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Abstract 

Objective  Chemokines, which are chemotactic inflammatory mediators involved in controlling the migration and 
residence of all immune cells, are closely associated with brain inflammation, recognized as one of the potential pro-
cesses/mechanisms associated with cognitive impairment. We aim to determine the chemokines which are signifi-
cantly altered in Alzheimer’s disease (AD) and mild cognitive impairment (MCI), as well as the respective effect sizes, 
by performing a meta-analysis of chemokines in cerebrospinal fluid (CSF) and blood (plasma or serum).

Methods  We searched three databases (Pubmed, EMBASE and Cochrane library) for studies regarding chemokines. 
The three pairwise comparisons were as follows: AD vs HC, MCI vs healthy controls (HC), and AD vs MCI. The fold-
change was calculated using the ratio of mean (RoM) chemokine concentration for every study. Subgroup analyses 
were performed for exploring the source of heterogeneity.

Results  Of 2338 records identified from the databases, 61 articles comprising a total of 3937 patients with AD, 1459 
with MCI, and 4434 healthy controls were included. The following chemokines were strongly associated with AD 
compared with HC: blood CXCL10 (RoM, 1.92, p = 0.039), blood CXCL9 (RoM, 1.78, p < 0.001), blood CCL27 (RoM, 1.34, 
p < 0.001), blood CCL15 (RoM, 1.29, p = 0.003), as well as CSF CCL2 (RoM, 1.19, p < 0.001). In the comparison of AD with 
MCI, there was significance for blood CXCL9 (RoM, 2.29, p < 0.001), blood CX3CL1 (RoM, 0.77, p = 0.017), and blood 
CCL1 (RoM, 1.37, p < 0.001). Of the chemokines tested, blood CX3CL1 (RoM, 2.02, p < 0.001) and CSF CCL2 (RoM, 1.16, 
p = 0.004) were significant for the comparison of MCI with healthy controls.

Conclusions  Chemokines CCL1, CCL2, CCL15, CCL27, CXCL9, CXCL10, and CX3CL1 might be most promising to serve 
as key molecular markers of cognitive impairment, although more cohort studies with larger populations are needed.

Keywords  Chemokine, Alzheimer’s disease, Mild cognitive impairment, Meta-analysis

Introduction
Alzheimer’s disease (AD) is the most common type of 
dementia, and it is on the rise among the older people [1]. 
It is one of the severe neurodegenerative diseases, with 
symptoms of diminished quality of life or disability. The 
pathological hallmarks in the AD brain are amyloid-β 
(Aβ)-derived plaques and tau-derived tangles. Based on 
accumulating evidence that Aβ overproduction leads to 
AD, the amyloid cascade hypothesis is widely accepted, 
and Aβ accumulation is believed to be the primary initial 
event that ultimately results in neuronal damage. Despite 
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numerous clinical trials of treatments for AD that aimed 
to clear Aβ from the brain, to date no amyloid-targeting 
therapy has been successful in preventing or slowing the 
progression of cognitive impairment in symptomatic AD 
[2]. This suggests that while amyloid accumulation may 
be a key initiator of starting the pathological process, 
other downstream events such as neuroinflammation [3] 
and tau accumulation may be the predominant drivers of 
neurodegeneration [4]. Particularly, along with the dis-
covery of elevated levels of inflammatory markers in AD, 
neuroinflammation has emerged as a vital player in AD 
pathogenesis [5].

Besides neuronal dysfunction, inflammation and glial 
activation are also well-known features of AD patho-
genesis. Before being diagnosed with dementia, patients 
undergo a phase called as mild cognitive impairment 
(MCI), an intermediate status between normal aging 
and dementia [6]. Around neuritic plaques, activated 
microglia and reactive astrocytes, as well as their den-
sity, increase in proportion to the degree of neuronal 
injury [7, 8]. Inflammatory responses play an important 
role in the neurodegenerative cascades according to 
mounting data, and some biomarkers related to inflam-
mation have tracking and detection accuracy for disease 
severity and progression [9, 10]. Biofluid-based mark-
ers such as P-tau and neurofilament light chain have 
gained much attention for their potential diagnostic and 
prognostic ability [11, 12]. A growing body of evidence 
highlights that chemokines, as mediators of neuroin-
flammation, play a critical role in the pathogenesis of 
cognitive impairment [13].

Chemokines are a type of cytokine involved in chemo-
taxis. They are heparin-binding proteins with molecular 
weights ranging from 7 to 15 kD. Chemokines are catego-
rized into four subcategories based on the number and 
position of conserved NH2-terminal cysteine residues: 
CXC, CC, CX3C, and XC [14]. A number of cells, includ-
ing leukocytes and neurons, can release chemokines. 
Functionally, chemokines may be pro-inflammatory or 
homeostatic. Binding to receptors, chemokines exert a 
key role in ensuring brain function by stimulating cross-
talk between neurons, glial cells, and peripheral immune 
cells in physiological processes [15]. During inflam-
mation, chemokines are upregulated and their most 
described feature is the chemoattraction of immune cells 
from the periphery to the brain, which in turn maintains 
inflammation through chemokine secretion [16, 17]. 
Apart from the well-documented role in the immune 
system, the chemokine/receptor system may participate 
in important pathophysiological processes in the central 
nervous system [18]. Accumulating evidence suggest that 
AD is associated with altered levels of chemokine bio-
markers [19–21], and chemokines are considered to have 

either beneficial or detrimental effects upon nervous 
function by activating resident microglia and astrocytes 
and by inducing the release of inflammatory factors [22].

