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Abstract

Most impedance-based walking controllers for powered knee-ankle prostheses use a finite state 

machine with dozens of user-specific parameters that require manual tuning by technical experts. 

These parameters are only appropriate near the task (e.g., walking speed and incline) at which they 

were tuned, necessitating many different parameter sets for variable-task walking. In contrast, 

this paper presents a data-driven, phase-based controller for variable-task walking that uses 

continuously-variable impedance control during stance and kinematic control during swing to 

enable biomimetic locomotion. After generating a data-driven model of variable joint impedance 

with convex optimization, we implement a novel task-invariant phase variable and real-time 

estimates of speed and incline to enable autonomous task adaptation. Experiments with above-

knee amputee participants (N=2) show that our data-driven controller 1) features highly-linear 

phase estimates and accurate task estimates, 2) produces biomimetic kinematic and kinetic trends 

as task varies, leading to low errors relative to able-bodied references, and 3) produces biomimetic 

joint work and cadence trends as task varies. We show that the presented controller meets 

and often exceeds the performance of a benchmark finite state machine controller for our two 

participants, without requiring manual impedance tuning.
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I. Introduction

To perform activities that require net-positive energy, such as ascending ramps and stairs, 

passive prosthesis users must supply supplemental power from intact joints [1], leading to 

secondary complications including increased energy expenditure [2], osteoarthritis [3], [4], 

and lower back pain [5]. While powered prostheses can help avoid these complications by 

performing net-positive work [1], [6]–[9], designing prosthetic control systems for diverse 

environments remains a challenge.

Impedance control is a common strategy in lower-limb wearable robotics because of its 

simplicity and ability to produce behaviors that are similar to human biology, such as a 

compliantly controlled interaction with the ground [10] and dynamics similar to what has 

been observed in skeletal muscles [11]. Further, empirical studies have shown that ankle 

joint dynamics during walking are well described with an impedance controller [12]–[14]. 

A standard impedance controller calculates joint torque τ based on a joint angle θ and joint 

velocity θ̇ as

τ = − K θ − θeq − Bθ̇, (1)

where K, B, and θeq are parameters defining the joint’s stiffness, damping, and equilibrium 

angle, respectively.

Traditional methods of impedance control for lower-limb prostheses involve segmenting the 

gait cycle into discrete sub-phases, where each sub-phase has its own constant values of K, 

B, and θeq. Researchers manually tune the impedance parameters in each sub-phase until the 

observed gait is satisfactory [6], [15]–[19]. Switching between sub-phases is controlled by 

a finite state machine (FSM) with transition criteria based on sensor readings (e.g., elapsed 

time, leg loading, joint angles, etc.). Like the impedance parameters, these transition criteria 

are often experimentally tuned for an individual’s gait by a technical expert. More elaborate 

impedance value representations have been suggested [19]–[22], but these methods still 

required manual, expert tuning.

Joint kinematics and kinetics vary based on the ground incline and walking speed [23], 

[24] (together termed the user’s task). Therefore, the necessary impedance parameters and 

state machine transition criteria also vary. For a standard FSM impedance controller to 

operate over a wide array of tasks, many tunable parameters are required. For example, 

one multi-modal impedance controller required a total of 140 tunable parameters for five 

ambulation modes [20]. While only a portion of these parameters were considered necessary 

to tune, the device’s configuration and tuning still required the researchers up to five hours 

to complete.

In contrast to the standard FSM-based impedance control paradigm, some authors have 

suggested using continuous functions to define the impedance parameters and how they 

evolve over the gait cycle [25]–[28]. In general, controllers that continually vary a robot’s 

output mechanical impedance with time are known as variable impedance controllers 

[29]. Biomechanical principles suggest that human joints behave like variable impedance 

controllers [30] and empirical studies have observed this behavior at the ankle joint during 
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walking [12]–[14]. Therefore, variable impedance control may offer a biomimetic solution 

for controlling powered prosthetic legs. However, how to appropriately define the variable 

impedance functions to realize walking gaits remains an open question.

A variable impedance controller was suggested in [26] using linear functions for 

stiffness and damping during stance. The linear functions were hand-tuned and held 

constant regardless of task. The variable impedance control method in [25] eliminated 

tuning altogether by using able-bodied kinematic data to generate continuous impedance 

parameter functions of gait phase. However, this method was limited to the knee joint, 

did not consider joint kinetics, and was never experimentally validated. Recently, [27] 

proposed a similar variable impedance controller where ankle stiffness and damping were 

defined as polynomials in gait phase, and the coefficients defining the polynomials were 

identified using constrained least squares with an able-bodied kinematic and kinetic dataset. 

The authors utilized piecewise-constant equilibrium angles and demonstrated continuous 

stiffness and damping expressions that produced satisfactory gait with a post-optimization 

tuning protocol. This work was later extended to include variable inclines and a phase 

variable parameterization of stiffness and damping based on the phase portrait of the thigh 

angle and its integral [28]. However, this phase variable is known to have challenges with 

non-steady walking [31], and changes in impedance associated with walking speed were not 

considered. The authors of [28] also note that their method of identifying the impedance 

parameters is non-convex, which does not guarantee a globally optimal solution [32] for 

their controller.

This paper addresses these limitations by presenting a new phase-based, task-adaptive 

walking controller built on a hybrid combination of continuously-variable impedance control 

during stance and kinematic control during swing (Fig. 1). First, we present a convex, 

data-driven framework to calculate stance phase joint stiffness, damping, and equilibrium 

angle as continuous functions of gait phase, walking speed, and incline from an able-bodied 

dataset [24] (Section III). Paired with an analogous model of swing joint kinematics [23], 

our hybrid controller adapts behavior across varying tasks based on real-time phase, speed, 

and incline estimates (Section IV). Next, we present an improved phase variable that 

avoids kinematic singularities and is robust to the diverse family of thigh trajectories 

associated with variable-task walking. Then, we perform validation experiments with 

two above-knee amputee (AKA) participants, demonstrating that the adaptive controller 

produces biomimetic trends in joint kinematics, kinetics, work, and cadence across varying 

tasks (Section V). Finally, we show that our presented controller meets or exceeds the 

performance of a hand-tuned benchmark FSM impedance controller in most tested metrics, 

suggesting that our optimized kinematic and impedance models sufficiently capture the key 

biomechanics of variable-task walking.

II. Related Work

Many researchers have attempted to lessen the manual tuning burden of FSM impedance 

controllers in previous work. One common approach is to limit impedance control to the 

stance phase of gait and use kinematic control in swing phase, similar to our proposed 

architecture. Though many have used this hybrid architecture without a phase variable [6], 
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[33]–[40], relatively few have used it with one [28], [41]. Phase variable parameterization 

can be helpful because it allows continuous regulation of the dynamic interaction between 

the user and the ground during stance and provides the user with indirect volitional control 

over foot position during swing [31].

Additionally, some researchers have used biological quasi-stiffness curves calculated from 

able-bodied data [33], [37], [38], [41], [42] in lieu of hand-tuned impedance parameters. 

While [33], [37], [38], [42] enabled variable-speed walking and [38] enabled obstacle 

crossing, these approaches were limited to level ground and relied on an FSM to switch 

between regions of the nonlinear quasi-stiffness curve during stance. Similarly, a quasi-

passive ankle prosthesis presented in [43] enabled variable-incline walking with limited 

tuning by implementing a constant external quasi-stiffness relationship between the global 

shank angle and ankle torque. This external quasi-stiffness relationship was shown to 

be invariant across inclines during midstance, obviating the need for real-time incline 

estimation. However, this invariant relationship was limited to midstance and the controller 

relied on an FSM with manually tuned behavior for the remainder of the gait cycle. Further, 

as the control approach was developed for a passive prosthesis, it did not provide a method 

to increase net ankle work with increasing incline, which is an important characteristic 

of able-bodied walking [24]. Finally, this method was limited to ankle prostheses, and it 

is unclear whether the analogous external quasi-stiffness relationship for the knee during 

midstance is similarly invariant.

Other researchers have used reinforcement learning (RL) to automatically tune the 

impedance parameters online while a user walks, thus reducing the need for manual 

expert tuning [44]–[46]. Reward functions have been built on knee kinematic similarity 

to predefined trajectories or the observed contralateral knee’s trajectories. However, these 

approaches were limited to the knee joint only and can require several minutes of walking 

before the optimal impedance parameters are identified. Further, the RL algorithms focused 

on kinematic features; the resulting kinetics and overall biomechanics were not investigated.

Non-impedance-based tuning-free controllers have also been developed. In [31], [47], [48], 

able-bodied kinematic profiles parameterized by a phase variable (i.e., virtual constraints) 

enabled tuning-free walking. This approach was extended for variable speed and incline 

walking in [49]. A similar controller was suggested for stair ascent [50]. However, the 

purely kinematic control paradigm tended to display non-biomimetic joint torques during 

stance. Additionally, the tuning-free knee-ankle prosthesis controller presented in [22] used 

an electromyography signal from the biceps femoris to control knee torque. The ankle 

impedance controller used a constant stiffness and damping with an equilibrium angle 

calculated from the knee angle. This controller enabled walking, sitting, squatting, and 

lunging, but was not demonstrated on different slopes.

Finally, our work is most closely related to the phase-varying impedance controller derived 

from able-bodied data in [28], as discussed in Section I. However, our approach is 

distinct in multiple important ways. First, our convex optimization formulation provides 

an approximation of the globally optimal impedance parameter functions. In addition to 

global optimality, our convex formulation can be solved in polynomial time [32] to facilitate 

Best et al. Page 4

IEEE Trans Robot. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



future work on real-time optimization using user data or clinician preference (e.g., [51]). 

