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Abstract

Over the past decade, immune checkpoint inhibitors (ICls) have emerged as a revolutionary cancer treatment
modality, offering long-lasting responses and survival benefits for a substantial number of cancer patients. However,
the response rates to ICls vary significantly among individuals and cancer types, with a notable proportion of
patients exhibiting resistance or showing no response. Therefore, dual ICI combination therapy has been proposed
as a potential strategy to address these challenges. One of the targets is TIGIT, an inhibitory receptor associated
with T-cell exhaustion. TIGIT has diverse immunosuppressive effects on the cancer immunity cycle, including the
inhibition of natural killer cell effector function, suppression of dendritic cell maturation, promotion of macrophage
polarization to the M2 phenotype, and differentiation of T cells to regulatory T cells. Furthermore, TIGIT is linked
with PD-1 expression, and it can synergize with PD-1/PD-L1 blockade to enhance tumor rejection. Preclinical
studies have demonstrated the potential benefits of co-inhibition of TIGIT and PD-1/PD-L1 in enhancing anti-
tumor immunity and improving treatment outcomes in several cancer types. Several clinical trials are underway to
evaluate the safety and efficacy of TIGIT and PD-1/PD-L1 co-inhibition in various cancer types, and the results are
awaited. This review provides an overview of the mechanisms of TIGIT and PD-1/PD-L1 co-inhibition in anti-tumor
treatment, summarizes the latest clinical trials investigating this combination therapy, and discusses its prospects.
Overall, co-inhibition of TIGIT and PD-1/PD-L1 represents a promising therapeutic approach for cancer treatment
that has the potential to improve the outcomes of cancer patients treated with ICls.
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Introduction

Immune checkpoint inhibitors (ICIs) have significantly
advanced cancer treatment by blocking signals that allow
cancer cells to evade immune detection, providing dura-
ble responses and long-term survival benefits for many
cancer patients since the first approval of ipilimumab in
2010 [1]. PD-1/PD-L1 blockades are the most extensively
studied ICIs therapy to date, and it has shown that they
offered notable survival benefits for metastatic non-small
cell lung cancer (NSCLC), improving the median over-
all survival to 21.9 months [2]. However, response rates
can vary across different cancers and individuals, and a
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significant proportion of patients hardly respond or even-
tually develop resistance during treatment. For instance,
only 20.06% of lung cancer patients are expected to ben-
efit from IClIs, with less than 1.5% of patients experienc-
ing complete responses and around 15% showing partial
responses [3]. This is partly due to the complex interplay
between cancer cells and the immune system [4—6]. For
example, some cancer cells can downregulate molecules
that promote T-cell activation, leading to resistance to
ICIs [7, 8]. Additionally, factors such as regulatory T cells
(Tregs), myeloid-derived suppressor cells (MDSCs), and
immunosuppressive cytokines within the tumor micro-
environment can inhibit anti-tumor immunity, leading to
a predominantly immunosuppressive microenvironment
[8-10]. Moreover, no biomarkers currently precisely pre-
dict which patients will benefit from ICIs [11-13].

To address these limitations, researchers are exploring
combination therapies that target multiple checkpoint
molecules or combine ICIs with other treatments such
as chemotherapy, radiation therapy, or targeted therapy
[14]. One such strategy is dual ICI combination therapy,
which targets two inhibitory receptors simultaneously
to enhance the anti-tumor immune response. Moreover,
dual ICI therapy may provide an opportunity to expand
the proportion of patients who respond to immunother-
apy and overcome resistance to PD-1/PD-L1 blockades
[15, 16]. T cell immunoreceptor with Ig and immunore-
ceptor tyrosine-based inhibitory motif (ITIM) domains
(TIGIT) has emerged as a promising target for co-inhi-
bition with PD-1/PD-L1 in cancer immunotherapy [10].
It has been proven that TIGIT is associated with T-cell
exhaustion and immunosuppressive effects across all
stages of the cancer immunity cycle [17-21]. Moreover,
co-inhibition of TIGIT and PD-1/PD-L1 enhances anti-
tumor immunity and improves treatment outcomes in
various cancers in preclinical and clinical studies [22-24].

This review provides a comprehensive summary of the
roles of TIGIT in cancer immunity, the mechanisms of
co-inhibition of TIGIT and PD-1/PD-L1, and the cur-
rent clinical trials of this combination therapy. Further-
more, we highlight the current challenges of the novel
therapeutic strategies and discuss future efforts to make a
breakthrough in anti-tumor treatment.

The central role of TIGIT in the cancer
immunotherapy

TIGIT, initially identified in 2009, belongs to the type 1
poliovirus receptor (PVR) and is a member of the nectin
family [21, 25]. Typically, TIGIT acts as a co-inhibitory
receptor, widely expressed on CD4* T cells, CD8* T cells,
and Tregs [1]. Its cytoplasmic region contains an immu-
noglobulin tyrosine tail (ITT)-like motif and a standard
ITIM. The ligands of TIGIT comprise CD155 (PVR or
Necl-5), CD113 (PVRL3 or Nectin-3), CD112 (PVRL2 or
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Nectin-2), and PVRL4 (Nectin-4) [24, 25]. Functionally,
TIGIT has been demonstrated to be crucial in inducing
immunosuppressive effects in cancer immunotherapy,
like CTLA-4 and PD-1/PD-L1 [26-28].