Some studies found that increased levels of circulating 
chemokines were linked to Alzheimer’s pathogenesis 
and can be used as biomarkers to track disease progres-
sion [23–25]. Other investigations, on the other hand, 
have reported null relationships of chemokine levels 
with AD [26, 27] or MCI [28, 29]. Chemokine marker 
differentiation performance is relatively poorly studied 
[20, 30], varies widely [31–33], and lacks a thorough 
analysis [34]. Therefore, we conducted a systematic 
review and meta-analysis using a widely applicable 
method of generating fold-changes in mean chemokine 
concentrations (i.e., ratio of mean) to identify available 
data on CSF and serum/plasma levels of all chemokines 
reported in patients with AD and MCI, and to deter-
mine which ones have significant and larger effect sizes 
among the predetermined groups.

Methods
Search strategy
With a registration number of CRD42022293988, the 
protocol for this systematic review has been prospec-
tively recorded in the PROSPERO database. This system-
atic review and meta-analysis was performed according 
to the PRISMA guidelines [35]. We searched the data-
bases (PubMed, EMBASE, and Cochrane Library) for rel-
evant studies published from inception to December 15, 
2021, to identify data on chemokines in CSF and plasma 
(or serum) among patients with AD or MCI and cogni-
tive healthy controls (HC). Many different nomenclatures 
of chemokines were used for the search method due to 
the uneven naming format of chemokines in public pub-
lications. We used the following terms: chemokine*, ccl, 
cxcl, cx3cl, ccr, cxcr; dementia, Alzheimer*, cognit*, and 
so on, and screened titles and abstracts in the three data-
bases. Meanwhile, relevant studies meeting the inclusion 
criteria were found in the reference lists of all included 
publications and review articles on the issue. The entire 
search strategy has been described in Table S1, in Sup-
plemental file.

Study selection
Relevant peer-reviewed articles reporting chemokine 
concentrations in living humans, published in either Eng-
lish or Chinese, were included if they matched the fol-
lowing criteria: (1) Data from at least two of the cohorts 
(AD, MCI, and control) were presented in original stud-
ies; (2) sample sources and essential data (N, mean, and 
standard deviation) were available; (3) the methods 
employed to diagnose AD and MCI in these studies were 
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well-established; and (4) cognitively healthy subjects as 
controls. CSF chemokine concentrations were studied 
separately.

Articles were excluded if they involved neither AD nor 
MCI cohorts; had chemokine data from blood cells, brain 
tissues (or microvessels); used non-quantitative meth-
ods to assess chemokine concentrations (e.g., explora-
tive proteomics or western blot); had a cohort with a mix 
of AD and MCI; without properly referenced methods, 
which we accepted as a well-established routine analysis; 
contained previously published data; studies measuring 
chemokine mRNA levels; in the control cohorts partici-
pants having an inflammatory, neurological, or psychi-
atric illness or symptom that would alter CSF or blood 
chemokine concentrations. In longitudinal cohorts, we 
considered the baseline data with the longest follow-up 
period. Meeting abstracts, case reports, review papers, 
and non-English and non-Chinese articles were excluded, 
as were studies with insufficient data, no clinical data 
(animal).

Data extraction and statistical analysis
Two authors (ZF and SY) independently screened and 
retrieved papers based on the eligibility criteria, and 
four authors (ZF, SY, ZY, and XX) carefully reviewed and 
selected articles. Name of first author, year of publication, 
sample size, mean age or range, female sex ratio (per-
cent), chemokine assay method, sample source (serum, 
plasma, or CSF), and AD/MCI diagnosis criteria were 
extracted for each study. Values of n and standard error 
(SE) or standard deviation (SD) were also extracted from 
each article. If the SE rather than SD was presented, it 
was converted to SD. We used a random effects model to 
pool the effect sizes from studies that reported two AD 
cohorts (such as mild-moderate AD and severe AD), and 
the pooled result was used as the study’s estimate. When 
median and interquartile range (IQR) or range were used 
as measures, we calculated the mean using a method 
provided by Wan et  al. [36] and the SD using another 
method described by Luo et al. [37] based on sample size 
and median, IQR, or minimum/maximum values. To 
improve the normality of result distributions, a log trans-
formation was employed.

In different laboratories, the cutpoints of chemokine 
levels were set based on a variety of ways. As a result, 
to reduce the variability in chemokine concentrations 
between laboratories and tests, a measure of fold-change 
between comparison (ratio of mean chemokine concen-
tration, i.e., RoM) was used. Each RoM was generated 
in the context of a separate investigation, the corre-
sponding 95% confidence intervals (CIs) was calculated 
using the delta method [38]. We used ratios of AD to 
controls, of MCI to controls, and of AD to MCI to do 

stepwise meta-analyses. A ratio above one implies that 
the chemokine concentration is higher in the former than 
the latter in the comparison, whereas a ratio less than one 
predicts the opposite. In this study, RoM values of 1.08 to 
1.19, 1.20 to 1.32, and more than 1.32, or of 0.93 to 0.84, 
0.83 to 0.76, and less than 0.76 (values derived from the 
corresponding reciprocals), are considered small, moder-
ate, and large effect sizes, respectively [39].

