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INTRODUCTION

RAS Surgical Skill Levels Evaluation Challenge in Surgical 
Training

A large proportion of the cases of surgical malpractice are due 
to a lack of technical competence.1 Robotic-assisted surgery 
(RAS), specifically the da Vinci Surgical System, has become 
popular in a variety of specialties, especially surgical oncol-
ogy, urology, and gynecology, due to its benefits such as smaller 
incisions, less pain, lower risk of infection, and shorter hospital 
stay.2 However, surgeons must acquire the required proficiency 
level to ensure both the safety of patients and high-quality sur-
gical outcomes. RAS procedures require high dexterity, motor 
planning and control, and hand-eye coordination. Acquisition 
of these skills requires effective surgical training and assessment 
methods.3 Evaluation of the level of surgical expertise is import-
ant for feedback during training and programmatic changes.4 
Procedural-based assessment and surgical logbooks are exam-
ples of traditional (ie, nonautomated) surgical skill assessment 
methods. In all these procedures, an expert surgeon monitors 
the trainee’s activity and evaluates surgical skills. These methods 
of assessing surgical skills are inconsistent and change by the 
rater.5 The challenge of universal surgical skill assessment has 
yet to be addressed.

Available Objective Skill Evaluation Methods in RAS

An “objective” surgical skill assessment means to assess exper-
tise level that eliminates inconsistencies. Objective assessment 
methods have not been developed for existing surgical practice 
protocols and volume-based skills assessment. Several studies 
in the literature have proposed objective and automated surgi-
cal skill assessment methods using physiological data including 
brain activity,6 eye movement,4 kinematics,7 or surgical videos.8 
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Objective: Assessment of surgical skills is crucial for improving training standards and ensuring the quality of primary care. This 
study aimed to develop a gradient-boosting classification model to classify surgical expertise into inexperienced, competent, and 
experienced levels in robot-assisted surgery (RAS) using visual metrics.
Methods: Eye gaze data were recorded from 11 participants performing 4 subtasks; blunt dissection, retraction, cold dissection, 
and hot dissection using live pigs and the da Vinci robot. Eye gaze data were used to extract the visual metrics. One expert RAS sur-
geon evaluated each participant’s performance and expertise level using the modified Global Evaluative Assessment of Robotic Skills 
(GEARS) assessment tool. The extracted visual metrics were used to classify surgical skill levels and to evaluate individual GEARS 
metrics. Analysis of Variance (ANOVA) was used to test the differences for each feature across skill levels.
Results: Classification accuracies for blunt dissection, retraction, cold dissection, and burn dissection were 95%, 96%, 96%, 
and 96%, respectively. The time to complete only the retraction was significantly different among the 3 skill levels (P value = 0.04). 
Performance was significantly different for 3 categories of surgical skill level for all subtasks (P values < 0.01). The extracted visual 
metrics were strongly associated with GEARS metrics (R2 > 0.7 for GEARS metrics evaluation models).
Conclusions: Machine learning algorithms trained by visual metrics of RAS surgeons can classify surgical skill levels and evaluate 
GEARS measures. The time to complete a surgical subtask may not be considered a stand-alone factor for skill level assessment.

Keywords: expertise level, robot-assisted surgery, visual metrics
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Visual metrics, recorded from participants performing robot-assisted surgery subtasks using live pigs, were used to develop 
a machine learning model, which is a promising approach to the efficient and objective assessment of surgical skill and can 

distinguish inexperienced, competent, and experienced participants from each other, with high accuracy.

www.annalsofsurgery.com
mailto:Somayeh.besharatshafiei@roswellpark.org
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shafiei et al  •  Annals of Surgery Open (2023) 2:e292	 Annals of Surgery Open

2

The proposed methods for objective RAS skill assessment have 
reported promising results and opened the door for a new era 
of automated surgical skill evaluation. However, those methods 
have shortcomings limited to very basic tasks performed using 
models in the dry lab, using small groups of participants, intro-
ducing biases, or developing computationally costly models that 
cannot be integrated into surgical robot systems.

Importance of Objectifying RAS Surgical Skill Evaluation in 
Urology

Hysterectomy, cystectomy, and nephrectomy are 3 common 
urology and gynecological surgery procedures. Between 2000 
and 2013, 3194 adverse events (death, injury, malfunction, etc.) 
related to robotic surgery were reported to the US Food and 
Drug Administration Manufacturer and User Facility Device 
Experience (MAUDE) database in gynecology, 2331 of which 
were related to hysterectomy. In addition, 138 of the 1565 
adverse events reported in urology were related to nephrectomy 
and 48 to cystectomy.9,10 Surgical trainees would best acquire 
experience in performing these operations before operating on 
humans in an actual operating room (OR). However, there is 
currently no comprehensive objective surgical skill assessment 
paradigm applicable in clinical settings.