Direct inhibitory effects of TIGIT in T and NK cells

Natural killer (NK) cells are the main forces of anti-tumor
innate immunity, while T cells are those of adaptive
immunity, both of which are crucial components of anti-
tumor immunity. Previous studies demonstrated that
TIGIT was expressed on exhausted TOXMeh TCE-1hish
CD8" T cell subsets in both mice and humans and was
identified as a marker for T-cell exhaustion [29-31].
Eomes, a transcription factor with a key role in CD8* T
cell differentiation, by binding to the promoter of TIGIT,
upregulate its expression [32]. Also, TIGIT* NK cells
display weaker anti-tumor cytotoxicity than TIGIT™ NK
cells [33].

One of the mechanisms by which TIGIT lessens
the toxicity of T/NK cells is its intracellular signaling
domains. Upon CD155 binding to TIGIT, the ITT-like
motif is phosphorylated and binds to Grb2, bringing
about the recruitment of SH domain-containing inositol-
5-phosphatase (SHIP1) and impeding multiple signaling
pathways [28]. SHIP1 is a crucial inhibitor of the phos-
phatidylinositol 3-kinase (PI3K) signaling, as it hydro-
lyzes PI(3,4,5)P3, thereby inhibiting kinases containing
pleckstrin homology (PH) structural domains, such as
Akt, Btk, and phospholipase C-y [34]. Moreover, pre-
mature binding of TIGIT to CD155 hinders phosphory-
lation of Erk and MEK kinases, which are initiators of
the MAPK signaling cascade. Blocking the TIGIT sig-
naling rescues Erk phosphorylation following TIGIT/
CD155 binding, and silencing SHIP1 reverses TIGIT/
CD155-mediated inhibition, thus restoring cytotoxicity
of NK cells [35]. The nuclear factor-kB (NF-«xB) pathway
also plays a crucial role in the TIGIT/CD155-mediated
immunosuppression, as TIGIT inhibition increased
p-Erk, p-IxBa, and p-NF-kBP65 levels, and decreased
SHIP1 expression in activated T-cell culture [34]. Ani-
mal models also suggest that TIGIT, upon binding to
and activation by CD155, suppresses PI3K, MAPK, and
NF-«B pathways by recruiting SHIP1, resulting in deple-
tion of T and NK cells and less production of interferon-y
[34]. Significantly, either phosphorylation of ITIM (Y227)
or ITT-like motif (Y233) triggers TIGIT inhibitory sig-
naling in mice. However, TIGIT/CD155 binding initiates
the primary inhibitory signal through the ITT-like motif,
and the ITIM motif mediates the following inhibitory sig-
naling in human cell lines [21, 34].

The principal immunosuppressive mechanism of
TIGIT is competing with CD226 to regulate T and NK
cell functions, which is reminiscent of the B7-CD28-
CTLA-4 pathway. On the one hand, TIGIT exerts its
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immunosuppressive effect by binding to CD155 and
CD112 with a much higher affinity than that of CD226,
thereby competitively inhibiting CD226 if both molecules
are present on the same cell [21]. On the other hand,
TIGIT directly interferes with the co-stimulatory func-
tion of CD226 by impeding its homodimerization [28].
By modulating CD226 activity, TIGIT can affect various
T cell functions.CD226, also known as DNAX accessory
molecule-1 (DNAM-1), was first identified by Shibuya
as having a role in enhancing the cytotoxic function of
T cells and NK cells [40]. CD226 mainly binds to and is
activated by two cell surface ligands, CD155 and CD112,
which are, like PD-1 ligands, typically over-expressed in
tumors (Fig. 1A). Intracellularly, activated CD226 aggre-
gates lymphocyte function-associated antigen 1 (LFA-1)
to conformationally change intracellular adhesion mol-
ecule 1 (ICAM-1), which recruits Fyn and then drives
activation of the Akt signaling pathway to promote NK/T
cell-mediated tumor cytotoxicity [27, 41, 42]. In addi-
tion, CD226, by binding to CD155, triggers phosphoryla-
tion of FOXO1 [43], a transcription factor that negatively
regulates homing and effector functions of NK cells [44].
Phosphorylated FOXOL1 translocates from the nucleus to
the cytoplasm for degradation by ubiquitination, which
enables normal cell killing of NK cells [43]. Similarly,
CD226-mediated inactivation of FOXO1 promotes T-cell
survival, homing, proliferation, and differentiation [45].
Under the condition of IL-12-induced FOXO1 inactiva-
tion, CD8" T cells acquire effector functions (KLRG1"
phenotype) [44]. In addition, FOXO1 directly promotes
Eomes transcription and differentiation into memory
phenotypes of CD8* T cells [45]. Moreover, CD226
assumes the role of an adhesion molecule that orches-
trates the trans-endothelial migration of effector mem-
ory cells, enabling them to egress from circulation and
infiltrate inflammatory foci, such as tumors [46]. CD226
also exerts a critical function in various stages of T cell
activation by creating immune synapses with antigen-
presenting cells (APCs) through interactions with CD155
[42]. Based on the data from CD226-deficient mice, Gil-
fillan concluded that CD226 plays an indispensable role
in triggering the activation of CD8* T cells in peripheral
tissues, whereas it augments the ability of NK cells to
execute cytotoxicity against tumor cells [47, 48]. Thus, by
competing with CD226, TIGIT can inhibit the Akt sig-
naling pathway and FOXO1 phosphorylation, suppress
T/NK cell activation, migration, reduce cell toxicity, and
promote T/NK cell exhaustion.