A sensitivity analysis was performed to evaluate the 
impact of each study on the pooled effect size by remov-
ing one study at a time. The Newcastle–Ottawa Scale 
(NOS) was used to assess study quality. The Q test and 
the I2 statistic were used to test heterogeneity across 
studies. To obtain more conservative estimates, random 
effects meta-analyses were performed using the method 
of DerSimonian and Laird, with the estimate of heteroge-
neity derived using the inverse variance model. Publica-
tion bias was assessed by the Egger’s and Begg’s tests, as 
well as by viewing the symmetry of the funnel plot. When 
publication bias existed, the Trim-and-filled method was 
used to test and adjust for possible publication bias. Sig-
nificance was defined as a p value of less than 0.05, and 
Bonferroni method was used for multiple comparison 
correction. Stata version 12.0 software (Stata Corp, Col-
lege Station, Texas) was used in all the analyses.

Results
The original search generated 4421 hits after duplicates 
were removed (2338 from PubMed, 3951 from Embase, 
and 286 from Cochrane). Titles and abstracts of the 
retrieved records were screened carefully using eligibil-
ity criteria to determinate their appropriateness. Thus, 
a total of 4236 irrelevant articles were excluded. After 
reviewing the full text of remaining articles (n = 185), 
57 were deemed eligible for inclusion. Four publications 
[40–43] were hand-searched according to reference lists 
of related articles. In total, 61 articles were included in 
this meta-analysis. These studies yielded data from 3937 
patients with AD, 1459 individuals with MCI, and 4434 
healthy control subjects. There were 59 articles pub-
lished in English and 2 in Chinese. Of 61 articles, 41 used 
case–control study designs, 12 were cross-sectional, and 
8 were prospective cohort studies (Fig. 1, Table 1, Tables 
S1-2 in supplementary file). In most studies, the National 
Institute of Neurological and Communicative Disorders 
and Stroke/Disease Alzheimer’s and Related Disorders 
Association or DSM-IV criteria were used for AD diag-
nosis; for MCI diagnosis, the Petersen method was used 
in most studies.

In terms of sample sources, 14 studies reported 
chemokines only from CSF, 15 only from serum, 25 only 
from plasma, and 7 from both blood and CSF. In addi-
tion, 35 studies used ELISA, 10 used Luminex, 8 used 
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Electrochemiluminescence, and 8 used other meth-
ods to determine chemokine levels. There were 14 
CC chemokines (CCL1, i.e., CC chemokine ligand 1; 
CCL2, CCL3, CCL4, CCL5, CCL7, CCL11, CCL15, 
CCL17, CCL18, CCL19, CCL22, CCL26, CCL27), 5 
CXC chemokines (CXCL1, CXCL8, CXCL9, CXCL10, 
CXCL12), and only one CX3C chemokine (CX3CL1, i.e., 
fractalkine), with no report regarding the XC chemokines 
(Table  1). The studies included were considered as high 
quality (with NOS scores ranging from 6 to 8).

Comparison between AD and HC in serum/plasma 
chemokine levels
We first meta-analyzed data on serum/plasma 
chemokine concentrations in AD versus HC. The follow-
ing chemokines were investigated by two or more studies 
per chemokine: 14 CC motifs (see Table 2), 5 CXC motifs 
(CXCL1, CXCL8, CXCL9, CXCL10, CXCL12), the CX3C 
motif (fractalkine). Of these chemokines tested, only 
CCL2 (MCP-1) and CXCL8 (IL-8) had much more data 
for meta-analysis. These studies included 43 cohorts with 
AD and healthy controls, totaling 3225 patients and 3620 
controls.

The serum/plasma ratios of AD to healthy controls 
were more than one in the following chemokines (Figure 
S13 in Supplementary file). In the CC motif, data on the 
chemokines (CCL1, CCL15, and CCL27) from two or 
three cohorts of AD and controls yielded average ratios 
of 1.56 (95% CI, 1.02–2.39, p = 0.042, corrected p = 0.126; 
I2 = 92.3%), of 1.29 (95% CI, 1.13–1.47, corrected 
p = 0.009; I2 = 48.7%), and of 1.34 (95% CI, 1.19–1.51, 
p < 0.001; I2 = 0%), respectively. In the CXC motif, the 
plasma/serum level of CXCL10 (IP-10) was significantly 

elevated in patients with AD compared with HC, with a 
large effect size (average ratio, 1.92; 95% CI, 1.03–3.58, 
p = 0.039; I2 = 99.4%) in 78 AD and 64 controls, and of 
CXCL9 did so (RoM, 1.78, 95% CI, 1.39–2.28, p < 0001; 
I2 = 46.9%) in 140 AD and 108 controls.

The levels of serum/plasma chemokine CXCL8 (IL-8) 
were reported by 18 studies, consisting 727 patients with 
AD and 580 healthy controls. The average AD to control 
ratio was 1.18 (95% CI, 0.85–1.62, corrected p = 0.966; 
I2 = 98%; Figure S13 in Supplementary file). After remov-
ing an outlier from Kim et  al.’s study [64], the remain-
ing data exhibited statistical significance with lower 
heterogeneity (RoM, 1.31, 95% CI, 1.11–1.55, corrected 
p = 0.009; I2 = 88%, p < 0.001).