Importance of Time to Complete a Surgical Task in 
Surgical Skill Acquisition

In several surgical fields, residents or fellows attend the OR, 
and an expert surgeon teaches them, as a part of the training 
program, by considering patient safety and surgical outcome 
as the 2 main priorities. This teaching style lengthens operative 
time,11 while operative time is a major factor affecting the risk 
of surgical complications.12 Various surgical specialties, includ-
ing urology,13 obstetrics, and gynecology14 have shown a strong 
association between prolonged operative time and increased 
risk of complications. A meta-analysis of 33 studies showed that 
the risk of complications approximately doubled with operative 
time greater than 2 hours.15

Several studies have found a link between longer operative 
times and surgical site infections.16 Logical reasons have been 
suggested to explain the association between surgical site infec-
tion and operative time, which include longer exposure of 
tissues to environmental bacteria, increased risk of tissue des-
iccation and ischemia, diminished concentration of prophylac-
tic antibiotics, increased probability of sterile rule violation, 
and enhanced risk of venous thromboembolism through lon-
ger blood stasis and an increased risk of endothelial damage.17 
Lengthy operative times may cause fatigue in the surgical team, 
which consequently adversely affects their decision-making and 
concentration.18

Operative time is an important metric in surgical perfor-
mance and skill level evaluation tools, but it is not a sufficient 
quantitative metric for performance and skill level assessment.19 
Operative time has been considered in RAS surgical skill evalu-
ation tools; Global Assessment of Robotic Skills (GEARS) con-
siders time as part of the ‘efficiency’ metric.20

Connection Between Eye Metrics and Surgical Skill 
Assessment

Research in a variety of disciplines, including the evaluation of 
surgical skill and surgical training has suggested using eye gaze 
metrics as an assessment tool.21–23 Eyeglasses record the corneal 
reflection of infrared lighting to track pupil location, mapping 
the subject’s focus of attention.24 These recordings have enabled 
the measurement of various eye metrics including gaze entropy 
and gaze velocity, time to first fixation, total fixation duration, 

and saccade rate.21,25,26 Differences in these metrics between sub-
jects of varying skill levels suggest their use as markers of skill 
level.23,27–29 Recording the eye gaze of experts and junior resident 
surgeons performing laparoscopic cholecystectomy, experts 
who watched the video had much more overlap (55% of the 
time) with the reference (expert) surgeons than junior residents 
(43.8%).28

Eye gaze measurements have provided insight into learning 
and skill level improvement in several applications. However, 
the utility of measurements retrieved from eye movement behav-
ior during RAS skill evaluation have yet to be documented.

Potential Use of Machine Learning Approaches for 
Surgical Skill Assessment

The application of machine learning (ML) to objectively assess 
surgical skills and offer timely, helpful surgical feedback is 
growing quickly. Several studies suggested using ML methods 
to objectify RAS surgical skill assessment and performance 
evaluation using various types of physiological data collected 
from surgeons and surgical trainees.30,31 Development of ML 
models that use physiological data (eg, eye gaze data) for RAS 
surgical skill assessment and performance evaluation in the 
operating room needs to be investigated. Gradient Boosting and 
Generalized Linear Mixed Model using penalized Lasso method 
(known as GLMMLASSO) are appropriate ML techniques for 
this purpose.

Gradient Boosting

Ensemble learning is a ML method that uses multiple predictors, 
instead of using a single predictor, trains them on the data, and 
combines their results, usually giving a better score than using 
a single model. Boosting is a special type of ensemble learning 
method that combines several weak learning algorithms (ie, deci-
sion trees; predictors with poor accuracy) into a strong learner (a 
model with strong accuracy).32 It first fits an initial model (such 
as a tree or a linear regression) to the data. Next, a second model 
is created by accurately predicting the data that the first model 
could not. The combined performance of these 2 models should 
outperform their individual results. Then this process is repeated 
several times. Each successive model (ie, tree) corrects the short-
comings of the combined boosted ensemble of all previous mod-
els by learning from its predecessor’s mistakes.32 Boosted trees are 
the trees that have been modified by boosting process.32 Gradient 
Boosting is an ensemble learning and boosting technique that 
improves predictions by having each predictor try to reduce its 
predecessors’ errors. Instead of fitting a prediction to the data at 
each iteration, gradient boosting fits a new predictor to the resid-
ual errors produced by the prior predictor. Gradient Boosting 
methods have shown significant success in several applications.33

Generalized Linear Mixed Models by L1- penalized 
estimation

The Generalized Linear Mixed Model (GLMM) is an ML 
method that extends the generalized linear model by incorpo-
rating random effects in linear predictors to account for cluster-
ing. The penalized Lasso method selects variables and estimates 
coefficients simultaneously in GLMM (ie, GLMMLASSO).34

The Focus of the Study on Addressing the Surgical Skill 
Classification Challenge

In this study, (1) the retrieved information from visual metrics 
was used in an ML model to develop a RAS surgical skill clas-
sification model for application to a clinical setting; and (2) the 
time to complete each subtask, performance scores, as well as 
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the visual metrics, were compared between surgical skill levels 
to find the change of these metrics across different levels. And 
(3) the retrieved information from visual metrics was used to 
develop ML models to evaluate individual GEARS metrics.

METHODS

This study was conducted in accordance with relevant guidelines 
and regulations approved by the Institutional Review Board (IRB) 
of Roswell Park Comprehensive Cancer Center (IRB: I-241913) 
and Institutional animal care and use committee approval (IACUC 
1179S). Participants completed questionnaires that captured their 
age, gender, RAS surgical cases, and the number of laparoscopic 
surgical cases as the primary surgeon. The IRB issued a waiver 
of documentation of consent. Participants were given a research 
study information sheet and provided verbal consent.

Data Recording

The eye gaze data was recorded from participants using 
TobiiPro2 eyeglasses with a frequency of 50 Hz. Videos were 
recorded in the OR during task performances.

Participants

Eleven participants with varying RAS experience levels com-
pleted hysterectomy, cystectomy, and/or nephrectomy (Table 1).

Operations

Participants performed operations, using live pigs and the da 
Vinci robot, during 1 session that lasted for 4–6 hours. An 
expert surgeon attended the session as the mentor if a partici-
pant did not have operative experience.

Subtask Extraction

Four subtasks were extracted from operations (Table  2) that 
included blunt dissection (subtask 1), retraction (subtask 2), 
cold dissection and cold cutting using scissors (subtask 3), and 
burn dissection (subtask 4). The start and end times for each 
subtask were derived from recorded videos. Eye gaze informa-
tion for each subtask was extracted.

Eye Gaze Data Pre-processing

Tobii Pro Lab was used to preprocess eye gaze data before 
extracting visual metrics. The Tobii Pro Lab framework applies 
a moving average filter with a window size of 3 points to reduce 

noise in eye gaze data. A velocity-threshold identification fixa-
tion filter, with a threshold of 30 degrees per second, was applied 
to the data to identify fixation and saccadic points. Extracted 
visual metrics for both eyes were defined in Table 3.35

True Surgical Expertise Levels

The surgical performance and level of expertise of each par-
ticipant were evaluated using the modified GEARS assessment 
method by an expert RAS surgeon who watched the recorded 
videos. GEARS is an assessment tool for the evaluation of over-
all technical proficiency for robotic surgery. GEARS metrics are 
depth perception, bimanual dexterity, efficiency, force sensitivity, 
robotic control, and autonomy. Each metric is scored on a Likert 
scale from 1 to 5, and the overall performance score ranges 
from 6 to 30. GEARS also has 3 levels for assessing expertise: 
(1) inexperienced: requires extensive practice/improvement, (2) 
competent: adequate, and (3) experienced: excellent/established. 
The rater (expert RAS surgeon) provided an explanation of each 
score and indicated whether certain subtasks were performed 
with a higher or lower level of competence, and performance 
than others. These skill level variations were considered during 
analysis (assigning a true surgical expertise level to each subtask).

Machine Learning Classification Model

The extracted visual metrics for each subtask and the true sur-
gical expertise levels were used as input to a gradient-boosting 
classification model (GBM) to classify the 3 classes of expertise. 
Twenty percent of the samples were chosen at random and used 
as a test set. The remaining 80% were used to train and validate 
the model. This process was repeated 10 times, and the average 
measurements were reported. The number of trees to construct 
(ie, the number of boosting stages to perform), the maximum 
depth of trees (the maximum depth limits the number of nodes 
in the tree), and the learning rate (this parameter scales the 
contribution of each tree), were randomly tuned using the grid 
search method during GBM model development. The process 
for tuning each parameter was explained in Table  4.36. The 
developed model’s performance in classifying the surgical skill 
levels of participants was evaluated using statistical measure-
ments that were explained in Table 4.

Statistical Analysis to Find the Change in Each Eye Gaze 
Metric, Time, and Performance Across Surgical Skill Levels

A linear mixed model was fitted for each eye gaze feature, the 
time to complete, and performance where the skill levels were 
treated as 3 factors (levels 1: inexperienced; 2: competent; and 
3: experienced), and participant Identifier (ID) was treated as 
a random effect to accommodate for repeated measurement. 

TABLE 1.

Demographics of participants and the number of operations performed by each participant

Participant 1 2 3 4 5 6 7 8 9 10 11 

Gender M M M M M M M M M M F
Age (years) 28 67 36 44 47 44 61 32 33 39 32
Specialty* U U U T U U T U G U G
Position Resident Faculty Fellow Faculty Faculty Faculty Faculty Fellow Fellow Fellow Resident
RAS practice (hours) <100 >1000 >100 >500 >1000 >1000 <100 500 >100 <100 <100
RAS clinical experience (cases) 0 >500 <150 >150 >500 >500 0 <150 <150 0 0
Laparoscopic surgeries as the primary surgeon (cases) 0 0 <50 >250 Between 50 and 100 >250 >250 0 Between 50 and 100 0 0
Hysterectomy 1 1 1 1 1 1 0 1 1 2 1
Cystectomy 1 1 1 1 1 1 0 1 1 2 1
Left Nephrectomy 1 1 1 1 1 1 1 1 1 2 1
Right Nephrectomy 1 1 1 0 1 1 1 0 1 2 0

*Specialty: Gynecology (G); Urology (U); Thoracic (T).
RAS indicates robot-assisted surgery.
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TABLE 2.

Total number of samples for each subtask

Subtasks Total Samples Inexperienced Competent Experienced 

Subtask 1. Blunt dissection: separating tissue planes by pushing rather than cutting or cautery 219 50 134 35

Subtask 2. Retraction: hold structures aside to improve the visibility of the operative field 1082 182 611 289

Subtask 3. Cold dissection and cold cutting: using scissors: use scissors to cut tissue 376 40 272 64

Subtask 4. Burn dissection: use a hook tool to cut tissue with heat 374 68 179 127

TABLE 3.

Definition of visual metrics

Visual Metric Definition 

Rate of fixation Number of eye-tracking time points that fell below the threshold of 30 degrees per second divided by the number of 
total time points of the recording.

Rate of saccade Number of eye-tracking time points with an angular velocity higher than the threshold of 30 degrees per second, 
divided by the number of total time points of the recording.

Average pupil diameter Average pupil diameter of each eye throughout a recording. This feature was calculated for both eyes.
Shannon entropy of pupil diameter Shannon entropy: average rate at which information is produced by a stochastic source of data.35 For a signal X(t), 

Shannon entropy is calculated as

S (X ) = −
N∑
i=1

p (xi) log2 ( p (xi))

where p (x
i
) is the probability of obtaining the value x

i
. This feature was calculated for both eyes.

Rate of change of eye gaze direction Total number of time points at which the direction of the eye changes, divided by the total number of time points.
This feature was calculated for both eyes and both directions (horizontal and vertical).

Total length of eye-tracking trajectory The length of the eye pupil trajectory was extracted using the geometry of the eye pupil trajectory. This feature was 
calculated for both eyes.
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ANOVA was fitted to test whether there was any difference 
in measurements between different skill levels. A P value less 
than 0.05 was considered a statistically significant difference 
between skill levels.

Machine Learning Models for Evaluation of GEARS Metrics

The extracted visual metrics for each subtask were used 
to develop GLMM by L1- penalized estimation (ie, Least 
Absolute Shrinkage and Selection Operator), known as 
GLMMLASSO, to evaluate individual GEARS metrics. Five-
fold cross-validation was used to select the optimum lambda 
value based on the Bayesian information criterion. Each 
GEARS metric was considered as the dependent variable, 
visual metrics were considered as possible independent vari-
ables, and participant ID was treated as a random effect. The 
R2 metric was calculated to measure the proportion of vari-
ance in the dependent variable that can be explained by the 
independent variables.

RESULTS
Classification results and confusion matrices were represented 
in Tables 5 and 6, respectively.

Change of Eye Gaze Features, Performance, and Time to 
Complete Surgical Subtasks Across Skill Levels

Eye gaze metrics that were significantly different for 3 categories 
of surgical skill levels, and differences between those identified 
eye gaze metrics across skill levels, were identified (Table 7).

The rate of the left eye’s gaze direction changes in horizontal 
and vertical directions increased by skill level when performing 
blunt dissection, retraction, and burn dissection. Also, the aver-
age pupil diameter of left and right eyes decreased as skill level 
changed from competent to experienced during the retraction 
and burn dissection subtask.

Time to complete only subtask 2 (retraction by nondominant 
hand) was significantly different for the 3 categories of skill level 
(P value = 0.04; Table  8). The time required to complete the 

TABLE 4.

Tuning process for optimizing hyperparameters of the gradient boosting classification model, and the model’s evaluation metrics

Gradient Boosting Model’s Hyperparameters Tuning

Parameter Tuning process 
number of trees was determined in increments of 25 in the range of 25–500.
maximum depth of trees was determined in increments of 2 in the range of 1–21.
learning rate was determined in increments of 0.1 in the range of 0.1–2.
The hyperparameters of the model were optimized using a 5-fold cross-validation that was repeated 5 times, and samples were distributed in folds in a stratified fashion. Each fold 
consisted of samples from inexperienced, competent, and experienced participants, and the distribution of samples from each expertise level was the same as the distribution of 
the original population. The Adaptive Synthetic algorithm was applied to the training sets to address the imbalance of samples from 3 categories in the dataset during training.36

Evaluation Metrics for Classification Model
Metric Definition
Average accuracy the ratio of the sum of correct predictions to the total number of predictions
Precision the ratio of correct positive predictions (T

p
) and the total positive results predicted by the classifier (T

p
+F

p
)

Recall the ratio of positive predictions (T
p
) and the total positive results predicted by the classifier (T

p
+F

p
)

T
p
 and F

p
 were the numbers of true positives and false positives, while T

n
 and F

n
 were the numbers of true negatives and false negatives.

TABLE 5.

Evaluation metrics representing the performance of the GBM model classifying surgical expertise of participants performing blunt 
dissection, retraction, cold dissection, and burn dissection subtasks into 3 levels: inexperienced, competent, or experienced

Average % (Standard 
Deviation%) 

Subtask 1: Blunt 
Dissection 

Subtask 2: 
Retraction 

Subtask 3: Cold 
Dissection 

Subtask 4: Burn 
Dissection 

Precision 92 (4) 96 (1) 94 (4) 96 (1)
Recall 95 (4) 96 (2) 96 (3) 96 (2)
F1-score 93 (4) 96 (1) 94 (3) 96 (2)
Accuracy 95 (3) 96 (1) 96 (2) 96 (2)

TABLE 6.

Confusion matrices for classification of surgical expertise levels for blunt dissection (A), retraction (B), cold dissection (C), and burn 
dissection (D) subtasks into 3 levels of inexperienced, competent, and experienced

True skill 
Inexperienced 93 5 3 

True skill 
Inexperienced 94 6 0 

competent 2 98 0 competent 1 98 1
experienced 1 13 86 experienced 0 4 96

  Inexperienced competent experienced   Inexperienced Competent experienced

  Predicted skill   Predicted skill

 A)  B)

True skill 
Inexperienced 88 12 0

True skill 
Inexperienced 98 2 0

competent 1 98 1 competent 1 95 4
experienced 0 5 95 experienced 1 3 96

  Inexperienced competent experienced   Inexperienced competent Experienced

  Predicted skill   Predicted skill

 C)  D)
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retraction subtask with the nondominant hand differed signifi-
cantly across 3 skill levels, and it decreased significantly from 
inexperienced to experienced samples.

Performance scores for inexperienced, competent, and expe-
rienced samples of each subtask were represented in Table  9. 
Performance was significantly different for 3 categories of sur-
gical skill level and increased significantly from inexperienced 
to experienced for all subtasks, from inexperienced to compe-
tent for blunt dissection and burn dissection. It increased sig-
nificantly from competent to experienced for blunt dissection, 
retraction, and burn dissection.

GEARS Metrics Evaluation Models

The GLMMLASSO models for evaluation of GEARS metrics 
were represented in Supplemental Data File, http://links.lww.com/
AOSO/A224 for different surgical subtasks. Gears metrics were 
significantly associated with visual metrics for all subtasks and the 
R2 of all developed models for GEARS metrics were strong (>0.7).

DISCUSSION
Better methods for surgical skill assessment are necessary to 
improve training while ensuring patient safety. Methods for 

TABLE 7.

Eye gaze metrics that were significantly different (P value <0.05) for 3 categories of surgical skill levels

 Subtask Name Feature Name P value 

A Blunt dissection Rate of gaze direction change, left eye, the horizontal direction 0.004
B Blunt dissection Rate of gaze direction change, left eye, the vertical direction 0.004
C Retraction Average pupil diameter, left eye 2 × 10-9

D Retraction Average pupil diameter, right eye 9 × 10-6

E Retraction Rate of gaze direction change, left eye, the horizontal direction 0.002
F Retraction Rate of gaze direction change, left eye, the vertical direction 0.002
G Burn dissection Average pupil diameter, left eye 0.037
H Burn dissection Average Pupil diameter, right eye 0.013
I Burn dissection Rate of gaze direction change, left eye, the horizontal direction 3 × 10-5

J Burn dissection Rate of gaze direction change, left eye, the vertical direction 0.007
The difference in eye gaze metrics across skill levels. Significant differences (P value <0.05).

A B C D E F G H I J
Inexperienced to competent. coefficient 0.007 0.002 0.11 0.20 0.004 0.003 –0.18 0.03 0.001 0.003

P value 0.04 0.28 0.87 0.74 0.47 0.44 0.81 0.96 0.85 0.37
Inexperienced to experienced. coefficient 0.018 0.01 –0.46 –0.22 0.015 0.012 –0.38 –0.17 0.017 0.01

P value 1 × 10-4 2 × 10-4 0.51 0.73 9 × 10-3 5 × 10-3 0.64 0.81 0.02 5 × 10-3

Competent to experienced. coefficient 0.011 0.008 –0.57 –0.42 0.011 0.008 –0.19 –0.21 0.016 0.007
P value 5 × 10-3 5 × 10-4 2 × 10-11 2 × 10-7 4 × 10-4 6 × 10-4 4 × 10-3 7 × 10-4 7 × 10-7 1 × 10-3

TABLE 8.

Significance level for the difference in time to complete surgical subtasks among 3 categories of surgical skill levels, and across 
pairs of skill levels

The Significance Level for 3 Categories of Skill Level Blunt Dissection Retraction Cold Cut Burn Dissection 

P value 0.06 0.04 0.30 0.48
The significance level for change of time to complete each subtask across skill levels
Inexperienced to component Coefficient 1.34 –1.19 4.77 0.72

P value 0.61 0.39 0.13 0.75
Inexperienced to experienced Coefficient –6.21 –3.94 3.36 –2.00

P value 0.08 0.02 0.28 0.42
Competent to experienced Coefficient –7.56 –2.74 –1.41 –2.72

P value 0.02 0.07 0.66 0.24

TABLE 9.

Distribution of performance across skill levels, and the significance level for the difference in performance in completing surgical 
subtasks among three categories of surgical skill levels, and across pairs of skill levels

Skill Level 

Performance (Standard Deviation)

Subtask: Blunt Dissection Subtask: Retraction Subtask: Cold Dissection Subtask: Burn Dissection 

Inexperienced 13.2 (2.96) 12.7 (2.82) 13.6 (3.03) 11.1 (3.22)
Competent 21.7 (1.42) 19.7 (1.35) 19.6 (1.75) 20.6 (1.52)
Experienced 27.3 (1.52) 27.7 (1.38) 28.5 (2.59) 26.7 (1.53)
The significance level for the difference in performance among three categories of surgical skill levels
 Blunt dissection Retraction Cold cut Burn dissection
P value 1.32 × 10-6 8 × 10-10 0.01 2.33 × 10-11

The significance level for change of performance in completing each subtask across skill levels
Inexperienced to component Coefficient 8.49 7.04 5.99 9.46

P value 0.03 0.05 0.25 0.02
Inexperienced to experienced Coefficient 14.03 15.08 14.89 15.56

P value 2 × 10-4 <1 × 10-5 0.01 <1 × 10-4

Competent to experienced Coefficient 5.54 8.04 8.90 6.03
P value <1 × 10-4 <1 × 10-5 0.05 <1 × 10-4

http://links.lww.com/AOSO/A224
http://links.lww.com/AOSO/A224
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evaluating RAS technical proficiency can be divided into man-
ual and automated. Several proven manual evaluation tech-
niques are simple to use but require an expert panel that is 
prone to bias. The best existing skill assessment approach is 
direct observation of operative performance using global rat-
ing scales,37 which is subject to bias and requires experts to be 
present throughout the session and spend a significant amount 
of time. Objective skill assessment methods enable individu-
alized skill development, which ultimately improves surgical 
outcomes.

Recent developments in RAS have increased the demand for 
effective methods for objective skill evaluation.38 Establishing 
surgical skills and competency evaluation method is crucial 
to decreasing the high rate of medical errors. Several methods 
have been proposed to address this need. However, objective 
skill evaluation for RAS in clinical settings remains challeng-
ing. Some have suggested that experience alone can serve as a 
stand-in for skill level, by correlating surgeon operating volume 
to outcome.39 However, this approach has its shortcomings; 
a surgeon who lacks expertise in 1 task may be an expert in 
another or a surgeon who performs many operations can con-
tinuously perform certain activities with poor results.

The primary goal of this research was to introduce a GBM 
classification model developed using visual metrics as an objec-
tive RAS skill levels classification model. Visual metrics can pro-
vide information about expertise level in RAS. Visual metrics 
were used to demonstrate that experts have focused attention 
that differentiates them from novices.40 The use of modalities to 
record eye gaze data is straightforward and inexpensive. These 
advantages make using eye gaze data for surgical skill assess-
ment in the clinic practical.

Eye Gaze Metrics for Skill Level Classification

The results of this study showed that the use of eye gaze metrics 
and a GBM classification model is a promising approach to the 
efficient and objective assessment of surgical skill and can dis-
tinguish inexperienced, competent, and experienced participants 
from each other, with high accuracy while performing RAS sub-
tasks using live pigs.

Patient safety is the most important priority in an OR and 
expert surgeons should provide enhanced safety. Therefore, a 
surgical skill assessment model should minimize the misclassi-
fication of inexperienced surgeons as experienced. The devel-
oped skill classification model performed well in differentiating 
experienced and inexperienced samples. The developed RAS 
skill classification model misclassified only 3% of inexperienced 
samples as experienced when performing blunt dissection, while 
it did not misclassify any inexperienced as experienced when 
performing retraction, cold dissection, or burn dissection.

Classification accuracy for blunt dissection was lower than 
that for retraction, cold dissection, or burn dissection subtasks, 
which could have resulted from fewer samples for blunt dis-
section than for other subtasks (219 compared to 1082, 376, 
and 374, respectively). However, there were fewer samples for 
burn dissection (374) than for retraction (1082) and the clas-
sification accuracies were similar. Perhaps, evaluating expertise 
in performing blunt dissection is more difficult than for other 
subtasks. Finally, blunt dissection is a complicated subtask so 
information beyond visual metrics may be required to distin-
guish among expertise levels.

A major portion of misclassified samples for the blunt dissec-
tion subtask was related to experts misclassified as competent 
(13%). This finding may show that even when the outcome of 
a surgical subtask is very good, the eyes of the surgeon could 
still behave like a competent surgeon. Hence, visual metrics may 
not be sufficient for differentiating experienced from competent 
RAS surgeons.

Existing studies about surgical skill assessment have reported 
poor classification of the competent category since compe-
tent surgeons have developed some skills but not all the skills 
required to become experienced.41 The results of this study 
showed the developed classification model outperformed the 
existing models since 98%, 98%, 98%, and 95% of the blunt 
dissection, retraction, cold cut, and burn dissection subtasks 
performed by competent surgeons were correctly classified.

Numerous studies have been performed to evaluate a sur-
geon’s skill using pupil size, fixation time, and saccade time.42,43 
To the best of our knowledge, this is the first study to suggest 
12 eye gaze features to differentiate inexperienced, competent, 
and experienced RAS surgeons while they perform surgical pro-
cedures on pigs.

The findings of this study demonstrated that visual metrics 
have the potential for RAS surgical skill classification to be used 
in clinical settings.

Relationship Between Eye Gaze Metrics and Skill Level

The increase in the rate of the gaze direction changes of the 
left eye in horizontal and vertical directions by skill level during 
blunt dissection, retraction, and burn dissection can be inter-
preted based on improvement in the level of engagement and 
shift in attention by surgical skill level. This finding may point to 
the fact that more skilled surgeons switch their attention more 
frequently to concentrate on the target at hand, gather informa-
tion from the surgical scene, and use it to inform their decisions 
rather than maintaining a static focus on a single target for an 
extended period.

Furthermore, pupil diameter has been proposed as a com-
ponent for measuring cognitive load,44 and a greater change in 
pupil dilation was associated with a higher working memory 
load.45 Hence, the smaller average pupil diameter of the left 
and right eyes in more experienced surgeons during retraction 
and burn dissection may indicate a lower cognitive load. This 
result is consistent with what research on learning has found46; 
an increase in pupil diameter is related to response latency and 
target selection uncertainty.47 The results of this study also sup-
port the idea that more experienced surgeons are less uncer-
tain about choosing the correct target because they have more 
knowledge and experience.

Relationship Between Operative Time and Skill Level

Although operative time influences patient safety and should be 
improved during skill acquisition, the amount of time it takes 
to perform a surgical subtask is not a single criterion for deter-
mining surgical skill level. Results showed that time to complete 
only the retraction subtask performed by the nondominant hand 
differed among the surgical skill level groups. The time to com-
pletion for surgeons of 3 different skill levels performing blunt 
dissection, cold dissection, and burn dissection subtasks, all per-
formed by the dominant hand was not significantly different.

GEARS Metrics Evaluation Models Using Eye Gaze Metrics

Results showed that eye gaze metrics are informative in evalu-
ating GEARS metrics in performing subtasks. Promising results 
may suggest using the extracted visual metrics for evaluating 
GEARS metrics with strong R2.

Practical Implications of Results in RAS Training

The developed GBM can be used to identify whether a RAS 
trainee still needs practice (inexperienced or competent) in per-
forming a specific subtask. As a result, the learning process is 
accelerated, and the learning expense is reduced because the 
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trainee can focus on practicing those subtasks rather than 
repeating the entire operation.

Moreover, results showed that extracted eye gaze features 
can evaluate individual GEARS metrics. The developed mod-
els might be employed in RAS training to give trainees specific 
feedback regarding their skills without the presence of an expert 
panel. This feedback will speed up the RAS learning process.

When the training process is shortened, more RAS trainees 
are accepted into training programs and residents complete the 
program more rapidly. Also, each year more RAS surgeons will 
be trained, and more patients will be able to benefit from RAS 
technology. RAS has a shorter hospital stay and fewer surgical 
complications than conventional methods of surgery,48 thus hos-
pitals will also benefit from this.

The developed models for skill classification and GEARS met-
rics evaluation lay down the foundation for objective evaluation 
of RAS skill and performance, and they might be used to provide 
trainees objective feedback. As a result, RAS training in various 
surgical training programs would become standard for all train-
ees rather than relying on the opinion of an expert panel.

Limitations of This Study and Future Research

Limitations exist despite the novelty of this study. Only 11 
participants were included, and 1 expert RAS surgeon assessed 
GEARS metrics. It is required to validate the developed mod-
els by including data from more participants with various 
specialties from different training programs and including 
assessments from more expert RAS surgeons. It is required 
raters watch the video associated with each subtask and assess 
GEARS metrics.

Using the findings of this study, the next research steps could 
be (1) including assessments from more expert RAS surgeons 
from different institutes to develop RAS surgical skill classi-
fication and performance evaluation models; (2) developing 
automatic subtask extraction models; (3) expanding the mod-
els developed in this study using data from more participants 
with a variety of specialties and RAS experiences, from different 
institutes; and (4) predicting the number of attempts that would 
move an inexperienced surgeon in the certain subtask to each of 
the subsequent skill levels. Developing a fully automatic model 
that receives eye gaze data, extracts subtasks, and detects the 
skill level and the score of GEARS metrics in performing each 
subtask could significantly improve the RAS training process. 
Only by using inexpensive eyeglasses, such a model can be used 
to provide trainees with feedback regarding their skill and per-
formance that is superior to what a panel of experts currently 
does.

CONCLUSION
The developed GBM classification model appears promising 
because it assigned true skill labels using easily and quickly 
measurable outcomes rather than using operating volume and 
hours of experience and considered surgical subtasks in skill 
level classification rather than assigning one skill level label 
for each participant performing all the tasks that comprise an 
operation. Even more significant, RAS surgeons’ visual metrics 
can be used in ML models to classify surgical skill levels and 
to evaluate GEARS metrics objectively. The time to complete a 
surgical subtask may not necessarily be significantly different 
across skill levels, and this measurement may not be considered 
a stand-alone factor for skill-level assessment.
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