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Abstract

Rationale and Objectives: Osteoporosis affects 9% of individuals over 50 in the United 

States and 200 million women globally. Spinal osteoporotic compression fractures (OCFs), an 

osteoporosis biomarker, are often incidental and under-reported. Accurate automated opportunistic 

OCF screening can increase the diagnosis rate and ensure adequate treatment. We aimed to 

develop a deep learning classifier for OCFs, a critical component of our future automated 

opportunistic screening tool.
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Materials and Methods: The dataset from the Osteoporotic Fractures in Men Study comprised 

4,461 subjects and 15,524 spine radiographs. This dataset was split by subject: 76.5% training, 

8.5% validation, and 15% testing. From the radiographs, 100,409 vertebral bodies were extracted, 

each assigned one of two labels adapted from the Genant semiquantitative system: moderate to 

severe fracture vs. normal/trace/mild fracture. GoogLeNet, a deep learning model, was trained 

to classify the vertebral bodies. The classification threshold on the predicted probability of OCF 

outputted by GoogLeNet was set to prioritize the positive predictive value (PPV) while balancing 

it with the sensitivity. Vertebral bodies with the top 0.75% predicted probabilities were classified 

as moderate to severe fracture.

Results: Our model yielded a sensitivity of 59.8%, a PPV of 91.2%, and an F1 score of 0.72. The 

areas under the receiver operating characteristic curve (AUC-ROC) and the precision-recall curve 

were 0.99 and 0.82, respectively.

Conclusion: Our model classified vertebral bodies with an AUC-ROC of 0.99, providing a 

critical component for our future automated opportunistic screening tool. This could lead to earlier 

detection and treatment of OCFs.

Keywords

Osteoporosis; fragility fracture; deep learning; semiquantitative; opportunistic screening

Introduction

Osteoporosis is a debilitating disease affecting 9% of individuals over 50 years old in the 

United States [1] and 200 million women globally [2]. In a lifetime, one in three individuals 

in a developed country will incur an osteoporotic compression fracture (OCF) [2]. After the 

first fracture, the risk for subsequent fractures is dramatically increased [3–5]. Even a single 

OCF is associated with a decreased quality of life and a higher mortality rate [6].

Osteoporosis screening is underutilized despite being endorsed by many organizations, 

including the US Preventive Services Task Force. Between 2004 and 2006, less than 1/3 of 

women who should have been screened underwent bone mineral density testing [7]. Jain et 
al. [8] reported that the rate of osteoporosis screening for high-risk men is low. The cause 

of underutilization of osteoporosis screening is multifactorial, however Medicare payment 

cuts for dual-energy X-ray absorptiometry screening were associated with a screening rate 

decrease of 56% between 2006 and 2010 [9].

Opportunistic screening can complement current screening methods. Several groups have 

published approaches to opportunistic screening using pre-existing imaging to increase 

osteoporosis detection rates [10–26]. Many groups used computerized tomography images 

[10–22], while few used radiographs [23–26]. Since radiography is a ubiquitous imaging 

modality used early in diagnostic workup of many conditions with an estimated 183 million 

exams in US hospitals in 2010 [27], accurate opportunistic osteoporosis screening using 

radiographs is as important as that using computerized tomography. Among the groups that 

used radiographs, Lee et al. [23] and Zhang et al. [24] used machine learning algorithms 

to estimate bone mineral density. However, using bone mineral density as a biomarker 
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of osteoporosis detection has known limitations [28, 29]. Spinal OCFs are an additional 

osteoporosis biomarker. Spinal OCFs are often incidental on chest or abdominal images and 

frequently under-reported, resulting in under-diagnosis and under-treatment [30]. Applying 

automated opportunistic OCF screening to existing imaging studies could result in earlier 

and more extensive osteoporosis identification and treatment. Murata et al. [25] and Chou 

et al. [26] recently reported approaches to automatically detecting OCFs on radiographs. 

However, their studies had limitations, including small sample size, probable selection bias 

resulting in unrealistically high prevalence of the OCFs, and single center data leading to 

possible overfitting.

We ultimately attempt to construct an automated opportunistic screening tool to detect 

OCFs on radiographs. It would include at least three components: 1) image segmentation 

that automatically finds the vertebral bodies on a spine radiograph; 2) an image classifier 

that determines whether each vertebral body is fractured; and 3) a patient-level classifier 

that integrates the fracture status of all vertebral bodies in the spine radiograph. In this 

manuscript, we focus on describing the second component, the OCF classifier. For image 

classification, deep learning significantly outperforms other machine learning algorithms 

[31]. A deep learning model is a multi-layer neural network, which can extract features from 

unstructured data such as medical images. GoogLeNet [32] is a well-known deep learning 

model that we used to build our OCF classifier. Compared with other more recent deep 

learning models, GoogLeNet contains fewer parameters that need to be learned [33], is 

faster to train, and is less likely to overfit given a limited number of training data instances 

as is the case with OCF classification in this study. Our objective was to create an OCF 

classifier that could achieve an AUC-ROC of at least 0.9 for classifying vertebral bodies as 

moderately to severely fractured vs. normal/trace/possible fracture.