Lastly, overlay of genome-wide microarray data with
T cell activation pathways showed that numerous mol-
ecules involved in T cell receptor (TCR) and CD28 sig-
naling were significantly downregulated upon TIGIT
binding [36]. The downregulation of TCRa chain, CD3g,
and PLCy was confirmed via RT-PCR, suggesting that
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TIGIT induces downregulation of molecules that com-
prise the TCR complex and interferes with upstream of
the TCR-induced signaling cascade [36]. While, other
co-inhibitory molecules such as PD-1, interfere with pro-
cesses further downstream in the signaling cascade [37].
Furthermore, TIGIT appears to have the capability of
altering T cell metabolism via the blockade of glycolysis
[38] and work in conjunction with hypoxia-inducible fac-
tor 1-a (HIF1-a) to increase tumor cell invasion, colony
formation, and angiogenesis [39].

Indirect inhibitory effects of TIGIT in tumor
microenvironment

Dendritic cells (DCs) are sentinel antigen-presenting
cells (APCs) that are responsible for capturing antigens,
migrating, producing cytokines, and activating T cells
and NK cells (Fig. 1B). However, it is only mature DCs
that can activate T cells, while immature DCs can lead
to unresponsiveness and/or tolerance to immunotherapy
in T cells [49]. TIGIT could induce DCs to acquire an
immature tolerogenic phenotype by triggering CD155,
resulting in elevated IL-10 secretion and concomitant
reduction in IL-12 production [25]. Since it prevents
APCs from upregulating molecules involved in antigen
presentation, IL-10 is critical for suppressing immune
responses, thereby suppressing T cell proliferation and
elaboration of immunostimulatory cytokines such as
IFN-y directly [50, 51].

Moreover, TIGIT is constitutively expressed on most
Tregs and plays a vital role in their functioning and
maintenance. First, TIGIT could promote naive T cells
to differentiate into Tregs more frequently and upregu-
late Foxp3 expression, which in turn confers superior
suppressive function to Tregs [52]. Second, TIGIT*
Treg cells exhibit enhanced demethylation compared to
their TIGIT™ Treg cell counterparts, resulting in higher
lineage stability [53]. Third, TIGIT* Treg cells express
a highly immunosuppressive gene profile that restricts
PI3K-AKT signaling, thereby inhibiting the acquisition
of T helper 1 (Thl) and Th17 cell phenotypes [52]. In
melanoma patients, Tregs that exhibit elevated levels of
TIGIT expression are found to be enriched within tumor
microenvironments and display a sustained immunosup-
pressive phenotype [54]. In a B16F10 melanoma model,
transfer of TIGIT-deficient Tregs along with wild-type
CD4* and CD8* T effector cells into tumor-bearing Rag
mice has also been shown to markedly curtail tumor
growth [55]. Hence, the therapeutic elimination of Tregs
by means of anti-TIGIT antibody-dependent cytotoxicity
may confer a considerable anti-tumor effect.

In addition to its effects on DCs and Tregs, activation
of the TIGIT/CD155 pathway in macrophages could also
increase IL-10 transcription and decrease IFN-y through
c-Maf nuclear translocation, while helping macrophages
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Fig. 1 (A) Direct inhibitory effects of TIGIT. Firstly, TIGIT can directly inhibit the cytotoxic activity of T cells and NK cells by competitively antagonizing
the stimulatory action of CD226. CD226 activation occurs upon binding with CD155 or CD112, which activates LFA-1, alters the conformation of ICAM-
1, recruits Fyn, and drives the activation of the Akt signaling pathway, leading to the release of IFN-y. Secondly, TIGIT can bind to CD155, and its TT-like
motif interacts with Grb2, which recruits SHIP1, thereby inhibiting PI3K, MAPK, and NF-kB signaling pathways. In addition, TIGIT also participates in the
downregulation of the TCR complex itself and the central regulatory factors of TCR signaling cascades, such as PLCy. TIGIT can also alter T cell metabolism
by inhibiting glycolysis and synergizing with HIF 1-a to enhance tumor cell invasion, colony formation, and angiogenesis. (B) Indirect inhibitory effects of
TIGIT. Firstly, TIGIT exerts indirect inhibitory effects by triggering CD155 to induce DC acquisition of an immature tolerogenic phenotype, increasing IL-10
secretion, and decreasing IL-12 production. TIGIT can promote naive T cell differentiation into Treg cells more frequently and upregulate Foxp3 expres-
sion, which confers superior suppressive function to Treg cells. Finally, activation of the TIGIT/CD155 pathway can promote IL-10 transcription and induce
macrophage polarization toward an anti-inflammatory M2 cytokine profile
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switch to anti-inflammatory M2 cytokine profiles [56].
In contradistinction, the introduction of TIGIT inhibi-
tors could reprogram TIGIT* M2 macrophages to the
M1 phenotype, leading to increased CD47-mediated
phagocytosis and ultimately benefiting the prognosis of
patients with acute myeloid leukemia (AML) [57].

Moreover, MDSCs in the tumor microenvironment
also play a critical role in curtailing anti-tumor immune
responses. These cells exhibit heightened levels of CD155
and PD-L1, implying that their suppressive effects may be
amplified via reverse signaling triggered by the TIGIT/
CD155 and PD-1/PD-L1 pathways. Remarkably, anti-PD-
L1 treatment augmented CD155 expression in MDSCs,
whereas anti-TIGIT treatment upregulated PD-L1
expression [58].