Nineteen studies presented data on serum/plasma 
chemokine CCL2 (MCP-1), comprising 2017 patients 
with AD and 1953 healthy controls. CCL2 (MCP-1) con-
centrations in plasma/serum were not substantially dif-
ferent between AD and HC (average ratio, 1.13; 95% CI, 
0.92–1.39, corrected p = 0.726; I2 = 98.7%, p < 0.001). The 
plasma/serum concentrations of the other chemokines 
tested (CCL3, CCL4, CCL5, CCL7, CCL11, CCL17, 
CCL18, CCL19, CCL22, CCL26; CXCL1, CXCL12; 
CX3CL1) had no significant differences between AD and 
HC (average ratios ranging from 0.81 to 1.71, p > 0.05).

Comparison between AD and MCI in serum/plasma marker 
levels
In the comparison between AD and MCI, 20 articles 
reported serum or plasma levels of chemokines in 8 CC 
motifs (see Table 2), 2 CXC motifs (CXCL8 and CXCL9), 
and CX3CL1 (fractalkine). There were 20 AD versus 20 

Fig. 1  PRISMA diagram of study flow
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Table 2  Meta-analysis of studies regarding plasma/serum and CSF chemokines

Comparison Chemokine Sample No of study N Main effect Heterogeneity Publication bias

RoM (95% CI) P value I2 (%) P value p for Begg’s p for Egger’s

AD vs HC CCL1 Plasma/
serum

3 199/696 1.56 (1.02–2.39) 0.126# 92.3  < 0.001 1 0.51

CCL2 20 2017/1953 1.13 (0.92–1.39) 0.726# 98.7  < 0.001 0.02 0.06

CCL3 5 244/321 1.36 (0.80–2.30) 0.759# 99.1  < 0.001 1 0.72

CCL4 4 406/342 0.96 (0.82–1.12) 1.701# 37.9 0.148 0.31 0.09

CCL5 6 216/136 0.99 (0.62–1.60) 2.73# 97.8  < 0.001 1 0.57

CCL7 4 277/261 1.19 (0.83–1.72) 2.304# 87 0.349 1 0.76

CCL11 3 301/284 1.17 (0.83–1.64) 1.131# 67.3 0.047 1 0.80

CCL15 3 207/78 1.29 (1.13–1.47) 0.009# 48.7 0.142 0.09 0.06

CCL17 4 140/175 1.31 (0.88–1.96) 0.18 80 0.002 0.31 0.60

CCL18 2 238/193 1.05 (0.79–1.38) 0.753 62.9 0.101 - -

CCL19 2 43/50 1.71 (0.30–9.87) 0.55 91.2 0.001 - -

CCL22 2 111/59 1.04 (0.65–1.67) 0.864 72.7 0.056 - -

CCL26 3 174/701 0.81 (0.60–1.10) 0.346# 0 0.747 1 0.25

CCL27 3 58/87 1.34 (1.19–1.51)  < 0.001 0 0.368 0.30 0.55

CXCL1 4 92/108 1.28 (0.93–1.77) 0.126 55.1 0.083 0.31 0.41

CXCL8 18 727/580 1.18 (0.85–1.62) 0.966# 98  < 0.001 0.77a 0.21a

CXCL9 3 140/108 1.78 (1.39–2.28)  < 0.001 46.9 0.152 0.31 0.05

CXCL10 3 78/64 1.92 (1.03–3.58) 0.039 99.4  < 0.001 1 0.44

CXCL12 3 78/98 1.03 (0.85–1.24) 0.727 91  < 0.001 1 0.97

CX3CL1 4 148/131 1.20 (0.96–1.50) 0.33# 84.1  < 0.001 1 0.51

AD vs MCI CCL1 2 120/95 1.37 (1.17–1.59)  < 0.001 0 0.772 - -

CCL2 9 1026/573 1.13 (0.80–1.59) 1.095# 85.6  < 0.001 0.60 0.53

CCL3 2 56/81 1.00 (0.86–1.16) 2.982# 0 0.722 - -

CCL4 4 536/405 1.04 (0.95–1.14) 1.227# 0 0.704 0.31 0.11

CCL5 2 124/95 0.98 (0.77–1.25) 2.7# 52.5 0.147 - -

CCL7 2 106/69 1.21 (0.96–1.53) 0.3# 0 0.843 - -

CCL11 2 290/250 1.09 (0.96–1.24) 0.489# 32.1 0.225 - -

CCL15 2 188/111 1.09 (1.00–1.19) 0.135# 0 0.996 - -

CXCL8 6 271/302 1.13 (0.80–1.59) 1.497# 89.3  < 0.001 1 0.08

CXCL9 2 46/61 2.29 (1.57–3.32)  < 0.001 25.8 0.246 - -

CX3CL1 2 93/69 0.77 (0.62–0.96) 0.05# 0 0.938 - -

MCI vs HC CCL1 2 95/631 1.30 (0.66–2.54) 1.356# 90.6 0.001 - -

CCL2 13 655/665 1.07 (0.98–1.16) 0.369# 77.6  < 0.001 0.50 0.412

CCL3 2 95/31 0.64 (0.22–1.92) 1.827# 91 0.001 - -

CCL4 3 317/311 0.94 (0.83–1.07) 1.059# 1.8 0.361 1 0.51

CCL5 2 81/89 1.28 (0.50–3.23) 1.281# 79.7 0.027 - -

CCL7 2 69/38 0.94 (0.73–1.22) 1.971# 42.1 0.189 - -

CCL11 6 347/331 1.03 (0.97–1.1) 0.933# 0 0.824 1 0.49

CCL15 2 111/59 1.16 (1.01–1.35) 0.117# 0 0.654 - -

CCL26 2 82/107 1.27 (0.63–2.57) 1.768# 41 0.193 - -

CXCL8 7 340/194 1.05 (0.61–1.80) 2.589# 96.4  < 0.001 0.45a 0.79a

CXCL9 2 61/52 1.01 (0.76–1.34) 2.79# 0 0.324 - -

CX3CL1 2 69/77 2.02 (1.58–2.58)  < 0.001 19.2 0.266 - -
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MCI cohorts, including 1651 AD patients and 1186 MCI 
subjects in the comparison.