Materials and Methods

MrOS Dataset

The Osteoporotic Fractures in Men (MrOS) Study radiograph dataset was previously 

described in Orwoll et al. [34]. A de-identified copy of this dataset was obtained under a 

data use agreement with the San Francisco Coordinating Center. The MrOS study collected 

data from six US academic medical centers in Birmingham AL, Minneapolis MN, Palo Alto 

CA, Pittsburgh PA, Portland OR, and San Diego CA, at each of which a local IRB approved 

the study. All participants gave written informed consent. MrOS included 5,994 males 

aged 65 and older from six clinical centers in the United States and collected clinical and 

laboratory imaging data at the initial visit (Visit 1) and the follow-up visit (Visit 2) average 

4.5 years later. At Visit 1 and Visit 2, lumbar and thoracic radiographs were obtained from 

5,994 and 4,423 subjects, respectively. At Visit 1, the clinical centers provided film-based 

radiographs. At Visit 2, four centers provided film-based radiographs and the other two 

centers provided direct digital radiographs.

Cawthon et al. [35] annotated the radiographs in the MrOS dataset with the Genant 

semiquantitative (SQ) criteria [36] (see Figure 1) and identified the margin of the vertebral 

bodies. All film-based radiographs were digitized. In total, 20,824 radiographs were in 

digital forms (11,982 from Visit 1 and 8,842 from Visit 2). The radiographs of 36 (0.60%) 
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subjects were excluded in the MrOS study primarily due to the presence of diffuse idiopathic 

skeletal hyperostosis, ankylosing spondylitis, and to a lesser degree technical obscuration 

of the spine (overlying structures, exposure, parallax, etc.). The remaining radiographs of 

5,958 subjects from Visit 1 and 4,399 subjects from Visit 2 were annotated. To outline each 

vertebral body in each radiograph, four corners of this vertebral body and two midpoints of 

the superior and inferior endplates were pinpointed.

Dataset Labeling and Partitioning

Our dataset was constructed from the MrOS radiographs [34] and Cawthon et al.’s 

annotations [35]. Each data instance is an individual vertebral body extracted from the 

original radiograph using the four corner points from the MrOS annotation. Depicted in 

Figure 1, the SQ classes were aggregated into two classes: label 0 representing a normal 

vertebral body or a possible mild deformity and label 1 representing a moderate to severe 

deformity. Reasons to simplify the SQ criteria included:

1. Our design intent is ultimately to create an automated opportunistic screening 

tool to screen large populations and to prompt further osteoporosis evaluation 

based on the prediction of a probable osteoporotic fracture. Thus, for cases 

with a probable fracture, a member of the healthcare team will be alerted that 

a finding is present and further evaluation is needed. Otherwise, if there is no 

probable fracture, no notification will be provided and the standard of care will 

be maintained. This scenario represents a binary decision of whether to notify a 

provider or not, and thus supports a binary classification.

2. An automated opportunistic screening tool screening a large volume of cases 

must identify cases with high confidence to prevent undue burden on the 

healthcare enterprise. The mild deformity category may include deformities that 

are not definitively OCFs but rather are congenital or associated with a disease 

other than osteoporosis. Thus, this category was grouped with the normal class.

3. The number of vertebral bodies are insufficient in some SQ classes like 

“moderate crush deformity” (see Figure 1).

Data instances were partitioned into the training, validation, and test sets by subject. The 

radiographs from one subject only appear in one of the three sets. We randomly selected 

76.5%, 8.5%, and 15% of the subjects to form the training, validation, and test sets, 

respectively (see Figure 2). The percentage used to form the validation instances was set 

smaller than usual (e.g., 10% or 20%) due to the class imbalance of the dataset. For effective 

training, the training set needed subsampling to correct the class imbalance between label 

1 and label 0 (Figure 2). To preserve the class distribution of the original population and 

to most closely evaluate real world performance, no corrections of the imbalance in the 

validation and test sets were performed. A smaller validation set allowed for a larger training 

set, even after downsampling the majority class in the training set. In the training set, data 

instances of label 0 were randomly sampled at a ratio of 2.5:1 (label 0 : label 1) to better 

balance the two classes. The ratio of 2.5:1 was determined in an earlier experiment, in 

which different ratios were tried and we chose the ratio to maximize the area under the 

precision-recall (PR) curve (AUC-PR) on the validation set.
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Image Pre-processing and Augmentation

This section presents the image pre-processing and augmentation steps. First, we wanted 

to extract the image patches, each containing a vertebral body, from the radiographs. 

These image patches were termed vertebral patches. Each input data instance for our 

OCF classifier was a vertebral patch. Since the automated image segmentation tool is 

under development, each vertebral patch in this study was extracted using the manually 

annotated contour of the corresponding vertebral body. Second, we attempted to control 

the heterogeneity among the vertebral patches to a moderate range. Excessive heterogeneity 

in the dataset can confound deep learning models when extracting relevant features, while 

too little heterogeneity could result in poor generalizability of the trained model. Figure 3 

shows the general steps of image pre-processing and augmentation. Image augmentation 

is a ubiquitous approach to increase the trained model’s performance by creating subtly 

modified data instances for the model to be trained on. By definition, image augmentation 

was applied to only the training set. Among all steps shown in Figure 3, Steps 5 and 8 

are image augmentation procedures applied to only the training set, while the other steps 

are image pre-processing steps applied to each of the training, validation, and test sets. Our 

code for image pre-processing and augmentation was uploaded to https://github.com/UW-

CLEAR-Center/Preprocessing_for_Spinal_OCF_Detection. In the following, we describe 

the details of these image pre-processing and augmentation steps.