TIGIT in solid tumors and hematological malignancies
TIGIT is upregulated by T cells in a wide range of human
solid tumors, such as lung cancer, urologic cancer, and
breast cancer compared with normal tissue [28]. Tak-
ing into account the immunosuppressive properties
of TIGIT, high-level TIGIT expression generally indi-
cates poor prognosis in solid tumors. A meta-analysis
showed that high expression of TIGIT indicated worse
overall survival (OS) [hazard ratio (HR) 1.73; 95% con-
fidence interval (95% CI) 1.50-1.99], progression-free
survival (PFS) (HR 1.53, 95% CI 1.25-1.88), recurrence-
free survival (HR 2.40, 95% CI 1.97-2.93), and disease-
free survival (HR 6.57, 95% CI 0.73-59.16) in East Asian
patients with solid tumors [59]. A study revealed high
expression of CD155 in murine and human pancreatic
adenocarcinoma cells and showed that the activation of
the TIGIT/CD155 axis was critical in immune evasion
[60]. Another study also showed that human gastric can-
cer cells interfered with CD8* T-cell metabolism via the
TIGIT/CD155 axis, impairing T-cell functionalities [61].
In patients with colorectal cancer, high TIGIT expression
correlated with T cell exhaustion, advanced disease, early
recurrence, and poor survival [62]. Contrarily, the study
by Zhang et al. revealed that TIGIT inhibition prevented
NK cell exhaustion and inhibited tumor growth in several
tumor-bearing models, including those of colon cancer,
breast cancer, and fibrosarcoma [63].

The expression of TIGIT is also typically upregulated
and indicates poor clinical outcomes in several hema-
tologic malignancies. First, in patients with chronic
lymphocytic leukemia (CLL), AML, or adult acute lym-
phoblastic leukemia (ALL), TIGIT is commonly upregu-
lated on CD4* T cells, CD8* T cells, Foxp3+y8 T cells,
or NK cells compared with healthy individuals [64-70].
Notably, TIGIT leads to CLL anergy by downregulating
B cell receptor signaling [71]. It correlates with T cell
exhaustion, NK cell dysfunction, unfavorable responses
after chemotherapy, and leukemia relapse after allogeneic
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hematopoietic stem cell transplantation in AML patients
[66, 67, 69, 70]. Similarly, high TIGIT expression results
in lower secretion levels of IL-2, TNFa, and IFN-y from
T cells in ALL patients [64]. On the contrary, silencing
TIGIT can restore normal functions of CD8* T cells to
release cytokines, such as TNFa, IFN-y, IL-2, and IL-12,
and decrease the susceptibility to apoptosis [64, 67].
Also, anti-TIGIT blockades can enhance NK cells’ cyto-
toxicity towards AML cells and repolarize M2 leukemia-
associated macrophages into M1 phenotype and restore
their phagocytic capabilities [57, 69]. Second, TIGIT
also plays a critical role in patients with lymphoma. In a
study, among TIGIT, lymphocyte-activation gene 3 pro-
tein (LAG-3), and CD96, only TIGIT was significantly
increased after CAR-T cell therapy relapse in patients
with mantle cell lymphoma (MCL) or other non-Hodg-
kin’s lymphomas, suggesting a central role of TIGIT in
inhibiting normal T cell function in terms of MCL [72,
73]. Similarly, TIGIT expression was significantly higher
in T cells from follicular lymphoma (FL) patients com-
pared to healthy controls [74], and it correlated with
dysfunctional TCR signaling and disease progression
which can be restored by locking TIGIT [74, 75]. Third,
TIGIT also has an impact on multiple myeloma (MM).
TIGIT is upregulated on NK cells from MM patients and
CD8* T cells from mice or humans, playing a vital role
in their exhaustion [76, 77]. Moreover, anti-TIGIT inhibi-
tors could prevent T cell exhaustion [77], reduce tumor
cell growth rate, prolong survival, and prevent myeloma
escape after stem cell transplantation in mice with MM
[78].

Synergy of TIGIT blockades with PD-1/PD-L1
blockades

Limitations of ICI monotherapy

PD-1, also known as CD279, is a transmembrane recep-
tor expressed on activated immune cells, including T
cells, NK cells, B cells, macrophages, DCs, and mono-
cytes [79, 80]. Its cytoplasmic domains are involved in
the formation of ITIMs and immunoreceptor tyrosine-
based switch motifs (ITSMs), respectively [79, 81]. PD-1
interacts with two ligands, PD-L1 (also called B7-H1 or
CD274) [82] and PD-L2 (also known as B7-H2 or CD273)
[83]. PD-L1 is expressed on T cells, B cells, DCs, mac-
rophages, and cancer cells, with high levels on cancer
cell membranes [84]. The binding of cancer cell PD-L1
to PD-1 on T cells triggers negative signaling, induc-
ing T cell apoptosis and impairing immunocompetence,
thereby allowing cancer cells to evade immune sur-
veillance and destruction [85]. Blocking the binding of
PD-L1 to PD-1, which is the theoretical mechanism of
PD-1/PD-L1 inhibitors, eliminates this negative feedback
and restores the function of T cells, facilitating cancer
cell killing [86].
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Antibodies against the PD-1/PD-L1 pathway have been
used in the treatment of several types of cancer, such as
melanoma [87], lung cancer [88], lymphoma [89], and
liver cancer [90]. However, despite the success in a small
number of patients who experienced anti-cancer immu-
nity recovery and long-term remission, the response
rate of PD-1/PD-L1 blockades is low in general [91,
92]. This treatment is also limited by the lack of effec-
tive biomarkers [93], immune-related toxicity [94], and
innate and acquired drug resistance [95, 96]. Numerous
mechanisms contribute to resistance to anti-PD-1/PD-L1
therapy, such as T cell exclusion and exhaustion, local
immune dysfunction, loss of neoantigens or PD-L1, sig-
naling defects, as well as non-immune factors including
metabolism, epigenetics, and microbiota [97]. Upregu-
lations of coinhibitory molecules, such as TIGIT, LAG-
3, and V domain immunoglobulin suppressor of T cell
activation (VISTA), account for a significant factor for T
cell dysfunction and subsequent resistance to anti-PD-1/
PD-L1 therapies for a number of patients [97]. TIGIT
inhibition not only enhances CD8 T-cell cytotoxicity but
also boosts NK cell anti-tumor responses. Consequently,
blocking TIGIT is promising immunotherapy. However,
Vibostolimab and Tiragolumab monotherapies show
null objective response rates (ORR) [98, 99]. Fortunately,
Tiragolumab combined with Atezolizumab achieves
37% ORR overall and 66% in PD-L1 TPS>50% subset,
surpassing Atezolizumab monotherapy (21% and 24%
response rates, respectively) [24].