In the CC motif, data from two cohorts of AD and MCI 
evaluating the chemokine CCL1 in plasma or serum, 
which included 120 AD patients and 95 MCI patients, 
revealed a substantial effect size (RoM, 1.37, 95% CI, 
1.17–1.59, corrected p < 0.001; I2 = 0%; Table  2 and Fig-
ure S14 in Supplementary file). We found a large or huge 
effect size in CXCL9 (RoM, 2.29, 95% CI, 1.57–3.32, 
p < 0.001; I2 = 25.8%; Fig. 3), with a 130% rise in AD when 
compared to MCI. In addition, the chemokine CX3CL1 
(fractalkine) concentrations in serum/plasma differed 
modestly and marginally (RoM, 0.77, 95% CI, 0.62–0.96, 
corrected p = 0.051; I2 = 0%; Fig. 3) between AD and MCI.

The concentrations of the other chemokines (CCL2, 
CCL3, CCL4, CCL5, CCL7, CCL11, CCL15, and CXCL8) 
in plasma or serum did not change substantially between 
AD and MCI (average ratios ranging from 0.98 to 1.13, all 
p > 0.05).

Comparison between MCI and HC in serum/plasma 
chemokine levels
In the comparison between MCI and HC, 12 chemokines, 
including 9 CC motifs (see Table  2), 2 CXC motifs 
(CXCL8 and CXCL9), and 1 CX3C motif (fractalkine), 
were reported by 17 studies in 22 MCI and HC cohorts, 
totaling 1254 MCI patients and 2196 healthy controls.

The serum/plasma concentrations of the chemokine 
CX3CL1 (fractalkine) differed substantially between 
MCI and HC (RoM, 2.02, 95% CI, 1.58–2.58, p < 0.001; 
I2 = 19.2%). The chemokine CCL15 in plasma/serum 
from two MCI and HC cohorts, which included 111 
patients with MCI and 59 HC, showed an average ratio 
of 1.16 (95% CI, 1.01–1.35, corrected p = 0.117; I2 = 0%; 
Fig. 3 and Figure S14 in Supplementary file).

Other chemokines in plasma/serum (CCL1, CCL2, 
CCL3, CCL4, CCL5, CCL7, CCL11, CCL26, CXCL8, and 
CXCL9) had no significant differences between MCI and 
HC (average ratios ranging from 0.64 to 1.28, all p > 0.05).

Pairwise comparisons among AD, MCI, and HC in CSF 
chemokine levels
In CSF, the chemokines CCL2 (MCP-1), CCL5, CXCL8 
(IL-8), CXCL10 (IP-10), CXCL12, and CX3CL1 (frac-
talkine) have available data in the literature from AD 
cohorts, MCI cohorts, or healthy control cohorts. Six 
chemokines had data in AD vs HC, 4 in AD versus MCI, 
and 4 in MCI versus HC. This included 21 AD cohorts 
and 21 control cohorts, as well as 8 MCI cohorts, totaling 
743 AD patients, 201 MCI subjects, and 821 controls.

In CSF CCL2 (MCP-1), twelve studies on AD against 
control consisted of 310 AD patients and 338 controls, 
and six studies on MCI against control consisted of 
175 MCI and 171 controls. In contrast to the lack of 
significance in serum/plasma, it was observed that the 

AD Alzheimer’s disease, MCI Mild cognitive impairment, HC Healthy control, CSF Cerebrospinal fluid, RoM Ratio of mean, CI Confident interval
a  When removing the outlier (Kim et al.’s study)
# p value with Bonferroni corrected

Table 2  (continued)

Comparison Chemokine Sample No of study N Main effect Heterogeneity Publication bias