In each vertebral patch, we controlled the variation of three features: 1) the vertebral body’s 

position; 2) the percentage of the vertebral patch’s area occupied by the vertebral body; 

and 3) the vertebral body’s tilt angle. The aspect ratio of each vertebral body was fixed 

after extracting it. Initially, horizontally flipping was performed if needed, to conform to the 

convention that the subject faces left (see Step 1 of Figure 3). To extract a vertebral body, 

the four corner points in the six-point morphological annotations were used to generate two 

diagonals. We built two coordinate axes with the x-axis bisecting the angle between the two 

diagonals connecting the four corner points (see Step 2 of Figure 3). The angle between 

this bisector and the x-axis of the vertebral patch defined the vertebral body’s tilt angle. To 

keep the extracted vertebral body’s aspect ratio constant, we bounded the vertebral body 

by a square fulfilling two requirements: 1) one side of the square is perpendicular to the 

aforementioned bisector; and 2) the square is the smallest square with none of the four 

corner points lying outside of it. Requirement 1 guarantees that the vertebral body is not 

tilted inside the square. Requirement 2 assures that the vertebral body is at the center of 

the square. This smallest square cannot always bound the whole vertebral body because of 

osteophytes and parallax. To avoid accidental cropping of the vertebral body and to provide 

surrounding image context during the extraction step, we expanded this smallest square 

around its center to enlarge its area by four times. If the enlarged square exceeded the 

boundary of the spine image, we zero padded the excess area. This enlarged square served 

as the vertebral patch. In summary, the extraction process assures that the vertebral body is 

positioned at the center of a patch, occupies one quarter of the patch, and is not tilted.

Affine transformation, a data augmentation method, was conducted during vertebral body 

extraction. For each vertebral patch, rotation, scaling, and translation were applied to the 

vertebral body sequentially. The requirements of the affine transformation are: 1) scale the 
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vertebral body’s area by s%, where s was randomly selected from the range [81, 121]; 

2) rotate the vertebral body by a degree randomly selected from the range [−5°, 5°]; and 

3) translate the vertebral body along the x-axis and y-axis, each by a distance equal to a 

value randomly and independently sampled from the range [−0.05, 0.05] × the length of 

vertebral patch’s edge. Affine transformation of the vertebral body inside the vertebral patch 

is basically the same as that of the square on the spine image (Step 5 in Figure 3). To 

expand (or shrink) the vertebral body’s area by s%, we shrank (or expanded) the square’s 

area by (1/s%)×100%. To rotate the vertebral body by an angle, we rotated the square by 

the same angle in the opposite direction. To translate the vertebral body by a distance, we 

translated the square by the same distance in the opposite direction. For each original square 

(the square after Step 4 in Figure 3), we conducted affine transformations on it four times to 

generate four augmented vertebral patches.

While the bone of the vertebral body is brighter than the background in most vertebral 

patches, “inverted patches” also exist, in which the bone of the vertebral body is darker 

than background. Figure 3 includes an inverted vertebral patch, which is shown to be 

inverted back in step 7 according to the convention used in this project (bone brighter than 

background and air). In our experiments, mixing these two types of vertebral patches in 

the dataset was one major negative factor on the deep learning model’s performance (see 

the “Error Analysis” Section of the “Results” Section). Thus, it is necessary to invert the 

inverted patches to make the bone of the vertebral body in each vertebral patch brighter than 

the background. Figure 4 shows our algorithm for detecting inverted patches. Our intuition is 

that the pixels of the vertebral body’s endplates should have gray intensities closer to those 

inside the vertebral body than to those outside. Our algorithm consists of six steps:

1. Find the vertebral body’s endplates. In the vertebral patches that were not 

generated by affine transformation, the vertebral body is non-tilted and hence 

the endplates are usually close to being horizontal. To detect horizontal lines, 

we used a Sobel operator [37] with a kernel size of 5. Then we used hysteresis 

thresholding [37] to check which horizontal lines were most likely to be the 

endplates. The low and high levels of hysteresis thresholding were set to 0.5 and 

0.8, respectively.

2. For each pixel on an endplate, obtain a vertical stripe with the pixel as its 

midpoint. The stripe has a width of one pixel and a height of 0.05 × the vertebral 

patch’s edge length.

3. On each vertical stripe, obtain the highest and lowest gray intensities.

4. Calculate the differences a) between the highest gray intensity and the gray 

intensity of the pixel on which the endplate and the vertical stripe intersect; and 

b) between the gray intensity of this pixel of intersection and the lowest gray 

intensity. The two differences were denoted by dh and dl, respectively. If dl is 

<dh, the pixel on the endplates is closer to the “dark end” of the gray intensity 

histogram of all the pixels on the vertical stripe. Otherwise, the pixel on the 

endplate is closer to the “bright end” of this histogram.

5. Obtain all of the dl and dh by traversing all of the pixels on the endplates.
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6. Calculate and compare the means of all dl and of all dh to determine whether the 

grayscale is inverted. If the mean of all dl is less than that of all dh, the pixels on 

the endplate’s clusters more on the “dark end” of the gray intensity histogram of 

the pixels around and on the endplates. This indicates a dark vertebral body and 

bright surrounding. Conversely, if the mean of all dl is greater than or equal to 

that of all dh, we determine that the grayscale is not inverted.