Based on these findings, the use of dual checkpoint
inhibition could potentially enhance the restoration of
anti-tumor immunity and lead to improved efficacy of
immunotherapy for a wider range of cancer patients.

Molecular basis of TIGIT and PD-1/PD-L1 co-inhibition
TIGIT is typically co-expressed with PD-1 on a wide vari-
ety of T cells. Moreover, PD-1 blockade could increase
TIGIT expression on CD8 T cells by 1.5 folds [22]. Using
a gene signature-based approach, Johnston et al. investi-
gated the gene expression data in lung cancer and found
a strong correlation between TIGIT expression and the
infiltration of CD8' T cells, as well as the expression of
PD-1 on these cells [28]. Among the inhibitor receptors
that are co-expressed with TIGIT, PD-1 is preferentially
co-expressed [100]. And TIGIT is also the most frequent
co-expressed immune checkpoint receptor on PD-1*
CDS8* T cells [101]. Furthermore, the co-expression of
TIGIT and PD-1 manifested immuno-suppressive phe-
notypes of exhausted T cells or Tregs [22]. Based on these
observations, the monitoring of co-expression of TIGIT
and PD-1 was proposed as a predictive biomarker for the
clinical efficacy of ICIs in various cancers [102, 103].
Banta’s study demonstrated that CD226 expression
is necessary for the effectiveness of PD-(L)1 or TIGIT
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co-blockades [23]. Firstly, PD-1 and TIGIT can inde-
pendently inhibit CD226 functionality. The mechanis-
tic investigations further revealed that TIGIT inhibited
CD226 by competitive binding to the shared ligands
through its extracellular domain, while the intracellular
domain of PD-1, following activation of PD-1, recruits
Shp2 to dephosphorylate CD226 (Fig. 2) [23, 104]. Sec-
ondly, the study revealed that anti-PD-1 treatment
appears to be more efficient than anti-TIGIT therapy in
yielding CD226 activation. The ligand competition effect
is less apparent when the ligands are overexpressed. Spe-
cifically, if CD155, a ligand of both TIGIT and CD226,
is overexpressed, CD226 would also become activated
extracellularly. However, the intracellular activation of
CD226 is dependent on Shp2 without the involvement
of CD155. Thirdly, when both PD-1 and TIGIT are co-
expressed, far less phosphorylated CD226 is detected
than when either is expressed alone. In other words, the
presence of TIGIT prevents a stand-alone PD-1/PD-L1
inhibitor from fully activating CD226, demonstrating
that only combining anti-TIGIT with PD-1/PD-L1 block-
ade may fully activate CD226 [23].

Further investigations suggest that dual blockade of
TIGIT and PD-1 has the potential to serve as an effec-
tive anticancer therapy. Thibaudin et al. assessed the
potential of combining atezolizumab (anti-PD-L1) and
tiragolumab (anti-TIGIT) to reinvigorate the immune
response of tumor-infiltrating lymphocytes in micro-
satellite-stable (MSS) colorectal cancer [106]. While
atezolizumab alone only reinvigorates T cells in micro-
satellite-unstable tumors, the combined use of atezoli-
zumab and tiragolumab can reinvigorate T cells in 46% of
MSS colorectal cancer samples [106]. Hung’s study, using
a mouse model with intracranial GL261-luc tumors,
showed a significant improvement in survival rate using
dual therapy with anti-PD-1 and anti-TIGIT compared
with control and single-agent groups [107]. Hansen eval-
uated the combined use of COM902, an anti-TIGIT anti-
body, and a PD-L1 inhibitor in CT26 colon cancer and
renca renal cancer models and found that the combina-
tion therapy significantly improved overall survival com-
pared to PD-L1 inhibitor monotherapy [108]. Besides,
dual blockade of the TIGIT and PD-1/PD-L1 pathways
has yielded favorable prognoses in various animal mod-
els, including the SGC7901 [61], MC38-CEA, TC1 [109],
pancreatic cancer [105], and cervical cancer models
[110].