Second, our variable impedance model includes a continuous function for equilibrium angle, 

mirroring the continuous progression of biological joint dynamics [12]–[14]. Third, our 

variable impedance model is further parameterized by walking speed, which is critical 

to reproducing normative gait energetics [48]. Fourth, we estimate the task variables in 

real-time, making the system fully autonomous. Fifth, we use a phase variable that is more 

robust to variable speed and incline behavior than prior phase variable definitions [28], [31], 

[48], [49]. And sixth, we demonstrate that our approach produces biomimetic trends in joint 

kinematics, kinetics, work, and cadence for two novel AKA participants over a range of 

tasks without any manual impedance tuning.

III. Variable Impedance Model for Stance

A. Model Framework

To use impedance control for the stance phase of the gait cycle in a continuous, phase-based 

control framework, we require a model analogous to the kinematic model developed in [23] 

that describes how the impedance parameters (K, B, and θeq) should evolve. Specifically, we 

require the impedance parameter model to be continuously parameterized by both gait phase 

s and task χ = (ν, γ), where task is defined by the current walking speed ν and ground 

incline γ over the ranges 0.8 ≤ ν ≤ 1.2 m/s and −10 ≤ γ ≤ 10 deg.

A model that meets these criteria can be constructed from a linear combination of phase-

varying polynomials, where the linear combination weights vary with the task. Polynomial 

functions of phase are useful to model parameter progression during stance because they 

are simply parameterized and can represent arbitrary aperiodic signals. We use fourth order 

polynomials (d = 4), as they allow sufficient flexibility to model the parameter behavior 

without overfitting. Once the appropriate polynomial functions are identified for individual 

tasks in a dataset, bilinear interpolation can be used to create a unified, continuous model 

with task and phase inputs.

First, we define task-specific polynomial functions that represent how the parameters vary 

during stance for a set of fixed tasks. For convenience, let sst be the stance phase (i.e., sst = 

s/sTO, where sTO is the phase at toe-off). Then, the impedance parameters for the p-th fixed 

task χp are

Kχp = ∑
i = 0

d
kipsst

i , Bχp = ∑
i = 0

d
bipsst

i , θeq, χp = ∑
i = 0

d
eipsst

i , (2)

where κχp = kip, bip, eip ∣ i ∈ 0, … , d  is a set of constant coefficients. Then, the coefficients 

κνγ defining the impedance parameter trajectories for an arbitrary task (ν, γ) are calculated 

through bilinear interpolation of its four nearest neighboring tasks κνn, γn, where νn ∈ {ν1, 

ν2}, γn ∈ {γ1, γ2}. For all j elements in κνγ, this interpolation is

κνγ
j = ν2 − ν ν − ν1

ν2 − ν1 γ2 − γ1

κν1γ1
j κν1γ2

j

κν2γ1
j κν2γ2

j

γ2 − γ
γ − γ1

. (3)
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Finally, using κνγ and (2) evaluated at the current stance phase sst, the impedance 

parameters are calculated. Therefore, the model is fully defined once each task-specific 

set of coefficients κχp is calculated.

B. Model Fitting

We use an optimization-based approach to fit the model to a dataset of able-bodied 

walking [24]. The dataset contains kinematic and kinetic joint trajectories recorded from 

10 participants walking at steady-state at 15 distinct points in the task space (i.e., γ ∈ {−10, 

−5, 0, 5, 10} deg, ν ∈ {0.8, 1.0, 1.2} m/s). Therefore, for each task χp, we construct an 

optimization problem to identify the set of impedance parameter coefficients κχp
*  that, when 

used in (1)–(2), best reproduced the mass-normalized joint torques τ in the dataset given the 

dataset kinematics (θ, θ̇) over all n data points at χp:

κχp
* = arg min1

n τ − τ
2

2

,
where τ = Kχp θeq,χp − θ − Bχpθ̇ .

(4)

1) Solution Approximation: As written, (4) is difficult to solve, as the product Kχpθeq, χp

is nonlinear in the unknown parameters, and the overall objective function is non-convex. 

To avoid this issue, we solve a similar, convex problem and use its solution to approximate 

a solution to (4). First, we combine the product of Kχp and θeq, χp into a new, higher-order 

polynomial δχp with independent coefficients δip:

Kχpθeq, χp = ∑
i = 0

d
kipsst

i ∑
i = 0

d
eipsst

i = ∑
i = 0

2d
δipsst

i = δχp . (5)

By treating the δip terms as independent from the kip terms, the impedance equation for τ
becomes linear in the unknown parameters kip, bip, and δip. We can then write the modified 

optimization problem as a standard quadratic program (QP), defining a new argument vector 

x ∈ ℝ4d + 3 × 1 as

x = k0p, … , kdp, b0p, … , bdp, δ0p, … , δ2dp
⊤ . (6)

Let αj ∈ ℝ4d + 3 × 1 be defined for each data point j as

αj = −θjsj
0, … , − θjsj

d, − θ̇jsj
0, … , − θ̇jsj

d, sj
0… , sj

2d ⊤ . (7)

Then, the objective function L κχp  from (4) becomes

L κχp = 1
n τ − τ

2

2

= 1
n ∑

j = 1

n
τj

2 − f⊤x + 1
2x⊤Hx, (8)

where
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H = 2
n ∑

j = 1

n
αjαj

⊤, f = 2
n ∑

j = 1

n
τjαj . (9)

2) Constraints and Regularization: To prevent overfitting, we added a diagonal 

regularization matrix R = diag(λ) ∈ ℝ4d + 3 × 4d + 3 to H to penalize the L2 norm of x. The 

n-th diagonal entries in R corresponding to the regularization weights on ki and bi were λn 

= 1e−5 while λn = 1e−2 for the δi terms. These hyperparameters were chosen prior to the 

experiments in order to produce a smooth model that captured general behavior instead of 

overfitting to the training dataset.

Next, we added a constraint matrix A to ensure that Kχp(s) and Bχp(s) remained within ranges 

that were both physiologically realistic and feasible for the prosthesis to render in a stable 

manner. Namely, Kχp(s) was constrained above 1.5 Nm/rad/kg and Bχp(s) was constrained 

between 0.01 and 1.0 Nms/rad/kg. In addition, AKA participants in preliminary experiments 

noted that a low stiffness at heelstrike was unsettling, as they were accustomed to a locked 

knee during early stance with their take-home prostheses. Therefore, a minimum heelstrike 

stiffness constraint of 3.0 Nm/rad/kg was added to increase participants’ confidence that the 

prosthesis was ready for weight acceptance at heelstrike.

To enforce these constraints, we discretized stance phase into nj points in the range [0, 1]. 

We constructed a constraint matrix A ∈ ℝ3nj × 4d + 3 from sub-matrices As ∈ ℝnj × d + 1 as

As =
s1

0 … s1
d

⋮ ⋱ ⋮
snj

0 … snj
d

, A =
−As 0 0

0 −As 0
0 As 0

. (10)

A column vector b ∈ ℝ3nj × 1 contained nj copies of the minimum stiffness and damping and 

maximum damping values, with the first term modified for the heelstrike constraint:

b = − [3.0, 1.5, … , 1.5, 0.01, … , 0.01, − 1.0, … , − 1.0]⊤ . (11)

Finally, we arrived at the full QP, with the positive offset torque (sum-of-squares) in (8) 

neglected without loss of generality:

minimize
x

1
2x⊤(H + R)x − f⊤x

subject to Ax ≤ b .
(12)

We solved this QP for each subject and task χp combination in the dataset (N = 150) using 

the MATLAB Optimization Toolbox (R2021b, MathWorks, Natick, MA, USA). Then, we 

approximated the solution to the original problem (4) by projecting the rational function 

δχp sst /Kχp sst = θeq, χp sst  onto a d-th order polynomial. We assumed the polynomial order 

was sufficiently high to approximate the rational function δχp sst /Kχp sst  without significant 
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information loss. This assumption was validated by the model’s low reconstruction error, 

detailed in the next section. Then for each task χp, the inter-subject mean set of coefficients 

κχp was calculated for use as the final model. Trials that did not well-represent the data, 

measured by a Variance Accounted For (VAF) below 75%, were discarded as outliers prior 

to averaging.

C. Modeling Results

Fig. 2 shows the calculated impedance parameter model projected onto a speed of 1 m/s, 

which was produced by evaluating (2)–(3) with κχp. To quantify the impedance parameter 

model’s reconstruction error, we calculated τ  for the knee and ankle over each trial in the 

dataset using the model:

τ = K sst, γ, ν θeq sst, γ, ν − θ − B sst, γ, ν θ̇ . (13)

Then, we calculated the root mean squared error (RMSE) in joint torque over all subjects 

for each task χp in the dataset and normalized by the dataset torque’s standard deviation for 

χp. This dimensionless metric, which we call normalized reconstruction error Ē, describes 

how many standard deviations τ  is from the mean dataset torque trajectories, on average. 

Normalized reconstruction errors below 1.0 indicate that the model is able to predict joint 

torque to accuracy levels similar to able-bodied inter-subject variation. Averaged over 

all tasks, the knee and ankle normalized reconstruction errors were Ek = 0.78 ± 0.11 and 

Ea = 0.58 ± 0.09, respectively.

IV. Hybrid Kinematic Impedance Controller

The proposed Hybrid Kinematic Impedance Controller (HKIC, Fig. 1) is an evolution of 

the purely kinematic controller presented in [49]. In the HKIC, real-time phase and task 

estimates provide inputs to the impedance model developed in Section III during stance and 

the kinematic model developed in [23] during swing to provide reference joint behavior. 

Impedance and position controllers enforce the respective model outputs, described below. 

Once configured with the user’s mass and leg segment lengths, the controller operates 

autonomously, requiring neither manual impedance tuning nor external knowledge of the 

terrain. The following paragraphs discuss each component of the HKIC in turn.