To further increase the accuracy of inverted patch detection, rather than relying on the 

decision for a single vertebral patch, we integrated the algorithm’s outputs across all 

vertebral patches in any given spine radiograph. More specifically, majority voting was 

conducted on the results of all vertebral patches in a spine radiograph. The voting result of a 

spine radiograph was assigned to all vertebral patches from that radiograph. If the vote was a 

tie, inversion of the spine image was randomly assigned.

Afterwards, we conducted two additional data augmentation steps on each vertebral 

patch generated by affine transformation: 1) adjust the contrast and brightness using the 

SigmoidContrast class in the imgaug package [38]; and 2) add Gaussian noise using the 

AdditiveGaussianNoise class in the imgaug package [38]. When adjusting the contrast and 

brightness, two parameters were required: gain and cutoff. Gain was randomly sampled 

from the range [4, 8]. Cutoff was randomly selected from the range [0.4, 0.6]. The standard 

deviation of the Gaussian noise was randomly sampled from the range [0, 39].

As a result, for each vertebral body in the training set, we obtained one original vertebral 

patch and four augmented vertebral patches. These five patches were used for model 

training. The validation and test sets only contain the original vertebral patches. Before 

feeding into the neural network, each vertebral patch was resized to 224×224 pixels and 

each pixel value was normalized by subtracting the mean and then dividing by the standard 

deviation of the vertebral patch [31].

Model Training

GoogLeNet [32] was used to predict the presence of OCF for each vertebral body (label 

1 vs. label 0). This neural network was built using Python 3.7.6, TensorFlow 2.2.0 [39], 

and TF-Slim 1.2.0 [40]. The original paper describing GoogLeNet [32] used an architecture 

with one backbone network and two auxiliary networks. The latter was not included in 

the GoogLeNet code provided by TF-Slim. Thus, we added these two auxiliary networks 

to the source code. Our code for training the GoogLeNet model was adapted from online 

open-source code [41].

Transfer learning [31], a commonly used technique to boost deep learning models’ 

performance in image classification tasks, was used. In transfer learning, deep learning 

models pre-trained on large general-purpose imaging datasets are used as a starting 

point for training the model for another task, in this case classifying vertebral bodies. 

TensorFlow Model Garden [42] provided a pre-trained GoogLeNet model implemented in 

TF-Slim and pre-trained on the ImageNet Large Scale Visual Recognition Challenge 2012 

(ILSVRC2012) dataset [43]. The model’s output layer was adapted for binary classification 

to fit OCF classification. Except for the parameters for the output layer, all of the other 
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parameters were initialized from the pre-trained model. The parameters for the output layer 

and the two auxiliary networks were initialized using He initialization [44]. ILSVRC2012 

uses RGB images with three channels. To use the pre-trained weights with the single 

grayscale channel of each vertebral patch, this channel was copied into the RGB channels.

When training GoogLeNet, we did not freeze any layer. In our experiments, freezing some 

layers had a limited impact on our model’s performance for OCF detection. The Adam 

learning rate optimization [45] was used with a weighted cross entropy loss function [46], 

which penalizes false positives more heavily than false negatives, and the optimization was 

iterated over a batch size of 20. Early stopping was used to avoid overfitting [47]. After 

each epoch, performance was evaluated on the validation set by calculating the AUC-PR. 

For a highly imbalanced dataset, the AUC-PR is a more suitable performance metric than the 

area under the receiver operating characteristic curve (AUC-ROC) and accuracy [48]. If the 

AUC-PR did not increase in any of the subsequent 10 epochs, training was terminated.

GoogLeNet contains several hyper-parameters. The four hyper-parameters shown in the 

Appendix were tuned by random search [47] for 1,500 rounds, with the goal of maximizing 

the AUC-PR on the validation set. The other hyper-parameters not mentioned in the 

Appendix were set to their default values given in the original GoogLeNet paper [32].

Hyper-parameter tuning was done on two Ubuntu Linux servers concurrently: 1) Xeon 

E5-2630 with 256 GB memory and four Nvidia GeForce TITAN Xp graphics processing 

units (GPUs), and 2) Xeon Gold 5215 with 96 GB memory and four Nvidia GeForce 2080 

Ti GPUs. The final model was trained and tested on the first server using one GPU.

Model Evaluation

We tried the following two thresholding methods to determine the classification threshold on 

GoogLeNet’s predicted probabilities of having label 1 (moderate to severe fracture):

1. Method 1: Manually select a threshold to prioritize the positive predictive value 

(PPV) for the opportunistic screening use case. In the setting of a screening tool 

screening large volumes of studies, a tool with too many false positives could 

unduly burden the healthcare system. Thus, the PPV of the model should not 

be small. In consultation with local clinicians, a PPV of approximately 90% 

was targeted. To obtain a PPV of approximately 90%, the threshold was set to 

classify vertebral bodies with the top 0.75% predicted probabilities as label 1.

2. Method 2: Obtain the threshold by maximizing Youden’s J statistic, which 

balances sensitivity and specificity.

Using each thresholding method, we evaluated the final model by computing seven 

performance measures on the test set: accuracy, sensitivity, specificity, PPV, negative 

predictive value (NPV), false discovery rate (FDR = 1- PPV), and F1 score. Using the 

second thresholding method, these seven performance measures were also computed on the 

training set as well as on the validation sets. Using the test set, the ROC curve and the PR 

curve were plotted, the AUC-ROC and the AUC-PR were calculated. For each performance 
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measure, its 95% confidence interval (CI) was obtained using 2,000-fold bootstrapping 

analysis.