In addition to solid tumors, similar investigations
have been conducted on hematological malignancies
[111]. Wang et al. conducted a study on patients with
AML and found increased PD-1 and TIGIT expression
as well as decreased CD226 expression in peripheral
blood CD8* T cells compared with those of healthy indi-
viduals, and these cells were crucial biomarkers of poor
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Fig.2 Mechanism of co-inhibition by TIGIT and PD-1.The TIGIT/CD226 pathway and the PD-1/PD-L1 pathway have an intersecting crossroad. On the one
hand, upon activation by PD-L1, the intracellular domain of PD-1 recruits Shp2 to dephosphorylate CD226, inhibiting the immune activation function of
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competitively antagonizes and blocks CD226 homodimerization through its extracellular domain, inhibiting the immune activation function of CD226.
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clinical prognosis [112]. Furthermore, high PD-1 and
TIGIT expression are closely associated with late leuke-
mia relapse after CAR-T therapy [113]. Zhang’s research
revealed that a single TIGIT inhibitor upregulated only
IFN-y and TNF-a, but the combination of anti-TIGIT
and anti-PD-1 inhibitors significantly upregulated IL-2,
IFN-y, and TNF-a in CD4" or CD8" T cells, which could
enhance anti-leukemia immune response [64]. Among
four different checkpoint combinations, PD-1/TIM-3,
PD-1/LAG-3, PD-1/CTLA-4, and PD-1/TIGIT, Lee et al.
discovered that CAR-T cells with downregulated PD-1
and TIGIT displayed strong anti-tumor activity and sig-
nificantly improved the prognosis of diffuse large B-cell
lymphoma patients [114]. Functional and phenotypic
analysis showed that downregulation of PD-1 enhanced
short-term effector function, while downregulation of
TIGIT mainly led to a less exhausted cell state [113].
In conclusion, these studies support the co-inhibition
of TIGIT and PD-1/PD-L1 in treating hematological
malignancies.

Clinical studies on TIGIT and PD-1/PD-L1
co-inhibition

Currently, a variety of novel drugs or combination strat-
egies targeting the co-inhibition of TIGIT and PD-1/
PD-L1 are under evaluation in clinical trials. A sum-
mary of these clinical trials registered on clinicaltrials.
gov is provided in Table 1. Terminated or withdrawn
clinical trials resulting from various factors are excluded
from consideration. Generally, there are three types of
these treatments in Table 2: (1) simultaneous adminis-
trations of anti-TIGIT and anti-PD-1/PD-L1 agents (for
example, tiragolumab plus atezolizumab); (2) coformu-
lation of anti-TIGIT and anti-PD-1/PD-L1 agents (e.g.,
MK-7684 A, which is a coformulation of pembrolizumab
and vibostolimab); (3) bispecific antibodies binding both
TIGIT and PD-1/PD-L1 (such as IBI321). The evaluations
are taken on a wide range of solid tumors and hematolog-
ical malignancies at various lines and distinct situations,
such as neoadjuvant, adjuvant, and palliative treatments
(Table 1). Some of the studies aim further to assess the
combination of anti-TIGIT and anti-PD-1/PD-L1 treat-
ments with other therapies, including chemotherapy,
radiation therapy, concurrent chemoradiotherapy, and
targeted therapies.

Although clinical trials on the efficacy and safety of
this combination are being conducted on a large scale,
a few results are currently available. A phase I study
assessed the safety and efficacy of vibostolimab, an anti-
TIGIT antibody, alone or combined with pembrolizumab
for advanced solid tumors (part A) or NSCLC specifi-
cally (part B) [98]. No dose-limiting toxicities occurred
at a maximum of 700 mg vibostolimab alone or com-
bined with 200 mg pembrolizumab in 21-day cycles.
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Treatment-related adverse events (TRAEs) occurred in
56% of patients undergoing the monotherapy and 62% of
patients taking the combination therapy in part A, and
56% and 70% of patients with anti-PD-1/PD-L1-refrac-
tory NSCLC in part B. Common TRAEs were pruritus,
fatigue, rash, and hypoalbuminemia. In terms of efficacy,
the ORRs were respectively 0% and 7% in the mono-
therapy group and combination therapy group in part A,
and 26% in anti-PD-1/PD-L1-naive patients receiving the
combination therapy in part B. Another phase I trial eval-
uated the safety and tolerability of the anti-TIGIT anti-
body etigilimab alone (phase Ia) or in combination with
nivolumab (phase Ib) for locally advanced or metastatic
solid tumors [115]. The maximum tolerated dose (MTD)
was not reached in both settings (20.0 mg/kg etigilimab
or 20.0 mg/kg etigilimab plus 240 mg nivolumab given in
14-day cycles). Among 23 patients who received etigil-
imab alone, 16 (70%) had TRAEs and 4 (17%) had TRAEs
of grade=>3, while 7 (70%) had TRAEs and 2 (20%) had
TRAEs of grade>3 in 10 patients receiving etigilimab
plus nivolumab. Rash and pruritus were two of the most
frequently observed immune-related AEs in both groups.
As for the efficacy, 1 patient had a partial response and 1
patient had an approximately 8-month stable disease in
the combination group, while no patient had a partial or
complete response in the etigilimab alone setting. Cheng
et al. reported that IBI939 plus sintilimab had a manage-
able safety profile and could improve PES of patients with
metastatic NSCLC and PD-L1 expression>50% com-
pared with sintilimab alone (median, not reached vs. 6.0
months) [116]. Besides, the phase I AdvanTIG-105 trial
demonstrated good tolerance and preliminary antitumor
activity in patients with ociperlimab combined tisleli-
zumab group [117, 118]. The ORR of patients in the oci-
perlimab combined tislelizumab group was 57.5% and in
the ociperlimab combined tislelizumab plus pemetrexed
group was 54.8%. Patients with higher PD-L1 expres-
sion (=25%) had a higher ORR. In total, 77 patients
experienced>1 treatment-TRAEs and 53.6% of them
were immune-mediated adverse events. Moreover, 41
patients had>3 TRAEs and serious TRAEs occurred
in 14 patients. Further, in phase I/II KEYMAKER-U02
sub-study 2 A, tri-combination of pembrolizumab plus
quavonlimab (an anti-CTLA-4 agent) plus vibostolimab
showed an acceptable safety profile as well [119]. Phase
Ib/II basket research (ACTIVATE) is investigating the
impact of the combination approach on biomarkers as
an exploratory objective. There was a decrease in TIGIT*
Tregs overall and a rise in the CD8/Treg ratio. NK cells,
PD-1" T cells, proliferating CD4 and CDS8 effector mem-
ory populations, as well as NK cells, were also seen to
be on the rise. Moreover, it was observed that IL-2 and
IFN-y production had increased. Additionally, 1 month
after therapy, some patients’ ctDNA levels decreased
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Table 2 Anti-TIGIT antibody drugs in clinical development