A. Task-Invariant Phase Estimation

An estimate of the user’s progression through the gait cycle is required in order to 

synchronize the control outputs with the user’s gait. An ideal version of this estimate 

(termed a phase variable) increases from 0 to 1 at a constant rate between each heelstrike 

[52]. Similar to [31], [49], the HKIC’s phase variable s  is calculated using a piecewise-linear 

mapping of the user’s global thigh angle θth, which has a roughly sinusoidal trajectory 

(see Fig. 3a). This angle is measured directly using an Inertial Measurement Unit (IMU, 

3DM-CX5–25, LORD Microstrain, Williston, VT) mounted to the proximal end of the 

prosthesis’s knee joint. Mounting the IMU to the prosthesis instead of the person ensures 

a rigid connection to prevent slipping and vibration, which are commonly associated with 

soft tissue connections. Proper alignment of the prosthesis by a prosthetist ensures correct 
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alignment of the IMU. The θth-based method of phase estimation is preferable because it 

allows the user to start and stop the gait cycle at will and enables non-rhythmic behavior 

[31].

However, previous iterations of the θth-based phase variable did not work well for variable-

task locomotion because of assumptions made about the shape of the θth trajectory. For 

example, [31], [49] assumed that the θth trajectory could be divided into two monotonic 

sections. While this assumption holds fairly well for level ground and incline walking, it is 

invalid for steep declines [24] (Fig. 3a). Previous methods produced inaccurate, saturated 

phase estimates for such cases [49]. Further, previous methods did not account for periods of 

low thigh angular velocity (i.e., when the hip joint is most extended or most flexed), leading 

to pauses in the phase estimate and subsequent problems in the controller behavior [41], 

[49]. Therefore in this work, we relax previous assumptions and add flexibility to the phase 

variable to better parameterize the gait cycle based on the diverse θth trajectories observed in 

variable-task locomotion. First, we introduce short periods of feedforward phase progression 

that allow s  to maintain a constant positive rate even when thigh angular velocity is low, 

which enables a powerful and biomimetic push-off. Second, we add states to account 

for thigh trajectories that have more than two monotonic sections (especially common 

during ramp descent) to prevent excessive phase saturation and gait desynchronization. 

Third, we introduce a technique to improve the linearity of s , correcting for previous 

steady-state nonlinearities and thus making it closer to an ideal phase estimate. For brevity, 

the mathematical details for these improvements are presented in Appendix A.

To illustrate the benefits of the new phase variable over its predecessor [31], [49], we 

conducted a simulation using thigh kinematic data from [24] (Fig. 3a). For each trial of 

treadmill walking in the dataset, we calculated the phase variable using both the new method 

(Appendix A) and the previous method described in [49]. For each incline, we averaged 

the phase trajectories over all strides, participants, and walking speeds, shown in Figs. 3b 

and 3c. Notably, the new phase variable eliminated the phase estimate pause associated 

with maximum hip extension that was observed with the previous phase variable. The 

new method also reduced the early saturation seen in the previous phase variable, which 

was particularly prominent at steep ramp declines. Finally, the new method demonstrated 

improved linearity, particularly during midstance. Compared to an ideal linear phase 

trajectory, the new method showed 6.25% RMSE with R2 = 0.990 while the previous 

method showed 7.48% RMSE and R2 = 0.976 over all tasks.

B. Task Estimation

In addition to the phase estimate, the HKIC requires an estimate of the user’s current task 

χ, which is calculated at each toe-off (TO) during steady walking. The estimation methods 

below are based on [49], with modifications to improve performance. Both estimates update 

once per stride and are filtered with a moving average over 3 strides to account for stride-to-

stride variation. Although filtering introduces a time delay in the task estimates, experiments 

in [49] demonstrated that this limitation does not prevent the user from continuing to walk 

while the estimates converge.
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1) Walking Speed: The user’s speed is estimated using a three-link leg model, 

comprising thigh, shank, and foot links, similar to [33], [49], [53]–[55]. Using forward 

kinematics and inputs from the joint encoders and the thigh IMU, we calculate the Cartesian 

locations of the heel and toe relative to the hip joint, respectively given by xheel and xtoe. At 

each TO event, the forward progression of the hip relative to the foot’s point of contact with 

the ground during the previous stance phase is calculated as

dst = xtoe − xheel
HS−

2, (14)

where xheel
HS− is the value of xheel from the previous heelstrike (HS). Similarly by assuming a 

symmetric gait, the forward progression of the hip relative to the contralateral foot’s ground 

contact point over a swing phase is approximated at each HS as

dsw = xheel − xtoe
TO−

2, (15)

where xtoe
TO− likewise is xtoe from the previous TO. Then, we calculate the total forward 

progression over the gait cycle as dst + dsw + ℓfoot, where ℓfoot is a constant accounting for 

the length of the prosthetic foot. Finally, walking speed is estimated by dividing forward 

progression by stride time.

2) Incline: The ground inclination is estimated by the global angle of the foot θf when the 

foot was flat on the ground, similar to the methods presented in [16], [49], [54]–[56]. As it is 

undesirable to add an extra inertial sensor to the foot, we calculate this angle from the thigh 

IMU using forward kinematics, along with a correction for foot bending. Prosthetic feet 

are designed to deflect for energy storage [57], so foot deflection significantly impacts the 

incline estimate. Offline testing with our prosthesis’s foot [39] (Lo Rider, 1E57, Ottobock, 

Duderstadt, Germany) showed that deflection was correlated with the bending moment in 

the sagittal plane my. An on-board 6-axis load cell (M3564F, Sunrise Instruments, Nanning, 

China), located at the distal end of the ankle joint, measures this moment directly. Then, θf 

is calculated as

θf = θth − θk + θa + θf
0 + kfmy, (16)

where kf is the linear bending coefficient, θk is the relative knee angle, and θa is the relative 

ankle angle. All joint angles are measured positive in flexion and are zero when the user 

stands upright. The constant offset term θf
0 accounts for the angular difference between the 

prosthetic foot, the cosmesis, and the sole of the shoe.

To determine when the foot was flat on the ground, the center of pressure in the foot 

reference frame ℓcop is calculated using the load cell, similar to [49]. We consider the foot 

to be flat when 7.5 ≤ ℓcop ≤ 12 cm from the ankle joint, which corresponds to the ground 

reaction force acting between the middle and the ball of the foot. During this period, θf is 

averaged to produce the incline estimate for the stride.
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C. Impedance and Kinematic Controllers

1) Stance Impedance Controller: During stance, a variable impedance controller is 

used to calculate joint torques. First, the stance phase estimate s st is calculated by

s st = s /sTO, (17)

where sTO is the expected value of the phase variable at TO (see Appendix A for details). 

Using s st and χ, joint stiffness K, damping B, and equilibrium angle θeq are calculated 

using (2)–(3) and the model developed in Section III. Then, the joint torque during stance is 

calculated with the following impedance control law, scaled by user mass m:

τst = m K s st, χ θeq s st, χ − θ − B s st, χ θ̇ . (18)

2) Swing Kinematic Controller: A proportional derivative (PD) controller uses 

constant gains kp and kd to directly track desired joint angle trajectories. This is in contrast 

to the equilibrium angles of the impedance controller, which do not necessarily align 

with the normative joint angles. A continuous model of able-bodied joint kinematics [23], 

generated using data from [24], provides the desired trajectories defined as

θd(s, χ) = ∑
i = 1

N
bk(s)ck(χ), (19)

where bk(s) are Fourier series and ck(χ) are Bernstein basis polynomials. Similar to the 

impedance model, (19) is evaluated in real-time using s  and χ. Then, the PD torque 

command during swing, τsw, is given by

τsw = kp θd − θ + kd θ̇d − θ̇ . (20)

3) Stance to Swing Transition Smoothing: A time-varying weight wsw ensures a 

smooth transition from impedance control to position control. Because impedance control 

may allow the joint angles to vary from their nominal trajectories depending on how the 

user loads the prosthesis, this smoothing is critical to avoid discrete changes in joint torque. 

At TO, wsw increases from 0 to 1 over 0.25 s for the knee and 0.05 s for the ankle. The 

ankle smoothing is faster because close tracking of the ankle kinematics during early swing 

is important for avoiding toe-stubbing. The actual output to the joint motors is given by

τ = τst during Stance,
wswτsw during Swing. (21)

Because the equilibrium angles at heelstrike are close to the kinematic references at the end 

of the gait cycle, no smoothing is necessary for the swing to stance transition.

Close examination of (21) shows that for a brief period just following TO, minimal control 

action is applied to the joints. This is acceptable because the low-impedance actuators used 

in our prosthesis [39] allow the joints to continue moving along their current trajectories 
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according to their passive dynamics without control input. Passive early swing knee and 

ankle dynamics have been shown to produce human-like gait [58], [59], and these passive 

dynamics may contribute to the biomimetic behavior of the controller.

V. Amputee Participant Experiments

Experiments with two AKA participants were performed to investigate the ability of 

the HKIC to produce biomimetic gaits over variable tasks. To benchmark the HKIC’s 

performance against another well-known controller, we also implemented a standard, 

piecewise-constant FSM impedance controller and tuned it for each participant. The 

participants completed the experimental protocol once with each controller, detailed below. 

Photos of the experiment are shown in Fig. 4 and video recordings are available for 

download as supplemental media.