Error Analysis

During model development, an error analysis was performed to find confounders resulting 

in misclassification, which guided later image pre-processing. From the validation set, 150 

correctly and 120 incorrectly classified vertebral patches were randomly selected. Of these, 

50 were reviewed by two radiologists for visual features that might cause misclassification. 

These two radiologists blindly and independently reviewed all 270 vertebral patches for 

each confounder in each patch. The ratio of misclassification odds with and without each 

confounder was calculated to determine the relative significance.

Results

MrOS Dataset and Dataset Partitioning

Within the MrOS dataset, a small number of vertebral bodies were dropped because they 

were not annotated, usually vertebra on the edges of the film. We finally obtained 4,461 

subjects with 8,915 radiographs from Visit 1 and 3,309 subjects with 6,609 radiographs from 

Visit 2. Table 1 shows the characteristics of the subjects in the entire, training, validation, 

and test sets of the MrOS dataset. Recall that the MrOS dataset is imbalanced with far more 

vertebral bodies with label 0 than vertebral bodies with label 1. To balance the training set, 

vertebral bodies with label 0 were downsampled. Both the characteristics of the subjects in 

the training set before downsampling and those in the training set after downsampling are 

shown in Table 1.

In total, 100,828 vertebral bodies were identified from all of the radiographs from both 

visits. Of these vertebral bodies, 376 were labeled “cannot evaluate,” “missing,” or “not 

applicable” were discarded. The remaining 100,452 vertebral bodies were scored using the 

Genant SQ criteria [36]. Of the 100,452 vertebral bodies, 43 had two annotations, which 

always resulted in the same label under the simplified categorization in Figure 1. The 

remaining 100,409 vertebral bodies were consisted of 69,453 lumbar vertebral bodies and 

30,956 thoracic vertebral bodies. The numbers of thoracic and lumbar vertebral bodies in 

each class are listed in Figure 1.

Figure 2 shows the dataset partitioning and the final distributions of the subjects, 

radiographs, and vertebral bodies in the training, validation, and test sets. Figure 5 shows the 

number of vertebral bodies of each SQ class at each anatomic level of the spine.

Error Analysis

Table 2 shows the error analysis results for the deep learning model trained in the early 

stage of this study. Substantial noise was found to be the confounder with the highest 

odds ratio for incorrect classification. Image inversion was another prominent confounder 

in this sample. For each of the confounders like “Overlying metal…” and “Point placement 

wrong…,” the number of sampled vertebral patches with this confounder was too small to 

adequately assess whether this confounder can degrade the classification accuracy.
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Model Evaluation

Final model training took approximately one hour. After the model was trained, a single 

vertebral patch inference to predict fracture or no fracture took an average of two 

milliseconds.

Figure 6 presents the final model’s performance on the test set. Parts A and B of Figure 

6 show the ROC curve with an AUC-ROC of 0.99 and the PR curve with an AUC-PR 

of 0.82, respectively. Part C of Figure 6 shows the model’s performance measures when 

the classification threshold on GoogLeNet’s predicted probabilities of having label 1 was 

determined by each of the two methods presented in the “Model Evaluation” section of the 

“Materials and Methods” section. Setting the classification threshold by prioritizing the PPV 

while balancing it with sensitivity, our model yielded a sensitivity of 59.8%, a specificity of 

99.9%, a PPV of 91.2%, an NPV of 99.5%, an FDR of 8.8%, an F1 score of 0.72, and an 

accuracy of 99.5%.

Table 3 shows the model’s performance measures on the test set with different thresholds 

applied to the output probability of fracture.

Table 4 shows our model’s performance measures on the validation set, the training set 

without the augmented vertebral patches, and the training set with the augmented vertebral 

patches. To compute the performance measures on each set, we set the classification 

threshold on the predicted probabilities of having label 1 by maximizing Youden’s J 

statistics.

Discussion

Principle Findings

This deep learning model for detecting OCFs of individual vertebral bodies demonstrates 

high performance. It was developed using a large, well validated, and prospectively acquired 

multicenter dataset utilizing the widely used Genant SQ criteria. Final performance of 

AUC-ROC of 0.99 exceeds our objective of having an AUC-ROC of 0.9.

The error analysis done during model development showed that “substantial noise” 

was a leading cause of misclassification. Subsequently, noise was added during image 

augmentation to generate augmented vertebral patches. This improved the generalizability 

of the model to noisy patches. Another leading confounder causing misclassification was 

“inverted grayscale of the vertebral patch.” To address this, we designed an algorithm 

that detects and invert the inverted vertebral patches using conventional image processing 

techniques (Step 7 in Figure 3). The confounders affecting few vertebral patches were 

disregarded.

Our ultimate goal is to create an automated opportunistic screening pipeline for large 

numbers of lateral clinical radiographs that image part of the spine. This deep learning 

model is a component of that pipeline. As mentioned in the Introduction section, multiple 

components are needed for the pipeline, but a model for determining the presence or absence 
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of fracture for each vertebral body is the most clinically critical component of the pipeline. 

Thus, it is critical to ensure high performance of this model.

Now that a deep learning model for classifying vertebral bodies is created, there is flexibility 

on how best to use the model’s output, a predicted probability of osteoporotic fracture. 