Page 26 of 31

Drug Mechanism of action Sponsor
AZD2936 A bispecific antibody that can target both PD-1 and TIGIT simultaneously AstraZeneca
HLX301 A bispecific antibody that can target both PD-1 and TIGIT simultaneously Henlius

HB0036 A bispecific antibody that can target both PD-1 and TIGIT simultaneously Huaota

1BI321 A bispecific antibody that can target both PD-1 and TIGIT simultaneously Innovent Biologics
MK-7684 A A fixed-dose combination formulation composed of Vibostolimab and Pembrolizumab Merck
Domvanalimab A Fc-silent humanized IgG1 monoclonal antibody directed against TIGIT Arcus Biosciences
BMS-986,207 A Fc-silent humanized IgG1 monoclonal antibody directed against TIGIT Bristol Myers Squibb
BAT6021 An investigational humanized IgG1 monoclonal antibody directed against TIGIT Bio-thera

PM1021 An investigational humanized IgG1 monoclonal antibody directed against TIGIT Biotheus

M6223 An investigational humanized IgG1 monoclonal antibody directed against TIGIT EMD Serono
EOS-448 An investigational humanized IgG1 monoclonal antibody directed against TIGIT iTeos
Vibostolimab An investigational humanized IgG1 monoclonal antibody directed against TIGIT Merck

Etigilimab An investigational humanized IgG1 monoclonal antibody directed against TIGIT Mereo
Tiragolumab An investigational humanized IgG1 monoclonal antibody directed against TIGIT Roche
Ociperlimab An investigational humanized IgG1 monoclonal antibody directed against TIGIT BeiGene

ASP8374 An investigational humanized IgG4 monoclonal antibody directed against TIGIT Astellas

COM902 An investigational humanized IgG4 monoclonal antibody directed against TIGIT Compugen

IBI939 An investigational humanized IgG4k monoclonal antibody directed against TIGIT Innovent Biologics
JS006 An investigational humanized IgG4k monoclonal antibody directed against TIGIT Junshi

SEA-TGT A nonfucosylated antibody that employs sugar engineered antibody against TIGIT Seagen Inc

AB308 An investigational humanized IgG1 monoclonal antibody directed against TIGIT Arcus Biosciences

[120]. These results demonstrated that combination ther-
apy of anti-TIGIT and anti-PD-1/PD-L1 treatments has
acceptable toxicity and promising antitumor activity.
CITYSCAPE was the first phase II randomized con-
trolled trial to report the efficacy and safety of combin-
ing anti-TIGIT and anti-PD-1/PD-L1 agents [24], while
two previous phase I trials had reported favorable tol-
erance and anti-tumor activity of tiragolumab, an anti-
TIGIT agent, plus atezolizumab in various cancers before
[99]. In the CITYSCAPE trial, 135 patients with NSCLC
were assigned to receive tiragolumab or placebo plus
atezolizumab. The results revealed significantly pro-
longed progression-free survival of the tiragolumab plus
atezolizumab arm in the total population (HR 0.62; 95%
CI0.42-0.91) and in patients with PD-L1 tumor propor-
tion score (TPS)=50% (HR 0.29; 95% CI 0.15-0.53). Sig-
nificantly extended overall survival of the combination
group was observed in patients with PD-L1 TPS>50%
(HR 0.23, 95% CI 0.10-0.53) but not in the total popula-
tion (HR 0.69; 95% CI 0.44—1.07). TRAEs were observed
in 82% and 71% of patients in the combination group and
the monotherapy group, respectively, and serious TRAEs
occurred in 21% and 18%, respectively. More immune-
related AEs occurred in the combination group com-
pared with the monotherapy group (76% vs. 47%) but
were mostly mild (grade 1-2). Likewise, pruritus, fatigue,
asthenia, and rash were some of the common TRAEs.
The phase II ARC-7 trial’s [121] findings demonstrated
that the combination is superior to zimberelimab alone
in terms of ORR and PFS. The median PFS was 10.9

months, and the ORR was 40% among the 45 patients
who received treatment with the three drugs (domvana-
limab, zimberelimab, and etrumadenant). The median
PES for the 44 patients treated with the two drugs (dom-
vanalimab and zimberelimab) was 12.0 months, however,
the 44 patients treated with zimberelimab only had an
ORR of 27%. Talking to safety, >grade 3 TRAESs occurred
in 58% (zimberelimab monotherapy), 47% (two medica-
tions), and 52% of the safety population (three drugs). All
incidences of rash were grade 1-2, treatable with topi-
cal corticosteroids, and more prevalent in patients using
three medicines (60%) compared to those taking two
drugs (48%) and zimberelimab monotherapy (47%). Nev-
ertheless, the phase III SKYSCRAPER-02 study revealed
that treatment of tiragolumab plus atezolizumab plus
chemotherapy did not prolong the PFS (HR 1.08; 95%
CI 0.89-1.31) and OS (HR 1.02; 95% CI 0.80—1.30) com-
pared with placebo plus atezolizumab plus chemotherapy
in patients with extensive-stage SCLC, suggesting that
there may be heterogeneity of efficacy of anti-TIGIT
plus anti-PD-1/PD-L1 in different cancers [122]. Pres-
ent research predominantly lies in the recruitment phase
whereby only several trials centering on solid tumors
yield outcomes. Table 1 outlines 9 clinical trials concern-
ing hematological malignancies, but there is currently no
outcome on the TIGIT and PD-1 or PD-L1 combination
therapy. We look forward to the findings of more pro-
spective clinical studies.

Taken together, anti-TIGIT and anti-PD-1/PD-L1 com-
bination therapy has shown a favorable safety profile and
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better antitumor activity along with better survival ben-
efits compared with anti-PD-1/PD-L1 therapy alone, in
line with preclinical evidence. Additionally, several new
drugs based on the anti-TIGIT and anti-PD-1/PD-L1
combination, such as AZD2936 and MK-7684 A, and
novel combination strategies, such as anti-TIGIT plus
anti-PD-1/PD-L1 agents plus chemotherapy or chemora-
diotherapy, are being evaluated clinically (Table 1). These
advances are expected to expand the benefits of the anti-
TIGIT and anti-PD-1/PD-L1 combination for cancer
patients.

A prospective on TIGIT blockade therapeutic
strategies

Recent studies suggest that TIGIT blockades and
radiotherapy (RT) may have a synergistic relationship,
although TIGIT and RT are mechanically two different
approaches to cancer treatment.

RT can induce an immunogenic antitumor response,
but it can also create some immunosuppressive barriers
depending on the fractionation protocols employed. For
example, 8 Gy*3f and 16.4 Gy*1f protocols induce a lym-
phoid response (CD8* T cells, Tregs), while the 2 Gy*18f
protocol induces a myeloid response (MDSCs, M2 phe-
notype tumor-associated macrophages) [123]. CD8 T
cells secretion of granzyme B was found to be increased
by the 8 Gy*3f protocol. And tumor cells showed mod-
erately increased expression of PD-L1 across all frac-
tionation protocols, but most durably with the 2 Gy*18f
protocol. While TIGIT expression by CD8* T-cells
increased with the 8 Gy*3f protocol and decreased with
2 Gy*18f [123]. Grapin et al. proved that the combination
of anti-TIGIT, anti-PD-L1, and 8 Gy*3f (9/10 Complete
response, CR) protocol was the most effective treatment
strategy [123]. Compared to the 2 Gy*18f radiother-
apy alone group, mean tumor volume was significantly
lower in the combination of 2 Gy*18f and dual ICI group
(p=0.04). However, the combination of 2 Gy*18f and dual
ICI group (7/12 CR) did not outperform than anti-PD-L1
monotherapy combined 2 Gy*18f group (8/12 CR).

Notably, when total radiation of 36 Gy is divided into
3*12Gy, the combination of radiotherapy and anti-TIGIT
slowed down primary tumor growth and led to a favor-
able survival benefit, but this was not observed in second-
ary tumors [124]. However, low-dose radiation delivered
to secondary tumors can reduce the expression of TIGIT
receptors in the tumor microenvironment (TME) and
contribute to the abscopal response [124].

Moreover, Zhao’s work has demonstrated that com-
bining radiotherapy with anti-TIGIT therapy could slow
down primary tumor growth and provide survival ben-
efits. They proved that this combination could stimulate
CD8* T cell responses and enhance local accumulation
and modulate cytokine production of DCs by blocking
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the TIGIT/CD155 axis [125]. In addition, the therapeu-
tic response of cancer patients to RT and anti-TIGIT
treatment may be strengthened by using FIt3L to boost
CD103* DCs at the tumor site.

The findings of Hu et al. provide significant support for
the enhancement of effectiveness and validity of combin-
ing radiation with concurrent TIGIT and PD-1 inhibitors
by nanoparticle [126]. In his investigation, 12 Gy of radia-
tion was administered to the primary tumors. Addition-
ally, in around 30% of the anti-PD1-resistant lung cancer
model mice, this nanoparticle-mediated combination
treatment may result in the elimination of primary and
secondary tumors.

It should be noted that this area of research is still in
the early stages, and further studies are needed to fully
understand the potential synergistic relationship between
TIGIT-targeted immunotherapy and radiotherapy. Nev-
ertheless, the potential synergistic relationship between
these two treatments represents a promising new avenue
for cancer treatment, and ongoing research will shed
lighter on this topic.

Conclusions

Co-inhibition of TIGIT and PD-1/PD-L1 could syner-
gistically elicit tumor rejection and has been approved in
clinical trials, offering a new option for cancer immuno-
therapy. Although the optimal combination strategy and
patient selection criteria are still being investigated, this
approach represents a promising avenue for developing
more effective cancer immunotherapies. Future research
should focus on optimizing treatment regimens to
improve patient outcomes and identifying biomarkers to
predict response to these therapies. Overall, TIGIT and
PD-1/PD-L1 inhibitors hold great potential for enhanc-
ing the efficacy of cancer immunotherapies and improv-
ing patient outcomes.
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