A. Benchmark FSM Impedance Controller

A benchmark Finite State Machine controller (FSMC) was designed based on the variable-

incline FSM impedance controller presented in [16], with an additional stance state and 

modified transition criteria to improve performance (see Appendix B for details). This 

controller was chosen as a benchmark because of its simple construction, widespread usage 

[1], and ability to create biomimetic walking gaits when appropriately tuned [16]. While 

more sophisticated variants of the FSM impedance control paradigm have shown stronger 

results, such as those that modulate the impedance parameters based on joint angles or 

prosthesis axial force [6], [20], [21], [60], [61], the original version from [16] provides a 

valuable benchmark for comparing novel controllers because its performance and limitations 

are widely understood [1], [9]. Further, many modern controllers still use FSM impedance 

control in some if not all sections of the gait cycle [18], [19], [34]–[36], [44]–[47], [62], so 

understanding the HKIC’s performance relative to the FSMC is scientifically relevant.

The FSMC had 5 discrete states throughout the gait cycle, each with its own set of 

constant impedance parameters and transition criteria. Similar to the methods discussed 

in the Introduction, these parameters needed to be hand-tuned by an expert researcher in 

order to produce the desired gait. To enable walking at various inclines, three sets of tunable 

impedance parameters and transition criteria were instantiated for each joint (i.e., one set for 

level ground, one set for declines, and one set for inclines). The controller selected between 

impedance parameter sets based on the estimated incline γ  (Appendix Fig. 15b). In total, the 

FSMC required 96 tunable parameters, including 45 impedance parameters per joint and 6 

FSM transition criteria.

B. Experimental Methods

Two AKA individuals participated in the experiment, with attributes shown in Table I. A 

third participant was enrolled but was unable to complete the protocol due to excessive 

swing-phase lateral whipping caused by prosthetic misalignment. Although we worked 

with the prosthetist to correct the alignment multiple times, the prosthesis would become 

misaligned again after a short walking bout, possibly due to a combination of his prosthetic 

socket and weak femur musculature [63]. We suspect that the large distal mass of the robotic 
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prosthesis also exacerbated this problem. Due to this issue, we only present data from the 

remaining two subjects in this manuscript.

The experimental protocol was approved by the Institutional Review Board of the University 

of Michigan (HUM00166976), and the participants wore a ceiling-mounted safety harness 

while walking on the treadmill. For the experiments, the presented HKIC and the 

comparison FSMC were implemented on a backdrivable, powered knee-ankle prosthesis, 

shown in Fig. 4 and described in depth in [39]. This prosthesis features quasi-direct drive 

actuators that enable open-loop joint impedance control.

A licensed prosthetist fit the prosthesis to the participants and ensured proper alignment. 

The participants were instructed on the expected high-level behavior of both controllers 

and given time to acclimate to each controller while walking overground within parallel 

bars. Importantly, the participants were not told which controller was expected to perform 

better during the experiment. Following this overground acclimation, five trials with each 

controller were conducted on an in-ground treadmill (Bertec, Columbus, Ohio, USA). For 

safety, instrumented handrails were provided on either side of the treadmill. The participants 

were encouraged to limit body weight support on the handrails to maximize the realism of 

the experiment, which was verified by handrail force data. Participant P1’s mean handrail 

usage was under 12% bodyweight and participant P2 frequently chose to use only one 

handrail (Fig. 4c–d).

The first three trials investigated the performance of the HKIC and the FSMC during steady 

walking at different speed and incline combinations. Each trial focused on a range of small 

task deviations (±2 deg, ±0.2 m/s) around one of three baseline tasks: χ = (0 deg, 1 m/s), 

χ = (5 deg, 1 m/s), and χ = (−5 deg, 1 m/s). We refer to these steady-state task trials 

as SS-Level, SS-Incline, and SS-Decline, respectively. For the SS-Incline trial, speed was 

limited to 1.1 m/s to ensure that the participants could safely perform the trial.

The steady-state task trials began with an acclimation period, where the participants walked 

at the baseline task until feeling comfortable. During this time, the FSMC was tuned by the 

authors of this work to produce a natural gait, incorporating feedback from the participants 

and the prosthetist. The authors have significant experience tuning impedance controllers 

[21], [47], [61]. Tuning continued until the authors, prosthetist, and participant were satisfied 

with the resulting natural gait (see Supplemental Video). The time taken to tune the FSMC 

was recorded. Note that no tuning was done for the HKIC. After tuning and acclimation, the 

participants walked on the treadmill as it cycled through each of the 5 tasks near the baseline 

task, each commanded for 45 seconds. In these trials, true task feedback was provided to the 

controllers so that any errors in the task estimates did not affect the results.

The tuning, acclimation and testing procedure above was repeated for each baseline task. 

These baseline tasks were chosen to be far apart in the task space in order to sample a wide 

range of tasks without deviating too far from any one of the FSMC’s tuning points. Fig. 5a 

shows the recorded task-space profiles from the treadmill for each trial, where the black dots 

indicate each commanded task.
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The latter two trials consisted of more rapid task changes to investigate each controller’s 

behavior during continuous task variations rather than at steady-state and over a wider range 

of tasks. Also during these trials, the controllers received no real-time knowledge of the 

task from the treadmill, investigating the autonomous capability of each controller to operate 

over variable tasks. Both controllers utilized the same task estimation methods (Section 

IV-B). The FSMC transitioned between the tuned impedance parameters sets based on the 

estimated incline (Appendix Fig. 15b). In these 2 trials, one with inclines (CV-Incline) and 

the other with declines (CV-Decline), the treadmill started at χ = (0 deg, 1 m/s) and explored 

8 other points within the task space in the range of [0, 8] deg and [0.6, 1.2] m/s. Each task 

point was commanded to the treadmill for 20 seconds. Because the treadmill required time 

to change task, smooth task trajectories with continuous variations were generated, shown in 

Fig. 5b.

C. Experimental Results

1) FSMC Tuning Time: For the two participants, the FSMC required on average 30 

min of tuning to produce normative gaits for the three baseline tasks. On average, the level 

ground task required 11 min, the incline task required 15 min, and the decline task required 

5 min. Participant-specific tuning times and tuned FSM parameters are listed in Appendix 

Table IV. Trends in the tuned parameters included higher stiffness values during stance than 

in swing and highly-varying knee equilibrium angles across tasks. The observed gait was 

also noted to be quite sensitive to the tunable FSM transition criteria. Significant variance in 

the required tuning time for the different tasks was also observed.

2) Steady-State Trials: The kinematic and kinetic trajectories produced by the HKIC 

during the steady-state trials highlight its ability to reproduce normative biomechanics 

over variable tasks (Fig. 6). Bilinear interpolation was used to generate the able-bodied 

reference trajectories for tasks between those reported in the dataset [24]. The observed 

HKIC trajectories show strong similarity to the able-bodied references, particularly at the 

ankle. Knee moments are the most different relative to able-bodied for both the HKIC and 

the FSMC. The separation and trends seen in the HKIC closely resemble those observed the 

able-bodied data, suggesting appropriate adaptation in response to variable-task walking.

We quantified the similarity between the observed and able-bodied trajectories during stance 

and swing, showing that the HKIC produced a low RMSE in most metrics (Fig. 7). Stance 

and swing were treated separately to isolate the performance of the novel impedance 

parameter model (Section III), as it was only used during stance. The first 15 seconds 

at each task were neglected to allow time for the treadmill to reach steady-state. Unless 

otherwise specified, we present inter-participant averages and calculate standard deviations 

using lumped participant strides. Individual RMSE values for each participant were similar 

to the inter-participant averages and are available in the Appendix (Table V). The low 

RMSE values suggest that, in addition to replicating normative trends as task varied, the 

HKIC produced kinematics and kinetics that were close to the reference values. Further, the 

HKIC’s performance was as good as or better than the hand-tuned FSMC’s performance in 

seven of the eight metrics. The high knee kinematic error during swing can be attributed 
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to the intentional early knee extension meant to improve user confidence (see Appendix 

Section A2) and it did not result in adverse gait effects.

Inter-participant spatiotemporal gait metrics also showed similarity to able-bodied data 

[24]. Both controllers elicited lower cadence gaits (equivalently longer stride length gaits) 

compared to able-bodied, but show generally similar trends of increasing cadence with 

walking speed (Fig. 8). Additionally, the stance time symmetry ratio rSTS was calculated 

using the ground reaction force data, defined as the ratio between the average prosthetic 

stance time and the contralateral limb stance time. The mean and standard deviation over 

the steady-state trials of both participants were rSTS = 0.902 ± 0.017 for the HKIC and rSTS 

= 0.892 ± 0.016 for the FSMC. Note that due to a recording error, symmetry data was not 

available for participant P1’s HKIC SS-Decline trial. Both controllers produced a slightly 

more symmetric gait than average AKA participants with passive prostheses (rSTS = 0.784, 

reported in [64]), but less symmetric gaits than able-bodied people (rSTS = 1.02, reported in 

[65]).

The HKIC also produced trends in joint work across variable tasks that were consistent with 

able-bodied data (Fig. 9). As one of the benefits of impedance control is the ability to control 

energy exchange with the environment [10], the HKIC should be able to replicate this 

biological behavior. The HKIC showed similar trends as the able-bodied data, with a linear 

increase in net work performed with increasing incline, particularly at the ankle (increase of 

0.0337 J/kg/deg, R2 = 0.982). For comparison, able-bodied ankle work increases linearly at 

0.0335 J/kg/deg with R2 = 0.987. The HKIC also increased total work with increasing speed 

in a manner consistent with able-bodied data, though the work differences between the slow 

and fast speeds are minor for the able-bodied reference. In contrast, the net work performed 

by the FSMC decreased with speed and appeared discretized to three levels with respect to 

inclines, corresponding to its tuned tasks. Interestingly, the HKIC and FSMC showed less 

energy absorption at the knee during declines, which may reflect the habitual aversion to 

early stance knee flexion commonly observed in AKA populations [66], [67].