Since this is a probability between 0 and 1 for every vertebral body processed, any value 

between 0 and 1 can be used to threshold the output to create the final output of whether 

the vertebral body has a significant fracture or not. The threshold value selected determines 

the sensitivity, the specificity, and the PPV of the model. The range in performance is 

represented in the ROC and PR curves depicted in figure 6. The PR curve exhibits a gentle 

slope on the left of the curve where the sensitivity is around 0.0 – 0.5 (Figure 6). This is 

useful, as the goal is to maintain a high precision (PPV). This region of the curve allows us 

to maintain a high precision with little sacrifice in recall (sensitivity) until a sensitivity of 

around 0.5, where the PPV starts to fall steeply. The thresholds determined by Methods 1 

and 2 could be employed clinically, but ultimately the selected threshold should be driven by 

the use case.

Since the ultimate goal is for this deep learning model to function in a screening tool 

for a large number of exams where a positive result will trigger action in the healthcare 

system, it is important to ensure that only a minimum of false positives are generated. The 

exact number of false positives that would be acceptable to a healthcare system is likely 

to vary by healthcare system and is the subject of a separate body of work. All diagnostic 

tests generate false positives. The challenge is to determine how many false positives are 

acceptable for the use case by a specific healthcare system. Initial interviews with clinical 

faculty and staff suggest that a ratio of 1 false positive for every 10 true positives would not 

be overly burdensome. This would represent a PPV of about 91% or an FDR of about 9%. 

The inherent compromise is that sensitivity is sacrificed by maintaining a high PPV. These 

numbers were used to guide the selection of the threshold determined by Method 1 and 

shown in Figure 6 resulting in a sensitivity of 59.8%, a PPV of 91.2%, and an FDR of 8.8%. 

Our future opportunistic screening tool will supplement the current standard of care. Having 

a lower sensitivity could cause some osteoporotic fractures to be missed, but ultimately will 

not degrade the current standard of care. In other words, even if only a small number of 

osteoporotic fractures are detected, this tool will only improve the current standard of care 

since it is not replacing any stage in current clinical practice and it is using existing data 

acquired for other purposes.

Limitations & Future Directions

This study has several limitations:

1. The dataset came from the multicenter MrOS study that was started in 2000. 

Radiographs acquired by more recent digital detectors and systems could have 

characteristics and quality that are different from those in this dataset. We 

are currently creating additional datasets that include a local dataset with 

radiographs acquired using more modern techniques. These datasets can be used 

to test generalizability of our model or to train a better model.
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2. The MrOS study, by design, only included male subjects from six clinical 

centers in the U.S. Further testing is needed to ensure that this methodology 

is generalizable to women and international populations. Additional datasets with 

female subjects and international content are currently being developed to test 

generalizability of our model and to train a more robust model.

3. Some studies show that the Genant SQ criteria have limitations when assessing 

OCFs [49]. Subtle anterior wedging has overlap with other conditions that can 

be mistaken for subtle OCF in the Genant SQ criteria. Future work will include 

using other OCF classification methods, such as the modified algorithm-based 

qualitative [49] approach.

4. In this study, GoogLeNet was used to build the model. Using other deep learning 

models such as ResNet [50] could better detect OCFs. More radiograph specific 

forms of augmentation could be used to model imaging chain artifacts or to 

approximate subject positioning variations.

5. We used spine radiographs to build the OCF classifier. Since spine radiographs 

are optimized to show the bones, this type of radiograph is a reasonable choice 

for our initial study. In the future, we will test generalizability to other exam 

types such as chest and abdominal radiographs.

6. Our current deep learning model is applicable only to individual vertebral bodies. 

To adapt to a real clinical setting using spine radiographs each having multiple 

vertebral bodies, we need to do additional work to create a framework for 

automated image segmentation and vertebral corner point identification that can 

feed into a vertebral patch fracture classifier.

Conclusions

Our model classified individual vertebral bodies with an AUC-ROC of 0.99, showing 

high performance at detecting moderate to severe fracture. This model could serve as a 

component of an automated opportunistic screening tool that processes radiographs for a 

large healthcare system with few false positives. As a result, spinal OCFs could be detected 

earlier, facilitating further diagnostic workup and earlier treatment to improve quality of life 

and to decrease mortality and morbidity.

Appendix

Recall that when training the GoogLeNet model, we used random search to tune four 

hyper-parameters. In Table A.1, we present the definition, the optimal value, and the search 

range of each of these four hyper-parameters. The initial learning rate was searched on the 

logarithmic scale, while the other three hyper-parameters were searched on a linear scale.
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Figure 1: 
A graphic representation of the Genant semiquantitative (SQ) osteoporotic fracture 

classification criteria. This approach to facture classification uses nine fracture classes and 

one normal class. Fractures are graded by the degree of height loss (mild, moderate, or 

severe) and whether the vertebral body height loss is predominantly anterior, posterior, or 

central. The MrOS dataset assigns the 10 classes the numerical labels: 0, 1, 2, 2.5, 3, 4, 

4.5, 5, 6, and 7 (green bubbles). The original Genant criteria were modified slightly by 

the MrOS study to include the requirement for depression of the endplate to be present 

for the “Mild deformity” row [35]. This system was simplified into two classes: label 0 

(yellow) representing a normal or possible, mild deformity, and label 1 (orange) representing 

a moderate to severe deformity. Adapted from: Genant HK, Wu CY, van Kujik C, Nevitt 