RoM (95% CI) P value I2 (%) P value p for Begg’s p for Egger’s

AD vs HC CCL2 CSF 12 310/338 1.19 (1.13–1.25)  < 0.001 0 0.81 0.84 0.73

CCL5 2 38/56 1.30 (0.66–2.57) 0.451 48.3 0.164 - -

CXCL8 10 260/308 1.22 (0.99–1.50) 0.174# 86.8  < 0.001 0.59 0.85

CXCL10 5 295/231 1.05 (0.84–1.31) 2.007# 68.8 0.012 0.46 0.60

CXCL12 2 42/47 0.95 (0.62–1.46) 0.803 83.8 0.013 - -

CX3CL1 4 133/207 1.09 (0.93–1.28) 0.933# 51.6 0.102 0.73 0.71

MCI vs HC CCL2 6 175/171 1.16 (1.05–1.29) 0.012# 59.2 0.031 0.26 0.39

CXCL8 3 65/85 1.52 (0.70–3.29) 0.585# 96.2  < 0.001 1 0.37

CXCL10 2 52/66 1.19 (0.48–2.97) 2.103# 92.6  < 0.001 - -

CX3CL1 3 72/70 1.27 (0.71–2.28) 1.266# 89.7  < 0.001 1 0.63

AD vs MCI CCL2 5 130/123 1.04 (0.90–1.19) 1.893# 56.3 0.058 1 0.33

CXCL8 3 61/65 0.72 (0.38–1.37) 0.96# 94.7  < 0.001 1 0.47

CXCL10 2 36/52 1.08 (0.56–2.08) 2.454# 76.2 0.04 - -

CX3CL1 3 83/72 0.80 (0.51–1.27) 1.044# 81.1 0.005 1 0.33
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CSF levels of CCL2 were higher in AD than in controls 
(RoM, 1.19, 95% CI, 1.13–1.25, corrected p < 0.001; 
I2 = 0), and in MCI than HC (RoM, 1.16, 95% CI, 1.05–
1.29, corrected p = 0.012; I2 = 59.2%). When comparing 
AD with MCI, however, the CSF CCL2 (MCP-1) con-
centrations did not differ substantially (RoM, 1.04, 95% 
CI, 0.90–1.19, corrected p = 1.893; I2 = 56.3%; Fig.  4), 
suggesting that CSF CCL2 appears to be a marker 
reflecting the degree of cognitive impairment, although 
it has a slight elevation.

With sufficient data from the most cohort studies 
among all the chemokines tested, there was no differ-
ence in CSF concentration of IL-8 (CXCL8) between AD 
patients and controls (average ratio 1.22, 95% CI, 0.99–
1.50, corrected p = 0.174; I2 = 86.8%). The three pairwise 
comparisons for CSF CXCL10 (IP-10) and CX3CL1 
(Fractalkine) had available data but did not yield statisti-
cally significant findings (p > 0.05, Table 2 and Figure S15 
in Supplementary file). Other chemokines in CSF (CCL5, 
CXCL10, CXCL12, and CX3CL1) had no significant 

Fig. 2  The performance of serum/plasma chemokines in differentiating Alzheimer’s disease from healthy controls. Based on average AD to control 
ratios, head-to-head chemokine performance in serum/plasma. An asterisk indicates significance, p < 0.05

Fig. 3  The performance of serum/plasma chemokines in differentiating MCI from healthy individuals and AD from MCI. The average ratios of MCI to 
controls and AD to MCI were used to compare chemokine performance in serum or plasma. An asterisk indicates significance, p < 0.05
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differences in the three pairwise comparisons (average 
ratios ranging from 0.80 to 1.52, all p > 0.05).

In summary, Figs.  2, 3, 4, and 5 exhibit head-to-head 
arrangement of chemokine performance. In the com-
parison between AD and HC, blood CXCL10, CXCL9, 
CCL27, and CCL15 were significant with good effect 
sizes. In the comparison between MCI and HC, blood 
CX3CL1 was significant with a large effect size. In the 
comparison between AD and MCI, blood CXCL9 and 
CCL1 had large effect sizes, and blood CX3CL1 was 

marginally significant with higher level in MCI compared 
with in AD. Among the chemokines investigated, only 
CSF MCP-1 was significant in both AD vs HC and MCI 
vs HC. None of the other CSF biomarkers were found to 
be significant in these comparisons.

Subgroup analysis, study heterogeneity, and publication 
bias
There was considerable evidence of heterogeneity with I2 
values up to 99.1% (see Figure S13-20 in Supplementary 

Fig. 4  The ability of CSF chemokines to distinguish AD from MCI. Average AD to MCI ratios were used to compare CSF chemokine performance. An 
asterisk indicates significance, p < 0.05

Fig. 5  The performance of the chemokines CCL1, CCL15, CCL27, CXCL9, CXCL10, and CX3CL1 in the serum/plasma in the three pairwise 
comparisons. An asterisk indicates significance, p < 0.05
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file). Subject to limited data availability, subgroup 
analyses were mainly conducted for CCL2 (MCP-
1) and CXCL8 (Figures S16-20, Supplementary file). 
Sample source, study design, and assay method could 
account, partly, and to a lesser extent, for the source of 
heterogeneity.

According to sensitivity analysis, the performance of 
most chemokine biomarkers in peripheral blood and CSF 
was not substantially influenced by specific study. The 
funnel plots and Begg’s/Egger’s tests revealed that in the 
majority of the analyses, there was no significant publi-
cation bias (Figures S2-S12 in Supplementary file). How-
ever, publication bias was evident for the meta-analysis of 
blood CCL2 in AD vs HC (Begg’s test p = 0.02, substantial 
asymmetry of the funnel plot). As a result, we used the 
Trim and Filled method to re-calculate the pooled esti-
mate. The analysis suggested that the adjusted RoM (95% 
CI) was 1.13 (0.92–1.39), remaining without statistical 
significance (Figure S1 in supplementary file).

The sensitivity analysis demonstrated that in the analy-
sis of blood CXCL8 in AD vs HC, an outlier from Kim 
et  al.’s study [64] was the only one that would change 
significantly the pooled result (Figure S2 in Supplemen-
tary file). Moreover, the meta-analysis of blood CXCL8 
in AD vs HC demonstrated publication bias (Egger’s test 
p = 0.04, significant funnel plot asymmetry, figure not 
shown). After the outlier was removed, however, publica-
tion bias was minimized (Begg’s test p = 0.77, Egger’s test 
p = 0.21). In addition, Kim et al.’s study on blood CXCL8 
in MCI vs HC had also a significant influence on hetero-
geneity and publication bias, but failed to change the sig-
nificance of the result.

