated with a specific 

xi and the probability of this value of the variable (the energy here is quasi-potential, 

corresponding to measuring the energy in units of kBT , i.e., the product of the boltzmann 

constant and temperature):

U xi =   − lnP xi − ln ∑j
e−U(xj) (3)

If the distribution of different values that can be taken by variables xi is constant (i.e., the 

landscape does not change) then the second term in (3) is constant and, since the energy 

U xi  is only determined up to a constant, it can be omitted for the analysis of a constant 

landscape:

U xi   ≃ − lnP xi (4)
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The relationship (3) can be used to directly define the energy (quasi-potential) landscape 

corresponding to the gene expression and epigenetic landscapes and to relate it to the 

entropy of the system, again up to a constant:

H x = − ∑
i
P xi logP xi   ≃ − ∑

i
P xi   lnP xi   ≃  

< U xi >
(5)

This relationship, linking the entropy and average energy < U > for a system, emphasizes 

the ‘global’ nature of the entropy measure, involving summation over multiple states. 

Thus, as illustrated in Fig.1, different landscapes may have the same entropy and 

thus cannot be uniquely distinguished using this function of the state. Conversely, the 

distributions captured by P xi  and U xi , can be more informative.

Finally, the mutual information is defined as the change of entropy (and thus the 

underlying landscape) of a state, ΔH x , given a regulatory event or a signal. If 

the entropy decreases the mutual information is positive, which provides a measure 

of comparison between two distributions. Another important measure of dissimilarity 

between two distributions P xi  and Q xi  is the frequently used Kullback-Leibler (KL) 

divergence:

DKL(P Q) = ∑
i
P xi log P xi

Q xi
(6)

Mutual information is thus the KL divergence between the joint distribution of the 

variable values prior and following the event (or signal) and the product of their 

marginal distributions. A symmetrized version of the KL divergence of particular value in 

comparing epigenetic landscapes is the Jensen-Shannon distance, defined as:

JSD(P ∥ Q) = 1
2   DKL(P ∥ M) + 1

2DKL(Q ∥ M) where M = 1
2

P + Q
(7)
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Figure 1. Gene expression and epigenetic landscapes control normal and cancer cell functions.
(A) Gene regulatory networks and availability of genes for expression can define the 

probabilistic distributions of proteins expressed within a cell population. In the example 

here, the network of interacting proteins that includes the molecules A and B (top) and 

the underlying epigenetic control determining the availability of the corresponding genes 

for expression define the distribution of expression of A and B (middle). This probability 

distribution can be experimentally measured and converted into a gene expression 

landscape by calculating the corresponding quasi-potential distribution (bottom, see Box). 

The epigenetic landscape can be similarly determined by experimentally measuring the 

probabilistic distributions of epi-alleles, DNA methylation marks at specific loci or 

by performing other measurements of epigenetic regulation across populations of cells 

and tissues, and then also converting these probability distributions into corresponding 

underlying quasi-potential landscapes. The landscape analysis allows conceptual accounting 

for abundance and dynamics of molecular species, shown here as a trajectory of particle 

inside a quasi-potential well, with the particle position defined by the current concentrations 

of A and B that can change probabilistically in time, with the quasi-potential wells 
interpreted as the landscape attractors. (B) Various scenarios of landscape alterations and 

the corresponding changes in the molecular distributions, shown as joint distributions 

of the molecules A and B and the corresponding entropies H1–5. Implementation of 

these scenarios in the context of carcinogens is extensively illustrated and discussed in 

the text. Oncogenic mutations of epigenetic modifiers and modulators or environmental 

inputs can lead to formation of new stable attractors with the overall entropy H2 greater 

than the original entropy H1 (H2>H1) generating phenotypic heterogeneity (Input 1’) or, 

alternatively, enlarge the existing attractor with the new entropy H3>H1, generating a more 

plastic state (phenotypic plasticity), with cells capable of stochastically and dynamically 

‘exploring’ this attractor and thus transiently adopting different phenotypes. Note that in 
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both cases entropy increases vs H1, and it is possible that H2=H3, thus making entropy 

less discriminating than the full landscape picture in the analysis of cell states. These new 

landscapes can be further altered by oncogenic and environmental inputs, so that one of the 

attractors becomes dominant (Inout 2’), associated with a lower entropy value (H4<H2), or, 

alternatively, with the narrowing of the wider (and more plastic) attractor (Inout 2, H5<H3). 