MC: Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 

Sep; 1148, 1993. Fig. 1: Semiquantitative visual grading of vertebral deformities: Graphic 

representation. © 1993 American Society for Bone and Mineral Research.
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Figure 2: 
The MrOS dataset was divided into the test, validation, and training sets by subject. A 

thoracic and lumbar radiograph was obtained at both the first clinical visit (Visit 1) and 

the follow-up clinical visit (Visit 2). Since the radiographs of the same subject have some 

commonality, datasets were divided on a subject basis. To reduce the data imbalance degree 

in the training set, instances of label 0 (normal/possible/mild deformity) were subsampled to 

the ratio of 2.5:1 (label 0 to label 1) in order to better balance the cases in the two classes.
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Figure 3: 
This process of generating a vertebral patch was performed for each vertebral body labeled 

in a radiograph using the four corner points indicated by red stars. The blue and purple 

arrows demonstrate the creation of the vertebral patches without and with the augmentation 

steps, respectively. The vertebral patches in the validation and test sets should not be 

augmented. Both the raw and augmented vertebral patches were included in the training 

set. The steps are: 1) flip the radiograph horizontally to conform to the convention that the 

subject faces left; 2) form two coordinate axes with the x-axis bisecting the angle between 

the two diagonals connecting the four corner points; 3) obtain the smallest square that 

bounds the four corner points with edges parallel to the corresponding coordinate axes; 4) 

expand the square from its center to increase the area by four times, preventing cutoff of part 

of the vertebral body and providing surrounding image context; 5) augment the vertebral 

patch by scaling, rotating, and translating the square; 6) extract the square as a vertebral 

patch; 7) invert the grayscale if the bones are darker than the background; 8) augment the 

vertebral patch by changing the contrast and brightness and adding Gaussian noise to the 

vertebral patch; 9) resize the vertebral patch to 224×224 pixels and normalize each pixel 

value by subtracting the mean and then dividing by the standard deviation [31].
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Figure 4: 
The process to determine whether the grayscale of a vertebral patch is inverted. The steps 

are: 1) find the endplates using Sobel operator and hysteresis thresholding; 2) on the 

endplate, obtain a vertical strip of pixels whose midpoint is the pixel on the endplate; 3) 

on the vertical stripe, find the pixels with the highest and the lowest gray intensities; 4) 

calculate dh and dl; 5) traverse the pixels on the endplates and repeat Steps 2, 3, and 4 to get 

all dh and all dl; 6) calculate the means of all dh and of all dl, respectively, and compare them 

to determine whether the grayscale of the vertebral patch is inverted. If the mean of all dl is 

< the mean of all dh, the grayscale of the vertebral patch is inverted; otherwise, the vertebral 

patch is standard.
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Figure 5: 
In the entire MrOS dataset, the number of vertebral bodies of each SQ class at each 

anatomic level of the spine (A) excluding and (B) including the normal class. Each digit in 

the figure’s legend represents an SQ class shown in Figure 1 (green bubbles).
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Figure 6: 
On the test set, the final deep learning model achieved an AUC-ROC of 0.99 (A) and an 

AUC-PR of 0.82 (B) with the associated 95% confidence intervals (CIs). Two thresholding 

methods are used. Their corresponding sensitivities, specificities, PPVs, NPVs, FDRs, F1 

scores, and accuracies are shown in (C). The values in each pair of brackets in (C) represent 

the 95% CI. Thresholding method 1 provides a favorable PPV and a favorable FDR for large 

volume screening. Thresholding method 2 balances sensitivity and specificity by optimizing 

Youden’s J statistics. The confusion matrices generated using thresholding methods 1 and 2 

are shown in (D) and (E), respectively. For each confusion matrix, to normalize the values 

in it, each element in each row of it is divided by the sum of the elements in the row. The 

normalized confusion matrices are shown in (F) and (G). With thresholding methods 1 and 

2 used, (H) and (I) show the accuracy, sensitivity, PPV, and F1 score by each anatomic level 

of the spine. Note that the number of fractured vertebral bodies at T10 and T11 are three 
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and five, respectively. Because these numbers are small, there is limited statistical power to 

evaluate the model at these two anatomic levels (T10 and T11).
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Table 1:

Demographic information of the subjects in each of the entire, training, validation, and test sets from the 

MrOS dataset. Due to a large imbalance between label 0 and label 1 in the training set, label 0 was 

downsampled to reduce the imbalance between these two classes. Both the characteristics of the subjects in the 

training set before downsampling and those in the training set after downsampling are shown. The mean 

(standard deviation) of the ages and body mass indices were recorded at the baseline (Visit 1) and the follow-

up (Visit 2) visits. Race and ethnicity and the total number of subjects are also provided for each set.

Training set before 
downsampling the data 
instances with label 0

Training set after 
downsampling the data 
instances with label 0

Validation set Test set Entire dataset

Mean ± standard deviation

Age at Visit 1 73.7±5.9 73.7±5.8 74.1±6.2 73.5±5.7 73.7±5.9

Body mass index at Visit 1 27.8±3.9 27.9±4.0 27.2±3.5 27.6±3.5 27.4±3.8

Age at Visit 2 77.8±5.6 77.9±5.6 77.9±5.6 77.5±5.4 77.7±5.6

Body mass index at Visit 2 27.3±3.9 27.3±4.0 27.4±4.0 27.3±3.9 27.3±3.9

Percentage

Race/ethnicity

 American Indian or Alaska 
Native

0.8% 0.7% 1.8% 1.2% 0.9%

 Asian 3.2% 2.5% 3.1% 3.7% 3.2%

 Black or African American 4.2% 3.0% 5.4% 3.1% 4.2%

 Hispanic or Latino 2.0% 2.0% 2.8% 2.2% 2.1%

 Native Hawaiian or Other 
Pacific Islander

0.2% 0.3% 0.8% 0.1% 0.2%

 White 89.6% 91.5% 86.1% 89.7% 89.4%

Number

Total subjects 5,016 1,874 392 681 6,089
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Table 2:

Error analysis of potential confounders that led to incorrect classification of vertebral bodies by the deep 

learning model. Two neuroradiologists first reviewed a set of 50 random cases to identify the confounders, and 

then reviewed all 270 random cases to record the presence of each confounder for each case.