Discussion
Principal findings and possible explanations
The current investigation examined the conflicting results 
of the studies on the serum/plasma and CSF chemokine 
markers linked to AD or MCI. The current findings show 
that AD is associated with higher blood levels of CCL15, 
CCL27, CXCL9, and CXCL10, and higher CSF levels of 
CCL2 compared with controls. Furthermore, blood lev-
els of CXCL9 and CCL1 are higher in AD compared with 
MCI, and blood CX3CL1 (Fractalkine) has a higher level 
in MCI compared with controls. This includes reporting 
a wide range of changes in blood chemokines, such as a 
90% higher CXCL10 level, an almost 80% higher CXCL9 
level, and 29–35% higher CCL15/CCL27 levels in AD vs 
controls; an over twice higher CX3CL1 level in MCI vs 
controls; and an about 130% higher CXCL9 level, 13% 
lower fractalkine (CX3CL1) level, 37% higher CCL1 
level in AD vs MCI. Meanwhile, in CSF, AD is linked to 
an around one-fifth higher level of CCL2 (MCP-1), and 

MCI to a modest rise (16%), when compared to healthy 
controls.

Chemokine-mediated neuroinflammation appears 
to play a significant role in the development and main-
tenance of cognitive impairment, according to an 
increasing body of evidence [15, 88, 89]. Chemokine 
liberation is high, which accelerates the inflammatory 
cascade. Chemokines are small proteins with 60–90 
amino acids that exert an important function in direct-
ing leukocytes to areas of inflammation or injury during 
immune responses [14]. Some chemokines are thought 
to be pro-inflammatory and capable of inducing immune 
responses, whereas others are thought to be homeostatic.

CCL15, also known as macrophage inflammatory pro-
tein (MIP)-1δ, and CCL1 (I-309), belong to members of 
the CC chemokines. Both chemokines are important in 
attracting immune cells to sites of damage or infection. 
CCL1 is an atypical chemokine since it is released by 
more mobile T-lymphocytes, implying a broader immu-
nological response. CCL1 level was observed to be higher 
in AD compared to controls and MCI in the transition 
from MCI to AD, regardless of age, sex, or APOE geno-
type, at each of the baseline, 18-, and 36-month sampling 
periods [60]. However, new data on CCL1 levels in CSF 
did not corroborate the finding that CCL1 in CSF, but not 
in blood, is linked with the severity of cognitive impair-
ment [90]. As a macrophage inflammatory protein that 
binds to its receptor and exerts a pro-inflammatory effect 
[91, 92], CCL15 increased cell adhesion of monocytes 
to endothelial cells under static and shear-stress con-
ditions [93]. Since their effect sizes are large, the blood 
levels of both the chemokines were useful in differentiat-
ing AD from MCI and healthy participants based on our 
meta-analysis.

CCL2, also called as MCP-1, is a CC chemokine that 
plays a key role in AD-related neuroinflammation [16]. 
CCL2 is a crucial component of the neuroinflamma-
tory response that is produced by Aβ-stimulated micro-
glia and astrocytes [94]. CCL2 loss was found to affect 
behavioral impairments and disease development in Aβ 
precursor protein/presenilin-1 double-transgenic mice 
[95, 96], implying that CCL2 signaling is important in 
AD [97]. CCL2 was found to be involved in the rupture 
of the blood–brain barrier in an acute neurological ill-
ness model [98]. Studies have reported that increased 
CSF MCP-1 levels are linked to lower MMSE scores, and 
greater baseline levels predict a faster rate of cognitive 
deterioration in the early stages of Alzheimer’s disease 
[24]. As a result, CCL2 could be used as a measure of AD 
progression [99]. Our meta-analytic findings revealed 
that MCP-1 levels were significantly elevated in CSF, 
but not in blood, in subjects with AD and MCI, suggest-
ing that increased MCP-1 level appears to be primarily 
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from CNS-resident cells rather than from peripheral leu-
cocytes, and that the CSF levels of MCP-1 had a larger 
effect size in AD-controls than in MCI-controls, indicat-
ing that increased CSF MCP-1 level is clearly associated 
with the severity of cognitive impairment.

CCL27 is known as the cutaneous T cell attractive 
chemokine because it is predominantly produced by 
keratinocytes in the skin and has memory T cell homing 
capabilities (CTACK). It has a high level of expression in 
the central nervous system, particularly in the cerebral 
cortex and limbic structures [100], as well as in the liver 
and kidneys [101]. The chemokine CCL27 transcript was 
highly upregulated at the locations of AD lesions [102]. 
Blood CCL27 may be a good marker that can differenti-
ate AD from healthy subjects, but more investigations on 
the relationship between AD and blood CCL27, as well as 
upon the role of CCL27 in Alzheimer’s neurodegenera-
tion are urgently needed.

The chemokines CXCL9 and CXCL10 (IP-10) share 
CXCR3 as a common receptor, which is expressed on T 
cells, NK cells, and neurons. CXCL10 was found to be 
expressed in astrocytes and to be localized around Aβ 
plaques in an AD mouse model [103]. CXCL10 is upreg-
ulated in rat brains, cultured astrocytes, and microglia 
after LPS injection, indicating that it is implicated in 
inflammatory processes. In an APP/PS1 mouse model, 
CXCR3 deletion significantly reduced plaque formation 
in the brain [103, 104]. In current analyses, although hav-
ing very less number of studies, both the chemokines 
were found to have large effect sizes ranging from 1.78, 
1.92, and 2.29. As a result, our meta-analysis revealed 
that CXCL9 and CXCL10 might also be useful as tau-
independent and Aβ-independent blood-based candidate 
biomarkers for AD.