3) Continuously-Varying Trials: The continuously-varying trials demonstrated the 

HKIC’s ability to autonomously adapt behavior to the sensed walking speed and ground 

incline. The kinematic and kinetic errors were calculated in a similar manner for the 

continuously-varying task trials, though this time including strides that occurred during 

task transients. Fig. 10 shows the inter-participant average error trajectories at both joints for 

the CV-Incline trial, calculated as the able-bodied references subtracted from the observed 

values. Appendix Table V details the participant-specific stance and swing kinematic and 

kinetic RMSE for both the CV-Incline and CV-Decline trials. Aside from the late-swing 

knee kinematics (discussed above), the HKIC shows low errors throughout the gait cycle, 

particularly at the ankle joint. Further, the magnitude of the FSMC’s error is larger than the 

HKIC’s for most of the gait cycle, highlighting the importance of the HKIC’s continuously-

adaptive nature.

As both controllers received no external task input during these trials, the task estimates (and 

the phase estimate for the HKIC) contributed to the kinematic and kinetic errors. The task 

estimate RMSE, averaged over each stride and participant, is shown in Table II for each 
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trial. Although the same task estimation algorithms were used with both controllers, FSMC 

showed higher incline estimate error, suggesting that differences in controller behavior 

may have impacted the incline estimate’s efficacy. Additionally, the average phase estimate 

trajectories produced by HKIC during the CV-Incline and CV-Decline trials were highly 

linear (mean R2 = 0.989) and accurate (mean RMSE of 6.157%), even as speed and 

incline varied (Fig. 11). However, the phase estimate saturated more often for participant 

P2 than participant P1, suggesting that participant P2’s thigh trajectory was less similar to 

able-bodied trajectories than participant P1’s.

VI. Discussion

A. HKIC Performance

This work presented a data-driven, phase-based walking controller for a powered knee-

ankle prosthesis that autonomously adapted its behavior across a continuous range of 

walking speeds and inclines. To achieve this without manual impedance tuning, we used 

an able-bodied dataset to optimize for continuous stiffness, damping, and equilibrium angle 

functions that reproduced biological stance joint torques, given biological kinematics. In an 

initial offline analysis, we showed that our optimized impedance parameter model produced 

joint torques with across-task average normalized RMSE values of 0.78 and 0.58 for the 

knee and ankle, respectively. The low normalized RMSE suggests that the model captures 

the essential joint dynamics of able-bodied walking.

The subsequent experiments with two AKA participants demonstrated that the identified 

impedance parameter functions also rendered appropriate stance phase joint mechanics 

when used for real-time control in the HKIC. Other normative walking features were 

observed, such as increasing ankle work with increasing incline (Fig. 9) and increasing 

cadence with walking speed (Fig. 8). Although the kinematic and kinetic profiles produced 

by the HKIC had small differences relative to able-bodied data (Figs. 6–7), the participants 

exhibited qualitatively normal gait patterns over a wide array of tasks (see Supplemental 

Video). Kinematic and kinetic trends emerged with variable speeds and inclines that 

were consistent with able-bodied data (Fig. 6), including appropriately varying peak ankle 

moments, stance ankle kinematics, and knee stance kinematics. Knee swing kinematics 

showed the highest error for the HKIC, which was expected because we intentionally 

allowed the phase variable to saturate early to ensure full knee extension prior to heelstrike. 

Pilot testing showed that consistent full knee extension helped eliminate participants’ 

problematic instinctive compensations and promoted confidence that the prosthesis was 

ready to accept weight (see Section A2). Small phase shifts result in large swing kinematic 

errors due to the large knee range of motion, and although the error values appear large, they 

did not interfere with the participants’ gait or cause toe-stubbing.

Appropriate kinematic and kinetic adaptation are both practically and clinically important 

for the user. For example, knee swing kinematic adaptations enable the prosthesis to 

have the proper configuration at heelstrike as incline varies. Without such adaptations, 

the user may, for example, toe-stub during swing when walking uphill with level ground 

kinematics, or vise versa, experience too much flexion to enable heelstrike at the desired 

time. Further, kinetic adaptation during stance enables increasing peak ankle moments 
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for propulsion as incline and speed increase (Fig. 6). Improper joint kinetics can cause 

improper ground reaction forces, which can affect user balance [68]. Finally, appropriate 

kinematic and kinetic co-adaptation enables joint work adaptation, even in cases where 

both kinematics and kinetics deviate from able-bodied normative trajectories. For example, 

the HKIC’s peak ankle moment at a 7 deg incline is slightly smaller than able-bodied 

(Fig. 6). However, a corresponding increase in peak plantarflexion angle allows the HKIC 

to maintain appropriate ankle work (Fig. 9). Biomimetic energy injection is important to 

prevent compensations from other joints and additional health problems [3]–[5], [41].

Qualitative remarks by the participants also testified to the biomimetic task adaptation of 

the HKIC. Participant P1 remarked while walking at the seven deg incline that he did not 

feel like he was walking uphill, suggesting appropriate joint dynamics and energy exchange. 

Participant P2 remarked that he did not even notice that the treadmill had transitioned to 

the 2 deg decline and that he could “climb up much easier” while ascending steep inclines. 

These anecdotal remarks further support the claim that the HKIC adapts to changing tasks to 

produce normative able-bodied biomechanics, which could result in many practical benefits 

for the user. For example, the biomimetic energy injection at steep inclines (Fig. 9) may 

allow users to walk uphill for longer before fatiguing.

While the FSMC’s performance was not drastically worse than the HKIC’s in the tested 

metrics, it required on average 10 minutes of tuning per tuned task. Although only 3 tasks 

were tuned for this study, practical deployment of the FSMC would likely require many 

more tasks to be tuned. For example, participant P2 noted that the FSMC was “kicking off 

way too hard” when going uphill at slow speeds, but was happy with its behavior at normal 

speeds, suggesting that more speed-specific impedance parameter sets could be beneficial. 

However, adding more tuning points is likely impractical in a clinical setting, especially 

without specialized equipment such as a variable-incline treadmill. Therefore, the HKIC’s 

potential to produce biomimetic behavior over varying tasks without manual impedance 

tuning is a significant benefit.

For online implementation of the continuous impedance parameter model, gait phase needed 

to be estimated in real-time. The improved phase variable behavior observed in simulation 

in Section IV-A was confirmed in the participant experiments. Fig. 11 shows how the 

phase variable eliminated the previously observed phase pause near push-off. The result 

of this monotonicity is visible in the kinematics of Fig. 6, as there is not a pause in the 

kinematic trajectories near push-off, which was observed previously in [49]. Further, the 

general linearity of the average phase trajectories in Fig. 11 (mean R2 = 0.989) is improved 

compared to [49]. Because both the impedance and kinematic models in HKIC assume 

a perfectly linear phase estimate, the observed linearity keeps the model outputs of the 

controller synchronized with the user’s gait. Additionally, Fig. 11 shows that participant 

P2’s phase variable saturates at 1 earlier in the gait cycle than participant P1. This occurs 

because the methods used to estimate the thigh trajectory features (Appendix Section A2) 

prioritize phase saturation (and subsequently full knee extension) to promote participant 

confidence. This early phase saturation suggests that P2 preferred for the knee to be fully 

extended earlier in swing, whereas P1 was satisfied with full knee extension occurring right 

before heelstrike, as it does in able-bodied data.
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The task estimates are other critical components required for walking over continuously-

varying tasks. Seen in Table II, the error in the speed estimate was fairly consistent over the 

trials, with RMSE between 0.10 and 0.12 m/s for both controllers. This error is likely due 

to a slightly asymmetric gait, which violates the assumptions made in the speed estimator’s 

formulation. Gait asymmetries may be the result of our participants’ habitual compensations, 

socket comfort, or the significant mass difference between the robotic prosthesis and 

participants’ passive prostheses. Interestingly, the incline estimate produced lower error with 

the HKIC (0.61 to 0.66 deg) than the FSMC (1.03 to 1.81 deg). We speculate that the higher 

error in the FSMC is due to a feedback interaction between incline estimate errors and the 

impedance parameters. Due to the discrete switching behavior of the impedance parameters 

(see Appendix Fig. 15b), a small incline estimate error can result in large changes in 

prosthesis behavior and may affect the θf and ℓcop progressions. Therefore, the continuous 

nature of the HKIC may be preferable, as it does not display discrete changes in behavior 

with small changes in task inputs.

B. Limitations and Future Work

The HKIC and this study were not without limitations. Our experiment provided a somewhat 

limited view of the HKIC’s behavior, as it involved only two participants, each with only 

one experimental session (although both had prior experience walking with the prosthesis). 

We expect that the data-driven impedance parameter model identified in Section III will 

yield similar performance for a wide array of participants, as it was created without a priori 
knowledge of the participants or their preferences. Preliminary studies of able-bodied users 

testing the HKIC over varying tasks suggest that this assumption holds [69]. However, 

this assumption should be validated in future studies with wider AKA participant pools, 

as the HKIC’s ability to generalize to the full AKA population remains unknown. Further, 

the performance of the HKIC should also be investigated when implemented on different 

hardware platforms to better validate the framework. While the HKIC could in theory 

be implemented on any powered prosthetic leg with the ability to render a variable joint 

impedance, prostheses with non-trivial actuator transmissions (e.g., [6], [48]) or series 

elasticity (e.g., [21], [61]) would require actuator characterization [70] and, in some cases, 

closed-loop torque control to accurately render variable joint impedance.