Again, it is possible that H4=H5, requiring the landscape analysis rather than entropy 

analysis alone for full characterization. The narrowing of the wide attractor due to either 

environmental or intrinsic inputs (Input 2) is frequently reversible and context dependent, 

further elaborating the more plastic overall state (transient nature of Input 2 described by 

a bidirectional arrow). The transiently occupied attractors can be simultaneously occupied 

by discerns cells in the population. Small arrows correspond to stochastic fluctuations of 

molecular concentrations within individual attractors. (C) Gene regulation and epigenetic 

landscapes of cancer cells can be complex and have multiple attractors, corresponding 

to distinct and stable cell states and phenotypes, which may be reshaped by oncogenic 

mutations, cell aging, environmental inputs and other perturbations, leading to mutual 

accessibility of the attractors, more plastic cell states and an increase in the phenotypic 

plasticity.
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Figure 2. Interplay between epigenetic and gene expression landscapes.
Developmental and environmental factors and genetic mutations can impact diverse 

modulators of epigenetic control and gene expression, such as signaling and cell 

communication networks, frequently leading to diversification of cell states. These 

modulators may directly impact modulators of epigenetic states, such as DNA demethylases, 

and gene expression, such as transcription factors, which also can directly interact with each 

other. Examples of these molecular regulators discussed in the text are shown here. The 

result is alterations of the epigenetic and gene regulation landscapes that are tightly coupled, 

e.g., through the action of mediators of epigenetic control, influencing accessibility of genes 

for regulation, and the magnitude and variability of gene expression. Certain additional 

inputs may be more specific to each of the landscapes, such as the epigenetic drift with 

cell aging primarily leading to a widening of the landscape attractors, higher plasticity and 

higher entropy of the state, and protein-protein interaction and gene regulatory networks, 

stabilizing various attractors and serving to decrease the plasticity and entropy.
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Figure 3. Connection between an epigenetic landscape and variable phenotypic outcomes.
(A) An epigenetic alteration – loss of imprinting (LOI) of the insulin-like growth factor 

2 gene (IGF2), implicated in Wilms tumor, doubling of the signaling input, can lead 

to rewiring of the signaling network activated by the IGF2 receptor IGF1R (depicted 

as IGF1Rp) through altered receptor trafficking (IGF1Rint), degradation (ϕ) and altered 

balance of activation of the downstream signaling pathways activating Erk (Erkpp) and 

Akt (Aktpp) kinases. Rebalancing of Erk and Akt activities translates into transcriptional 

upregulation of IGF1R, a higher proliferation rate but also rebalancing of pro- and anti-

apoptotic protein abundances (BAX versus Bcl-2, respectively) leading to an increased 

propensity for cell death (113). The integral signs represent integration over time of 

signaling activities. (B) The landscape alterations that correspond to a change in phenotype 

(upper panel) is the altered expression and activity of signaling pathway molecules (and 

thus gene regulatory landscapes in the lower panel) in response to alteration of epigenetic 

landscapes (IGF2 loss of imprinting, LOI). This leads to emergence of a new attractor in 

addition to the wild type attractor, resulting in a mosaic wild type/LOI cell distribution 

in the tissue. This landscape alteration can be ‘mapped’ onto, for example, the apoptosis 

phenotype-defining network by a quantitative analysis of the dependence of the BCL 

family protein distributions on the signaling inputs, thus enabling a direct translation of 

the landscape alterations into phenotype distributions. In this example, the mapping can 

be visualized as wild type and LOI cell distributions mapped with respect to the areas of 

cell survival and death on the (BAX, Bcl-2) phenotypic plane, suggesting how treatments 

targeting LOI cells may be developed to spare the wild type cells. Arrows in the lower 

panel represent the effect of drugs, such as IGF1R inhibitors shifting the landscape and 

phenotypic distribution towards the boundary separating survival and death, with the red 

areas depicting the effect on the wild type and LOI cell populations. (C) A more general 

view of landscape mapping onto the apoptosis phenotypic plane. By analogy with Fig. 1B, 

one can contrast mapping of a large attractor versus two more limited attractors, representing 

the difference between a plastic and stochastic state (phenotypic plasticity) versus a state 

with two alternative stable attractors (phenotypic diversity). The more plastic state can allow 

cells to escape from the death area to the survival area even in the presence of a treatment 

(such as in (B)), by stochastically ‘exploring’ the available attractor, whereas a combination 

of more stable attractors (with the same overall entropy as the more plastic state) can allow 

for selective targeting by one but not the other attractor. Therefore, the treatment strategy 
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suggested in (B) may benefit from the initial intervention stabilizing smaller attractors 

within a larger one and thus decreasing the plasticity of the state, particularly through 

epigenetic perturbations.
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