In nervous system, the chemokine CXCL8 (IL-8) is 
expressed in neurons, astrocytes, and microglia. Its 
receptor CXCR2 is highly expressed in microglia and 
astrocytes. When in  vitro stimulated with Aβ, micro-
glia, astrocytes, and neurons were all capable of pro-
ducing CXCL8. It was reported that IL-8 could affect 
GSK3β phosphorylation and modulate protein phos-
phatase activity in  vitro, resulting in enhanced Tau 
phosphorylation [105]. A study [106] found that CXCL8 
levels in AD brain were considerably greater than those 
in age-matched controls. As a result, it may play a det-
rimental role in the etiology of Alzheimer’s disease. The 
current analysis has demonstrated that blood IL-8 has 
a large effect size, a strong significance in the compar-
ison of AD with healthy individuals, if the outlier was 
removed, meaning that more investigations is needed to 
clarify this.

The only member of the CX3C family, CX3CL1 (frac-
talkine), is one of only two transmembrane chemokines. 

It is found in neurons, astrocytes, and endothelial cells; 
the fractalkine-specific receptor, G protein-coupled 
CX3CR1, is expressed in astrocytes and microglia, and 
the CX3CL1-CX3CR1 interaction controls microglial 
recruitment to neuroinflammation sites. Neuronal sur-
vival, plaque load, and cognition are all influenced by 
the CX3CR1/CX3CL1 system [107]. Fractalkine expres-
sion in the hippocampus and cortex is lower in AD than 
in non-demented controls [108], indicating that this 
CX3CL1-CX3CR1 pathway is dysregulated in AD. It may 
have complex interactions with the two characteristic 
hallmarks of AD and may be neuroprotective [109, 110] 
or neurotoxic [89] at various stages of disease progres-
sion. Although the blood fractalkine ratio is not statisti-
cally significant between AD and controls in the current 
study, the considerable large effect size in MCI vs control 
does not rule out its potential as a biomarker for separat-
ing MCI patients from healthy subjects. Meanwhile, our 
finding would seem to hint that there was a fluctuating 
change in the blood fractalkine levels during cognitive 
impairment, with stages of a rapid rise in modest impair-
ment, then an obvious drop in serious impairment.

This meta-analysis differed from previous reports [34, 
111] in several important aspects. First, it was larger and 
more comprehensive than ever. Second, we have applied 
the approach of generating fold-change using the ratio of 
means (RoM) as the effect measure to control the vari-
ability in concentration ranges between studies. The vari-
ability in chemokine concentrations between laboratories 
and assays, as well as in varied cutpoints, is high; how-
ever, the RoM, as a measure superior to standard mean 
difference, can help reduce this. Third, those studies in 
control individuals diagnosed with depression, headache, 
or pain syndromes were excluded, which would reduce 
any potential impact of common clinical complaints on 
chemokine concentrations.

Some limitations should be addressed in this analysis. 
Firstly, in most cohorts, a significant problem is a lesser 
number of studies in a single chemokine, and there was 
noticeable heterogeneity. Secondly, although the exclu-
sion of depression or headache or pain from HC groups 
may indeed result in the selection of healthier compara-
tor groups, this generates its own problems in that it is 
not possible to know whether the measured chemokine 
levels are specific to AD/MCI. Comparisons would have 
been enhanced by including groups with other brain dis-
ease, e.g., Parkinson’s disease or stroke. Thirdly, most of 
the studies included were case–control designs in the 
review—these are likely to enter significant bias. Fourthly, 
most of the studies included failed to either exclude or 
describe the use of anti-inflammatory drugs, which can 
substantially affect the levels of chemokines. Lastly, it is 
likely that a few of these chemokines are correlated with 
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age. Thus, there is the possibility that the changes in AD 
or MCI are driven by age, particularly if the AD or MCI 
patients are older than HC.

Some chemokines, such as CCL19, revealed changes in 
concentrations between AD and controls, but were una-
ble to be distinguished using ratios. Among most of the 
comparisons, there were a limited number of studies. As 
a result, our findings should be regarded only as explora-
tory and hypothesis-generating. However, the reported 
overall effect sizes of blood marker performance provide 
useful information for future research. Furthermore, 
the finding of the pivotal chemokines linked to AD and 
MCI has their potential to remove hurdles of therapeu-
tic development. Meanwhile, more research is needed to 
determine how these peripheral or CSF chemokines are 
linked to well-established AD biomarkers like Aβ and tau.

Conclusions
Our meta-analysis revealed significant relationships of 
blood CXCL10, CXCL9, CCL27, and CCL15, as well as 
CSF CCL2 with Alzheimer’s patients compared with cog-
nitively normal control subjects, of blood CXCL9 and 
CCL1 with Alzheimer’s disease compared with mild cog-
nitive impairment, and of blood CX3CL1 with mild cog-
nitive impairment compared with healthy subjects. CCL2 
(MCP-1) may be the only CSF chemokine biomarker 
for the comparisons of AD or MCI with healthy people. 
However, these findings must be verified in future large 
and multicenter cohort studies for subsequent diagnosis 
and/or prognostic utility for MCI and AD.
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