Additionally, it is possible that there are users for which the population average impedance 

parameters are not optimal. There may also exist other impedance parameter functions that 

produce normative biomechanics, as the human sensorimotor system is highly adaptable 

[71]–[73]. Participants’ sensitivity to changes in the impedance parameter model could be 

investigated in future studies. Additionally, there may be factors other than those considered 

in this work that distinguish the ideal parameter functions, such as user preference. A study 

investigating users’ preferred stiffness in ankle prostheses showed that the preferred joint 

stiffness varies by user [74], which is likely true for AKA participants as well. For example, 

participant P2 noted that the knee felt “squishy” when ascending steep slopes and that he 

would have preferred it to be stiffer. While one of the major advantages of HKIC is that 

it required no manual impedance parameter tuning, it is currently limited by the lack of 

an ability to customize to an individual’s preferred behavior. Future work will investigate 

methods to incorporate user preferences in the impedance model, such as weighting the 
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optimization with a single baseline personalization for level-ground walking, as suggested in 

[75]. This baseline personalization could be gathered using tools in a standard clinic [51], 

maintaining the minimal-tuning nature of the controller.

Our study also did not investigate discrete changes in ground slope, which may be 

encountered during daily ambulation (e.g., wheelchair ramps) and should be handled by 

a variable-task walking controller. While [49] showed that the HKIC’s incline estimation 

algorithm is stable under discrete incline changes, our task estimation methods are limited 

by their discrete “once-per-step” update nature. Because we detect incline during midstance, 

the user must, at a minimum, be able to complete the first half of stance phase with the 

previous stride’s task estimate. This is particularly problematic during discrete transitions 

between steep inclines and level ground walking because the heelstrike kinematics vary 

drastically [24]. Future work involving anticipatory algorithms that update the task estimate 

based on sensed characteristics of the upcoming terrain [76]–[78] or user behavior [79], [80] 

may be necessary to alleviate this limitation.

Further, this work only investigated rhythmic walking over relatively long durations, though 

almost half of all walking bouts in community ambulation contain less than 12 consecutive 

steps [81]. One of the unique strengths of the presented phase variable is the ability to 

intuitively control non-rhythmic tasks [31]. Although this capability of the HKIC was 

demonstrated at the beginning and end of each trial in this study, it should be explored 

further and characterized in future studies involving rapid start/stop, lateral movements, and 

other behaviors that are prominent in agile locomotion. Such studies may also highlight 

the limitations of using the current impedance parameter model for non-rhythmic tasks. 

Although the participants were able to achieve start/stop behaviors in this experiment, 

additional able-bodied data may need to be included in the optimization to produce 

appropriate impedance parameters for other non-rhythmic tasks.

The continuously-adaptive nature of the HKIC may also be a limitation in some 

circumstances. For example, participant P2 noted that while he appreciated that the HKIC 

always adapted to the current task, he also preferred the predictability of the FSMC. We plan 

to investigate methods to preserve the flexibility of the HKIC while increasing predictability 

in future studies. One way to improve the predictability of the HKIC may be to increase 

the training duration to allow the participants to better acclimate to and leverage the benefits 

the HKIC and the powered prosthesis. Perhaps the lack of early stance knee flexion in both 

controllers (Fig. 10) and the low knee energy dissipation (Fig. 9) are less due to controller 

behavior and more due to the participant’s habitual compensations developed through years 

of using a passive prosthesis [66], [67]. Future work may show that as the participants 

become more comfortable with a powered prosthesis and develop a stronger intuition for the 

HKIC’s behavior, these gait features become more similar to able-bodied data.

Finally, there is much interesting work to be done investigating the relationship between 

biological joint impedance measured in empirical studies [12]–[14] and the impedance 

parameters used in impedance controllers. Mechanical impedance can only be characterized 

through perturbation studies, so the impedance parameters found by optimizing over non-

perturbed gait data will not necessarily reflect these dynamics. We plan to study the effects 
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of constraining the optimization with known empirical impedance values, as well as to 

investigate the HKIC’s behavior during gait perturbations.

VII. Conclusion

This work presented a data-driven walking controller designed to work over a continuum 

of speeds and inclines. We developed continuous models of joint stiffness, damping, and 

equilibrium angle for an impedance controller using convex optimization. We also presented 

an improved phase estimation algorithm, showing increased monotonicity and linearity. 

Two AKA prosthesis users demonstrated the controller’s ability to autonomously produce 

biomimetic behavior over continuously-varying tasks during treadmill experiments. The 

experiments showed that, when compared with able-bodied data, the presented controller 

produced biomimetic trends in joint kinematics, kinetics, work, and cadence, indicating its 

ability to render appropriate joint mechanics as task varied.
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Appendix

A. Task-Invariant Phase Variable Algorithm

The new phase variable s  is calculated through a series of linear equations with θth as an 

input. An FSM controls when each equation is used. Although the FSM contains discrete 

states, the structure of the linear equations ensures that s  is continuous. Each equation is 

defined by quantitative features of the θth trajectory, which are measured in real-time. Table 

III lists the features’ definitions and notations. First, we give the rationale for each FSM 

state and its corresponding phase variable equation. Then, we present methods to estimate 

the thigh trajectory features in real-time, as well as the steps taken to promote closed-loop 

stability of the phase estimate.

1) Phase Variable FSM:

Consider the average θth trajectory for an able-bodied individual walking at 1 m/s on level 

ground, shown in Fig. 12. The pertinent θth trajectory features used in the phase estimate are 

labeled, as well as the standard timing of the FSM states. The overall structure of the FSM 

used to control the phase estimate is shown in Fig. 13.

The FSM begins in S1, occurring just after a heelstrike (HS) event. During S1, θth is linearly 

scaled as the hip joint extends from θth
HS to θth

MHE such that s  increases and s = sMHE when 

θth = θth
MHE. Mathematically, this is given by

s = θth
HS − θth

θth
HS − θth

MHE sMHE in S1, S2 . (22)

The FSM transitions to S2 at a phase estimate threshold s 1 2 = 0.1, which typically 

corresponds to the point in the gait cycle where the θth trajectory becomes linear.

In S2, s  is calculated using the same linear relationship as in S1 (22), but is denoted as a 

distinct state because it represents a portion of the gait cycle where θth (and therefore s) has 

constant velocity. The average rate of change of s  during S2 ṡS2  is recorded for use in S3. 

The FSM transitions to S3 once s 2 3 = 0.9sMHE, which typically corresponds to the end of 

the linear portion of the thigh trajectory, or if θ̇th > 0. This second case rarely occurs during 

steady walking, but is an important path to S3 in the event of an unusually short stride.

S3 occurs during the section of the gait cycle where θth reaches its minimum, and thus has 

a period of low angular velocity θ̇th. Previous work has shown that sections of low θ̇th are 

problematic because they cause a pause in the phase variable trajectory [31], [41], [49]. This 

pause violates the assumption that s  increases monotonically and at a constant rate, resulting 

in incorrect kinematic and impedance model outputs. Therefore, during S3, we decouple s
from θth and instead assume that phase continues progressing at ṡS2:

s = s 23 + ∫
0

Δt

ṡS2dτ in S3 . (23)
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This feedforward phase progression continues until a toe-off (TO) event. Although this 

approach limits the user’s ability to stop phase progression during S3, such cases are 

unlikely because stopping would inhibit power delivery from the ankle during push-off. 

Moreover, the under-actuated dynamics of bipedal walking dictate that once the user’s 

gravity vector passes anterior of the stance foot, the user must continue the gait cycle until 

the contralateral foot lands [68], [82]. Therefore, we expect the sacrifice in direct control of 

phase progression during this section of the gait cycle to be negligible.

After TO, the FSM transitions to S4, where phase is again estimated via a linear scaling of 

θth. This mapping is defined such that s  increases from sTO towards sMHF as θth increases:

s = θth − θth
TO

θth
MHF − θth

TO sMHF − sTO + sTO in S4 . (24)

The FSM transitions to S5 when θth is equivalent to the average of θth
HS and θth

MHF, which 

typically corresponds to the end of this linear section of the thigh trajectory.

Two problems typically occurred with the previous phase variable methods when θth ≈ θth
MHF, 

which occurs during S5 in the new FSM. First, a pause in s  would occur as θ̇th slowed 

and θth approached θth
MHF, similar to the effect seen in S3. Second, the previous methods 

assumed that θth
MHF = θth

HS. In cases where θth
MHF > θth

HS, such as the trajectory shown in Fig. 12, 

the resulting s  would saturate prematurely. Excessive saturation in the phase variable can 

cause desynchronization between the prosthesis and the user, leading to problems such as 

toe-stubbing. This effect was most exaggerated during declined walking, as the difference 

between θth
MHF and θth

HS was most pronounced [24]. To avoid both excessive saturation and 

a phase variable pause, a feedforward phase progression is again enforced based on the 

average phase rate in S4, ṡS4:

s = s 45 + ∫
0

Δt

ṡS4dτ in S5 . (25)

This feedforward phase rate continues until either a heelstrike occurs or s = 1. If the user is 

walking consistently and the θth trajectory feature estimates are correct, s = 1 should occur 

simultaneously with heelstrike, returning the FSM to S1. If s = 1 prior to HS, the FSM 

transitions to S6.

S6 is primarily encountered if the user pauses at the end of the gait cycle, so it does not 

appear in Fig. 12. During S6, s  is again calculated using a linear scaling of θth, giving the 

user volitional control of s  through θth:

s = θth − θth
MHE

θth
HS − θth

MHE 1 − sMHE + sMHE in S6 . (26)

This volitional control during S6 is important because it allows movements such as kicking 

and non-steady leg swinging [31]. As in S5, a HS event returns the FSM to S1.
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2) Thigh Trajectory Feature Prediction:

The θth features used in (22)–(26) vary from stride-to-stride with changes in speed, incline, 

and natural gait variation. Some of these features are used in the phase estimate calculation 

before they occur in the gait cycle, specifically θth
HS, θth

MHE, θth
MHF, sMHE and sMHF. For example, 

θth
MHE is used to calculate s  during S1 and S2, but it does not typically occur until S3. 

Therefore, we predict these features in real-time based on observations from recent strides. 

At controller initialization, estimates of the thigh trajectory features are calculated using 

able-bodied data [24] and updated as new strides became available. Bounds were enforced 

on all estimated feature values to reject atypical strides and avoid stride-to-stride oscillation 

in the estimates.

Previous work showed that care must be exercised when predicting features of the thigh 

trajectory to prevent unwanted interaction between the prediction algorithms and the user’s 

gait progression. For example, [49] observed that if a simple moving average was used to 

calculate θth
MHE, a divergent behavior occurred that resulted in the user taking progressively 

larger strides. To avoid this behavior, the kinematic features θth
HS, θth

MHE, and θth
MHF were 

estimated with moving average filters. These filters recorded the feature values from the 

previous 5 strides and averaged the median 3 for θth
HS and the minimum 3 for θth

MHE and θth
MHF. 

These filters were chosen to best reject non-representative strides, and the 5-stride window 

balanced between filter response time and variance rejection.

Another closed-loop interaction was observed during pilot studies regarding the predictions 

of sMHE and sMHF. In cases when the feature predictors were updating following a rapid 

change in task, we observed rare strides where s  underestimated the true phase at the end 

of the gait cycle, causing the knee joint to not fully extend before heelstrike. Participants 

instinctively responded by asymmetrically extending the late swing portion of the gait cycle 

to try force the knee to full extension. Moving average estimates of sMHE and sMHF, like 

those used for the kinematic features, caused sMHE and sMHF to decrease, resulting in further 

underestimation of s  on the subsequent stride. We suspect that participants behaved this way 

because they were accustomed to passive prostheses, which will collapse upon loading if the 

knee is not fully extended. Therefore, new prediction methods were developed for sMHE and 

sMHF that favored s  saturation over underestimation to combat this instinctive behavior. Let 

ts = 1 be the first time during the stride that s = 1. Then, the sMHE and sMHF estimates were 

calculated as

sMHE = 1
2

tMHE − t0

tf − t0
+ tMHE − t0

ts = 1 − t0
,

sMHF = 1
2

tMHF − t0

tf − t0
+ tMHF − t0

ts = 1 − t0
.

(27)

The first quotient in each line of (27) is the true phase where θth 
MHE and θth 

MHF occurred. The 

second quotient is an upper bound on this true phase. We average the two so that s  favors 

saturation and full knee extension in late swing, avoiding the potential unstable feedback 

loop with the user’s instinctive compensations. The results of (27) were likewise low-pass 

filtered with an infinite impulse response (IIR) filter to reject stride-to-stride variation and to 

prevent step estimate changes.
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Finally, to calculate the stance phase s st, the expected value of s  at TO, sTO, must be 

estimated. This was calculated with a minimum moving average filter of sTO observed during 

previous strides, similar to the thigh trajectory features. The average window was 9 strides 

long, as the toe-off phase exhibits slow changes with task. Like the thigh trajectory features, 

sTO was initialized from able-bodied data.

Note that some minor aspects of the thigh trajectory feature estimation algorithms were 

modified after P1’s experiment to better accommodate adaptation for users with thigh 

kinematics that differ significantly from able-bodied, such as P2. Namely, the feature 

estimate bounds were added, the θth
MHE and θth 

MHF filters were changed from moving average 

to moving minimum filters, and the sTO filter was changed from an IIR filter to a moving 

minimum filter. A post-hoc simulation of P1’s data before and after the minor adjustments 

showed only a 1.89% mean absolute difference in phase estimate between methods, 

suggesting that the changes would not have had an appreciable effect on his results. Further, 

no distinguishable effects were observed in the able-bodied simulation (Fig. 3c).

3) Phase Variable Linearization:

The phase variable described above produces a consistent phase estimate trajectory over 

each stride during steady walking. This consistency allows a linearization map to be formed 

in order to further improve the phase estimate. Once the θth feature predictions converged to 

steady values, the average progression of s  was recorded for each steady walking stride and 

low-pass filtered to produce an average trajectory, s . The time constant of the IIR low-pass 

filter was chosen to be sufficiently slow (19 strides) such that the transients of the θth feature 

predictors were rejected. As a further precaution, any saturated portions of s  were discarded 

prior to averaging, as they diminish as the θth trajectory feature predictions converge.

The average phase was written as a function of true phase, given by s = σ(s). Although the 

shape of the thigh trajectory may cause σ(s) to be nonlinear, it is monotonic during normal 

walking. This implies that an inverse relationship s = σ−1(s) exists, which can be applied to 

correct for nonlinearities in s . First, σ(s) was fit with a 6th order polynomial σ(s) that was 

constrained with a minimum slope of 0.2. This minimum slope ensured strict monotonicity 

and numerical stability of the inverse. At each HS event, σ(s) was recalculated to incorporate 

the previous stride’s effect on s . Then the final, linearized phase estimate was calculated by 

applying the inverse map σ−1 to the results of (22)–(26).

4) Phase Variable Results:

Fig. 11 highlights the new phase variable algorithm’s ability to parameterize variable-incline 

walking, as consistent phase trajectories were produced for both participants during the 

continuously-varying task trials. The feedforward states S3 and S5 allowed for a positive 

phase rate, even when thigh velocity was low. Additionally, the thigh trajectory features 

were appropriately estimated, allowing a consistent phase estimates that were independent of 

the variable thigh trajectories seen with varying inclines. The phase linearization algorithm 

ensured highly linear estimates, with mean R2 = 0.997 for participant P1 and mean R2 

= 0.982 for participant P2. Finally, the volitional start/stop behavior of the phase variable 
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originally shown in [31] was preserved. Fig. 14 shows the phase variable trajectory for 4 

non-steady bouts during the overground acclimation for participant P1, confirming its ability 

to parameterize non-rhythmic motion.

B. Benchmark FSM Impedance Controller

The Finite State Machine controller (FSMC), based on the FSM impedance controller 

presented in [16], was constructed to provide a benchmark with which to compare the 

HKIC. The flow of the FSMC’s state machine is depicted in Figure 15. A tunable center 

of pressure threshold, ℓcop
* , controlled the transition from S1 to S2. Then, after a tunable 

duration, t2→3, the FSM transitioned to S3. Next, a TO event triggered the transition to S4. 

Finally, knee extension θ̇k < 0  caused a transition to S5, where the FSM remained until 

returning to S1 at HS. During transitions, the impedance parameters were rate-limited to 

prevent step changes in torque. In the FSMC, the torque command was given by (1), where 

K, B, and θeq depended on the current FSM state (given in Table IV).

Many methods have been proposed for deciding when to switch between sets of impedance 

parameters for different tasks, including simple threshold methods [16] and more complex 

machine learning methods [83], [84]. We employed a strategy similar to [16] where the 

prosthesis directly estimated the ground incline using the method described in Section IV-B. 

Then a secondary FSM was used to select between parameter sets based on the estimated 

incline γ . To prevent rapid switching between parameters at the boundaries, overlap was 

included in the switching thresholds (Fig. 15b).

C. Additional Detailed Results

Table IV lists the results from the impedance parameter tuning for the FSMC, including 

the tuned impedance parameters, transition thresholds, and tuning times. The stiffness K, 

damping B, and equilibrium angle θeq were tuned by the research team for each of the 

5 states (S1, S2, S3, S4, and S5) at three baseline tasks for each participant. Next, Table 

V shows the kinematic and kinetic RMSE values for each participant during both the 

steady-state and continuously varying trials, each separated by stance and swing.
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Fig. 12. 
The average global thigh angle trajectory θth (positive flexion) for 1 m/s 0 deg able-bodied 

walking, segmented by the phase variable FSM states. The phase variable is defined by 

linear mappings of θth during S1, S2 and S4, and by a feedforward phase variable rate 

during S3 and S5. The feedforward rates for S3 and S5 are given by the average rate of 

change of the phase estimates during the preceding states, which correspond to periods of 

constant thigh angular velocity.
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Fig. 13. 
Flow chart depicting the FSM states and transition criteria used in the phase variable 

calculation. States 1–3 (green) occur during the stance phase and states 4–6 (blue) occur 

during swing. States where phase is directly calculated based on thigh angle are shown 

as squares and states with feedforward definitions are shown as circles. State 6 is only 

necessary for non-steady gait and is typically bypassed during steady walking.
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Fig. 14. 
Phase variable trajectories from 4 overground walking bouts recorded while Participant P1 

acclimated to the prosthesis between parallel bars. The phase variable is able to parameterize 

these non-rhythmic motions, allowing the participant to start and stop the gait cycle at will.
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Fig. 15. 
(a) The structure and transition logic of the benchmark finite state machine controller. 

Tunable parameters ℓcop
*  and t2→3 controlled the transitions from S1 to S2 and S2 to S3, 

while constant ground contact and knee velocity thresholds controlled the other three. 

States in green occur during stance and blue states during swing. (b) Task transition logic 

indicating how the impedance parameter sets are selected based on the incline estimate γ .

Table III

Symbol definitions for features used to calculate s

θth
HS θth at heelstrike

θth
MHE θth at maximum hip extension

θth 
MHF θth at maximum hip flexion

θth 
TO θth at toe off

sMHE s at maximum hip extension

sMHF s at maximum hip flexion

sTO s  at toe off

ṡS2 Average rate of change of s  during S2
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ṡS4 Average rate of change of s  during S4

Δt Time since state transition

tMHE Time at maximum hip extension

tMHF Time at maximum hip flexion

t0 Time at heelstrike

t f Time at gait cycle completion

Table IV

Results of the impedance parameter tuning for the FSMC for both participants P1 and P2 at 

each baseline task. The FSMC consists of 5 states: S1, S2, S3, S4, and S5, each with unique 

parameters.

Participant P1 SS-Level - (0 deg, 1 m/s) SS-Incline - (5 deg, 1 m/s) SS-Decline - (−5 deg, 1 m/s)

Tuning Time 3 min 14 min 5 min

Transition 
Parameters

ℓcop
* 8.00 cm 5.00 cm 10.00 cm

t2→3 0.091 s 0.190 s 0.061 s

Impedance S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

Knee

K 
(Nm/
kg)

2.25 2.00 1.00 1.25 0.75 1.50 1.50 0.75 1.00 1.00 2.25 2.00 1.00 1.00 1.00

B 
(Nms/

kg)
0.14 0.13 0.12 0.07 0.06 0.09 0.09 0.09 0.08 0.07 0.09 0.10 0.10 0.05 0.07

θeq 
(rad) 0.15 0.25 1.20 1.30 −0.15 0.35 0.25 0.50 1.20 0.30 0.15 0.35 0.75 1.25 0.05

Ankle

K 
(Nm/
kg)

1.50 3.50 4.50 0.10 0.50 3.50 3.50 4.00 0.35 1.00 3.50 3.50 3.50 1.00 1.00

B 
(Nms/

kg)
0.14 0.14 0.14 0.13 0.10 0.14 0.14 0.14 0.15 0.10 0.10 0.10 0.10 0.10 0.10

θeq 
(rad) −0.10 −0.30 −0.35 0.20 0.00 0.10 −0.10 −0.23 0.20 0.10 0.100 −0.050 0.00 0.10 0.10

Participant P2 SS-Level - (0 deg, 1 m/s) SS-Incline - (5 deg, 1 m/s) SS-Decline - (−5 deg, 1 m/s)

Tuning Time 19 min 16 min 4 min

Transition 
Parameters

ℓcop
* 9.25 cm 7.25 cm 12.50 cm

t2→3 0.090 s 0.230 s 0.061 s

Impedance S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

Knee

K 
(Nm/
kg)

2.25 2.00 1.00 1.25 1.15 2.25 2.00 1.20 1.00 1.50 2.25 2.00 1.00 1.00 1.00

B 
(Nms/

kg)
0.14 0.13 0.12 0.06 0.07 0.09 0.09 0.09 0.08 0.09 0.14 0.13 0.12 0.08 0.05

θeq 
(rad) 0.15 0.25 1.40 1.40 0.05 0.25 0.25 0.40 1.20 0.10 0.10 0.35 0.85 1.25 0.05
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Participant P2 SS-Level - (0 deg, 1 m/s) SS-Incline - (5 deg, 1 m/s) SS-Decline - (−5 deg, 1 m/s)

Ankle

K 
(Nm/
kg)

1.50 3.00 4.00 0.10 0.50 2.50 2.00 4.00 1.00 1.00 1.00 3.50 4.50 1.00 1.00

B 
(Nms/

kg)
0.14 0.14 0.14 0.13 0.10 0.14 0.15 0.14 0.14 0.10 0.14 0.14 0.14 0.10 0.10

θeq 
(rad) −0.10 −0.30 −0.35 0.20 0.00 0.05 −0.10 −0.5 0.25 0.10 −0.05 −0.05 0.00 0.10 0.10

Table V

Kinematic and kinetic RMSE relative to able-bodied data for the knee (K) and ankle (A) 

during the steady-state and continuously varying trials of each participant

Steady-State Trials Continuously Varying Trials

Stance Swing Stance Swing

Angle (deg) Moment 
(Nm/kg)

Angle (deg) Moment 
(Nm/kg)

Angle (deg) Moment 
(Nm/kg)

Angle (deg) Moment 
(Nm/kg)

K A K A K A K A K A K A K A K A

P1
HKIC 5.08 4.93 0.22 0.30 9.70 2.51 0.14 0.04 4.71 5.06 0.20 0.27 7.28 2.64 0.13 0.04

FSMC 8.07 6.78 0.23 0.37 7.86 5.69 0.16 0.06 8.15 7.38 0.21 0.39 7.90 5.86 0.16 0.06

P2
HKIC 7.83 4.09 0.26 0.20 17.98 3.83 0.17 0.06 8.10 3.75 0.28 0.19 16.81 3.67 0.16 0.06

FSMC 8.42 4.92 0.28 0.25 8.62 5.19 0.16 0.07 8.30 5.76 0.24 0.27 9.35 5.09 0.15 0.06

AVG
HKIC 6.48 4.50 0.24 0.25 13.90 3.18 0.15 0.05 6.40 4.40 0.24 0.23 12.04 3.15 0.15 0.05

FSMC 8.26 5.81 0.26 0.31 8.25 5.43 0.16 0.07 8.22 6.57 0.22 0.33 8.62 5.47 0.16 0.06
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Fig. 1. 
A block diagram of the Hybrid Kinematic Impedance Controller presented in this work. 

Real-time estimates of gait phase s  and task χ define desired joint impedance parameters K, 
B, θeq and joint angles θd using data-driven models. Depending on if the user is in stance 

or swing, the torque commands τ are calculated using either an impedance controller or a 

position controller, respectively.
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Fig. 2. 
Plots of the calculated impedance parameter functions, stiffness K(sst, γ, ν), damping B(sst, 
γ, ν), and equilibrium angle θeq(sst, γ, ν), for the knee and ankle, projected onto a speed 

of ν = 1 m/s. These surfaces show the approximated solution to the original optimization 

problem (4).
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Fig. 3. 
Plots of (a) the mean able-bodied thigh trajectories reported in [24], where positive angles 

correspond to hip joint flexion, and (b)-(c) the resulting phase variable trajectories at 

different inclines. Plot (b) shows the trajectories calculated the previous method described 

in [49] and Plot (c) shows the trajectories calculated using the new phase variable presented 

in this work. The new method shows no phase pause near push-off and improved linearity, 

especially at the point of maximum hip extension.
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Fig. 4. 
Photos of above-knee amputee participants P1 and P2 performing various tasks with the 

HKIC during the experiments.
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Fig. 5. 
Diagrams indicating the locations of the task space sampled during each trial. Each 

transparent marker indicates the treadmill’s task feedback, sampled at 2 Hz. Each black 

dot indicates the task combination commanded to the treadmill for a duration of 45 seconds 

in (a) and 20 seconds in (b).
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Fig. 6. 
Plots of the inter-participant average kinematic and kinetic trajectories produced by each 

controller over (a) varying inclines at 1 m/s and (b) varying speeds at level ground for 

the steady-state trials. Able-bodied trajectories from [24] are also shown for reference. The 

HKIC produced smooth kinematic variations with incline changes as well as increasing 

knee flexion and ankle push-off torque with increased speed, resembling the able-bodied 

trajectories.
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Fig. 7. 
Inter-participant RMSE in the observed kinematics (left) and kinetics (right) relative to 

able-bodied walking data for both the HKIC and FSMC during the steady-state task 

trials. The error bars represent ±1 standard deviation over lumped participant strides. The 

HKIC demonstrated lower mean error than the FSMC in 7 of 8 metrics, with particular 

improvements at the ankle joint. The high knee kinematic error in swing for the HKIC is the 

result of intentional early extension to promote user confidence that the prosthesis was ready 

for weight acceptance.
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Fig. 8. 
Inter-participant average cadence for the steady-state task trials as functions of speed for 

different ramp inclinations: ramp descent (left), level ground (middle), and ramp ascent 

(right). Error bars represent ±1 standard deviation over lumped participant strides. Both 

controllers show similar cadence trends as the able-bodied reference (AB) calculated 

from [24], with increasing step frequency with increasing speed. Overall, the participants 

preferred longer strides relative to able-bodied, which may be due to the larger mass of the 

powered prosthesis.
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Fig. 9. 
The inter-participant average prosthesis work per stride over variable (a) inclines and (b) 

speeds during the steady-state task trials. Error bars represent ±1 standard deviation over 

lumped participant strides. An able-bodied reference (AB) calculated from [24] shows that 

the HKIC demonstrated biomimetic energy injection, particularly through a linear increase 

in ankle work as incline increased, corresponding to 100.6% of the able-bodied rate. Both 

controllers showed less energy absorption at the knee during steep declines, suggesting that 

our participants may have had habitual aversions to early stance knee flexion.
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Fig. 10. 
Plot of the inter-participant average kinematic and kinetic error trajectories in the 

continuously-varying incline trial, relative to able-bodied data [24]. The knee data is shown 

in the left column and the ankle in the right. Shaded regions represent ±1 standard deviation 

over lumped participant strides. Aside from intentional discrepancies in the late-swing knee 

kinematics (see Appendix Section A2), the HKIC showed low RMSE across the gait cycle 

throughout varying tasks, suggesting appropriately adapting biomechanics.
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Fig. 11. 
Average phase estimate progression calculated in real-time by the HKIC during the 

continuously-varying task trials for participants P1 and P2. Shaded regions represent ±1 

standard deviation. The linearity and consistency of the trajectories illustrate the phase 

variable’s ability to adapt to continuous task variations and appropriately parameterize the 

gait cycle.
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Table I

Participant attributes

ID Sex Age (yrs) Mass (kg) Height (m) Years since amputation Etiology

P1 Male 26 116 1.9 26 Congenital

P2 Male 40 84 1.8 23 Cancer
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Table II

Task estimate RMSE observed during the continuously-varying task trials averaged over lumped participant 

strides

Trial Controller Incline (deg) Speed (m/s)

CV-Incline
HKIC 0.61 ± 0.58 0.10 ± 0.07

FSMC 1.81 ± 1.42 0.11 ± 0.06

CV-Decline
HKIC 0.66 ± 0.42 0.11 ± 0.07

FSMC 1.03 ± 0.68 0.12 ± 0.07
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