Number of vertebral patches  

Confounder  

Prediction

Odds ratioIncorrect Correct

Substantial noise
present 13 4

4.43
not 107 146

Part of vertebral patch was cut off and zero padded during extraction because the vertebral 
body was at the edge of the radiograph

present 6 2
3.89

not 114 148

Overlying metal object (surgical clip, catheter marker, staples, etc.)
present 1 0

3.78
not 119 150

Inverted grayscale of the vertebral patch
present 7 5

1.80
not 113 145

Tape/sticker on vertebral patch
present 3 3

1.26
not 117 147

Central disk depression (large Schmorl’s Node)
present 28 30

1.22
not 92 120

Heavy parallax artifact (scoliosis or patient positioning)
present 17 21

1.01
not 103 129

Fractured vertebral body fused to the adjacent vertebral body
present 15 20

0.93
not 105 130

Significant disk space calcification
present 14 21

0.81
not 106 129

Strong contrast gradient superimposed over the vertebral body (usually from the diaphragm 
or iliac crest)

present 25 37
0.80

not 95 113

Writing on the vertebral patch
present 11 18

0.74
not 109 132

Prominent overlying lines from ribs or linear structures projecting over the vertebral body
present 45 86

0.45
not 75 64

Poor definition of the margins of the vertebral body
present 20 48

0.43
not 100 102

Point placement wrong, resulting in a distorted vertebral patch
present 0 1

0.41
not 120 149

Very bulky osteophytes
present 20 50

0.40
not 100 100
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Table 3:

The GoogLeNet model outputs a predicted confidence for OCF for each vertebral patch, to which a variable 

threshold can be applied to change the percentage of data instances that are classified as label 1, resulting in a 

spectrum of sensitivities, specificities, PPVs, NPVs, FDRs, F1 scores, and accuracies.

Cutoff percentage Sensitivity (%) Specificity (%) PPV (%) NPV (%) FDR (%) F1 score Accuracy (%)

0.25 21.3 100.0 97.4 99.1 2.6 0.35 99.1

0.50 42.0 100.0 96.1 99.3 3.9 0.58 99.3

0.75 59.8 99.9 91.2 99.5 8.8 0.72 99.5

1.00 70.1 99.8 80.3 99.7 19.7 0.75 99.5

1.25 76.4 99.6 70.0 99.7 30.0 0.73 99.4

1.50 81.6 99.4 62.3 99.8 37.7 0.71 99.2

2.00 85.6 99.0 49.0 99.8 51.0 0.62 98.8

3.00 92.5 98.0 35.3 99.9 64.7 0.51 98.0

4.00 94.3 97.0 27.0 99.9 73.0 0.42 97.0

6.00 97.7 95.1 18.7 100.0 81.3 0.31 95.1

10.00 98.3 91.0 11.3 100.0 88.7 0.20 91.1
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Table 4:

The GoogLeNet model’s performance measures on the validation set, the training set without the augmented 

vertebral patches, and the training set with the augmented vertebral patches. For each set, the classification 

threshold on the predicted probability of having label 1 was set to maximize the Youden’s J statistics.

Sensitivity (%) Specificity (%) PPV (%) NPV (%) FDR (%) F1 score Accuracy (%)

Validation set 100.0 95.8 22.2 100.0 77.8 0.36 95.9

Training set without augmented 
vertebral patches 100.0 99.3 98.2 100.0 1.8 0.99 99.5

Training set with augmented 
vertebral patches 99.9 98.6 96.6 100.0 3.4 0.98 99.0
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Table A.1:

The four hyper-parameters that were tuned by random search over 1,500 rounds.

Hyper-parameter Description Optimal value Search range

Initial learning rate The learning rate when model training starts. 6.95×10−4 [10−6, 10−2]

Learning rate decay The value by which the learning rate was divided at the end of each epoch. 8.53 [1.0, 10.0]

Dropout rate For each unit in the fully connected layer before the output layer, the probability of 
dropping it.

0.25 [0.0, 1.0]

pos_weight The factor that controls the false positives’ weight in the weighted cross entropy 
loss function [25].

0.14 [0.0, 1.0]

Acad Radiol. Author manuscript; available in PMC 2023 December 01.


	Abstract
	Introduction
	Materials and Methods
	MrOS Dataset
	Dataset Labeling and Partitioning
	Image Pre-processing and Augmentation
	Model Training
	Model Evaluation
	Error Analysis

	Results
	MrOS Dataset and Dataset Partitioning
	Error Analysis
	Model Evaluation

	Discussion
	Principle Findings
	Limitations & Future Directions

	Conclusions
	Appendix
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table A.1:

