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Abstract

Studies of DNA methylation (DNAm) in solid human tissues are relatively scarce; tissue-specific 

characterization of DNAm is needed to understand its role in gene regulation and its relevance 

to complex traits. We generated array-based DNAm profiles for 987 human samples from 

the Genotype-Tissue Expression (GTEx) project, representing 9 tissue types and 424 subjects. 
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We characterized methylome and transcriptome correlations (eQTMs), genetic regulation in cis 
(mQTLs and eQTLs) across tissues and e/mQTLs links to complex traits. We identified mQTLs 

for 286,152 CpG sites, many of which (>5%) show tissue specificity, and mQTL colocalizations 

with 2,254 distinct GWAS hits across 83 traits. For 91% of these loci, a candidate gene link 

was identified by integration of functional maps, including eQTMs, and/or eQTL colocalization, 

but only 33% of loci involved an eQTL and mQTL present in the same tissue type. With this 

DNAm-focused integrative analysis, we contribute to the understanding of molecular regulatory 

mechanisms in human tissues and their impact on complex traits.

The majority of common genetic variants that impact human traits are believed to exert their 

effects through the regulation of gene expression1,2. Genetic regulation of gene expression 

has been comprehensively characterized across many human tissue types by the GTEx 

project3,4, and expression quantitative trait loci (eQTLs) appear to underlie a substantial 

fraction of variant-trait associations5–7. However, our understanding of the regulatory 

mechanisms by which variants influence human traits is far from complete.

Elucidating how variants impact epigenetic features, for example DNAm is critical, as 

these features can influence, and respond to, gene expression8. In humans, DNAm at 

CpG dinucleotides acts in key biological processes such as gene regulation and cell fate 

decisions9–11 and plays a critical role in the etiology of numerous diseases12. Interindividual 

DNAm variation is influenced by genetic variation13–17, and the integration of DNAm 

quantitative trait loci (mQTLs) with genome-wide association study (GWAS) data has 

uncovered a putative role for DNAm in genetic regulatory mechanisms14,18–23. With notable 

exceptions17–20,24–29, most mQTL studies conducted to date have assessed DNAm in whole 

blood-derived samples21,25,26,30–34, preventing the identification of tissue-specific mQTLs 

undetectable in blood. Therefore, given the existing differences in DNAm profiles across 

diverse tissues and cell types35,36, mQTL catalogs derived from a variety of healthy, solid 

tissues are needed to contribute to the characterization of the etiology of complex traits.

Gene expression with subject-matched genotype data is available for many healthy 

tissue sources from hundreds of individuals4,37, but comparable data sources for DNAm 

are limited to fewer tissue types38. The enhancing GTEx (eGTEx) project39 seeks to 

complement existing gene expression data from human tissues with additional molecular 

traits, including DNAm. Here, we profiled human DNAm for >750,000 genomic locations 

(CpGs or CpG sites) using the Illumina EPIC methylation array. The dataset includes 987 

samples from 424 donors representing 9 tissue types: breast, kidney, colon, lung, muscle, 

ovary, prostate, testis and whole blood (Supplementary Table 1). Gene expression is also 

available for 3,872 samples derived from these 9 tissue types4, and 495 DNAm-profiled 

samples have gene expression and genotype data available. To further characterize the 

relationship between DNAm and gene expression in a tissue-specific manner, we identified 

CpGs for which DNAm was associated with local gene expression, that is expression 

quantitative trait methylation sites (eQTMs). To characterize the cis-genetic regulation 

of methylation across tissues and compare it to its gene expression counterpart, we 

mapped mQTLs and eQTLs. We contrasted mQTL to eQTL profiles and characterized 

their interdependency as well as differential tissue specificities, functional mechanisms and 
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regulatory pleiotropy signatures. To evaluate the impact of mQTLs on human traits and 

assess their relative contribution compared to eQTLs, we integrated mQTLs and eQTLs with 

functional maps, including eQTMs, multi-context eQTLs and GWAS summary statistics of 

87 GWASs. Overview of analyses performed is shown in Fig. 1.

Results

DNAm and its correlation with local gene expression differs across tissues and by 
regulatory features

To investigate the contribution of tissue type to the similarity of DNAm-profiled samples, 

we applied dimension-reduction and clustering approaches (Methods), which revealed 

sample similarity by tissue of origin and comparable clusters to transcriptome-derived 

ones (Extended Data Fig. 1a,b). To characterize the interdependence between DNAm 

and expression, we mapped eQTMs across tissue types (Extended Data Fig. 1c) and 

evaluated factors that contribute to eQTM likelihood as a function of gene regulatory 

location (Methods and Supplementary Note). We observed that eQTMs tend to be either 

tissue-specific or shared across most (>6) tissue types (Extended Data Fig. 1d). DNAm-

expression negative correlation was disproportionately observed for eQTM CpGs (eCpGs) 

located in proximal compared to distal gene regulatory regions (Extended Data Fig. 

1e and Supplementary Table 2). These patterns have been described in specific tissue 

contexts26,40,41; our analysis confirms their ubiquity across tissues.

Genetic regulation of DNAm in cis exhibits tissue specificity

To characterize the genetic regulation of DNAm across tissues, we mapped genetic variants 

that affect DNAm levels of proximal (±500 kb) CpG sites in cis (mQTLs). To optimize 

mQTL discovery, we accounted for non-genetic DNAm variability by fitting per-tissue linear 

models including surrogate variables that capture technical, environmental and biological 

factors like age, cellular heterogeneity and smoking habits (Extended Data Figs. 2 and 

3). We identified significant (false discovery rate (FDR) < 0.05) mQTL CpG sites in cis 
(mCpGs) and modeled mQTL effects jointly across tissues to increase QTL-mapping power 

by leveraging tissue-shared effects42. Additionally, we mapped secondary cis-QTL signals 

using a stepwise regression procedure43. Although mQTLs are substantially more abundant 

than eQTLs20,44, their distinctive genomic properties are not fully characterized. To facilitate 

comparisons of mQTL to cis-eQTL patterns, we used an analogous QTL-mapping approach 

to identify eQTLs.

We detected a total of 286,152 mQTL CpG sites, of which 45,543 (16%) have secondary 

signals in at least one tissue. Modeling mQTL effects jointly across tissues resulted in a 

substantial (more than five-fold) increase in detectable mCpGs per tissue, ranging from 

108,844 in testis to 206,802 in lung (Fig. 2a and Supplementary Table 3). We quantified the 

mQTL replication rate in external muscle20 and brain23 datasets (Supplementary Table 3) 

and observed high replication rates (average π1 = 0.85).

For a particular CpG, genetic regulation of DNAm tends to be either highly tissue specific or 

highly shared across tissue types (Extended Data Fig. 4a,b), similar to patterns observed for 
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eQTLs and splicing QTLs (sQTLs)4. Larger effects are observed for tissue-shared mQTLs; 

mQTL effect size is correlated (Spearman’s rho > 0.15, P < 2.2 × 10−6) with the extent 

of tissue sharing. On average, 37% of mCpGs observed in a given tissue are also present 

in all tissues (Extended Data Fig. 4b). Compared to GTEx eQTLs, detected mQTLs, and 

corresponding effect sizes, are more likely to be shared across tissue types (Fig. 2b), as 

observed in blood cells26. On average, for a given mCpG, 46% of tissues show a similar 

(within a factor of 2) effect relative to the tissue with the strongest mQTL effect size, and 

effects are more similar across tissues for mCpGs located in proximal, compared to distal, 

gene regulatory regions (Extended Data Fig. 4c). On the other hand, a substantial fraction 

(5% on average) of the identified mCpGs in a given tissue were not detected in other tissues 

(Extended Data Fig. 4b). Tissue-specific mQTL patterns were clearly validated in external 

cohorts; we observe that mQTL effect sizes derived from external cohorts are significantly 

(Wilcoxon rank-sum test P < 1 × 10−6) larger, and more correlated (Extended Data Fig. 

4d,e), when matching the corresponding GTEx mQTL tissue, or tissues with shared cell 

types. In aggregate, 41% (117,941/286,152) of mCpGs identified herein were not identified 

as mCpGs in higher-sampled mQTL datasets20,23,33 (Extended Data Fig. 5), indicating 

that mQTL profiling across multiple tissues with high-coverage arrays unveils a substantial 

amount of mQTLs missed otherwise.

However, mQTL discovery, tissue-specificity and eQTL-contrasting patterns presented 

herein are subjected to experimental design limitations (Supplementary Note); for example, 

the number of mCpGs detected per tissue, and the abundance of tissue-specific mCpGs, are 

strongly correlated with per-tissue sample size (Spearman’s rho > 0.80).

Functional mechanisms that drive genetic regulation of DNAm differ from gene expression

Molecular mechanisms underlying interindividual DNAm variation are known to exist45–48, 

but their role in mQTLs, and overlap with eQTLs, is not fully characterized. To compare 

the molecular mechanisms of detected mQTLs relative to eQTLs, we integrated annotation 

of CGIs, genomic functional elements and chromatin states (Supplementary Table 4) and 

performed within- and meta-tissue enrichment analyses (Methods). We observe that, in 

contrast with eQTLs, the detected mQTLs are more likely to reside in regulatory regions 

that appear inactive in the mQTL-mapping context analyzed herein (Extended Data Fig. 

6), in line with whole-genome mQTL studies 44 reporting that most mQTLs are located 

in quiescent genomic regions. Although both eQTLs and mQTLs are enriched in gene 

regulatory regions (Fig. 2c), only eQTLs are enriched in CGIs and gene transcripts, 

particularly in splicing and untranslated exon regions (UTRs), as previously described4. 

Conversely, detected mQTLs are depleted from CGIs and genes, as previously observed in 

blood21,31,34, but are strongly enriched in distal enhancers and putative insulators (Fig. 2c).

QTLs often originate from transcription factor (TF) binding alterations to TF binding 

sites (TFBSs)49. mQTLs can impact methylation of nearby CpGs by directly altering TF 

occupancy or by altering TF binding and mediating recruitment of TET1 and DNMT3A 

enzymes8,25,28,32,50,51, and several TFs have been associated with mQTLs8,50. Yet, the 

contribution of mQTL- relative to eQTL-associated TFBSs is not well characterized. 

To further characterize putative mQTL and eQTL TFBS, we integrated chromatin 
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immunoprecipitation with sequencing-derived annotation of TFBSs corresponding to 339 

TFs. We identified 126 TFBSs significantly enriched (FDR < 0.01, OR > 1) in eQTLs 

or mQTLs (Supplementary Table 4). We observed a distinctive TFBS enrichment profile 

for mQTLs compared to eQTLs. The eQTL enrichments with the smallest P values across 

tissues correspond to TFs involved in basal transcription (for example, RNA Polymerase II 

genes). In contrast, mQTLs were enriched, among other TFBSs, in binding sites of steroid 

receptors (for example, ESR1 and NR2F2) and other proteins known to be involved in 3D 

organization of the genome (for example, ZNF143) (Supplementary Table 3 and Fig. 2d).

Altogether, these results suggest that mQTLs and eQTLs, in part, differ in their underlying 

biological mechanisms, driven by distinct sets of TFs. Although eQTLs tend to result from 

variants residing in gene bodies and regulatory elements, mQTLs result in part from variants 

altering nongenic, distal regulatory elements, including insulators and elements bound by 

proteins involved in chromatin spatial conformation and long-range interactions.

Genetic co-regulation of DNAm and gene expression is relatively scarce

Given their divergent genomic enrichment profiles, it is expected that mQTLs and eQTLs 

are driven, in part, by different causal variants. To identify eQTL-mQTL pairs (e/mQTL) 

likely to share a common putative causal variant, we performed e/mQTL colocalization, 

and observed that the proportion of detectable e/mQTL colocalizations is moderate (Fig. 

2e), as only 21% of mQTL loci are suggestively colocalized (PP4 > 0.5) with at least one 

eQTL. Despite limitations in accurately estimating this fraction, our results indicate that a 

considerable fraction of detected mQTLs do not show clear tissue-matching associations 

with local gene expression, as previously observed20,23,32.

Genetic regulation of DNAm is characterized by molecular regulatory pleiotropy

Given that correlated methylated CpGs tend to be close together52, a genetic variant 

influencing DNAm in cis is expected to display molecular pleiotropy as it often impacts 

multiple CpGs53. To characterize the molecular pleiotropic nature of mQTLs, we quantified 

the number of mCpGs and eGenes involved in mQTL-eQTL colocalizations (Methods). 

Overall, we observe pervasive pleiotropy; the majority (78%) of colocalized eQTLs-mQTLs 

impact multiple mCpGs, and a considerable minority (28%) impact multiple eGenes 

(Extended Data Fig. 7). The largest pleiotropic set, identified in ovary, is led by variant 

rs6433571 and involves 114 mCpGs and 8 eGenes in the HOXD gene cluster region (Fig. 

3a), associated with epithelial ovarian cancer54. This pleiotropic effect is not driven by 

ovary-specific gene expression (Fig. 3b) but by ovary-specific genetic regulation of DNAm 

and expression (Fig. 3c,d). By means of QTL-GWAS colocalization, we identified 112/114 

mCpGs and 7/8 eGenes as significantly (PP4 > 0.5) colocalized with ovarian cancer risk 

(Supplementary Table 5), including the HOXD1 and HOXD3 genes which have a suspected 

role in genetic risk of ovarian cancer55,56, as well as less characterized genes, for example 

HAGLR. Together, these findings illustrate how genetic variants can modify the DNAm 

landscape in a long-range and tissue-specific manner, with coordinated changes in gene 

expression and implications for disease risk.
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Genetic regulation of DNAm impacts complex trait associations extensively

Although most mQTLs do not clearly impact human traits33, multiple studies have provided 

evidence that a small fraction of mQTLs are associated with human phenotypes and can 

point to causal disease-relevant pathways and contexts18–21,33,57,58. To evaluate the impact 

of mQTLs on traits in a systematic manner, and compare their effects to those of eQTLs, 

we performed QTL-GWAS colocalization by integrating FDR < 0.05 QTLs with 83 GWAS 

datasets that had at least one QTL-overlapping GWAS hit (P < 5 × 10−8). To account 

for decreased mapping power but larger genome-wide abundance of mQTLs compared 

to eQTLs44, we estimated priors empirically and used a robust multi-method approach 

(Extended Data Fig. 8).

Across all GWASs, tissues and QTL types, we identified a total of N = 12,922 significant 

(regional colocalization probability > 0.3 and PP4 > 0.3) QTL-GWAS colocalizations 

(named simply ‘colocalizations’; Supplementary Table 5). We observed that mQTL 

colocalizations were more abundant than eQTL colocalizations for almost all (91%) of 

GWASs (Fig. 4). Alike observations from other studies20,21,57, the observed overlap between 

eQTL- and mQTL-GWAS colocalizations is moderate, with 27% (749/2,734) of GWAS 

hits colocalizing with both QTL types in the same tissue (e/mQTL-shared), 55% of hits 

colocalizing with at least one mQTL but with no eQTLs (mQTL-specific) and 18% of hits 

colocalizing with at least one eQTL but with no mQTLs (eQTL-specific). The larger fraction 

of mQTL-specific colocalizations is consistent across trait groups (Extended Data Fig. 9a). 

These results highlight the importance of integrating different types of -omics data from 

different tissue sources, and considering secondary QTL signals, to maximize the possibility 

of identifying molecular links to inheritable traits.

Genetic regulation of DNAm facilitates the fine-mapping of trait-associated variants and 
characterization of regulatory mechanisms

Among mQTL-specific colocalizations, we identified ovary-specific mQTL associations 

(rs2853669-cg07380026 P = 6.7 × 10−13, rs10069690-cg03935379 P = 5.0 × 10−5) 

colocalized with two breast cancer GWAS signals in the TERT locus (Fig. 5a,b), possibly 

impacting TERT. However, TERT expression is mostly undetectable in adult tissues but high 

in tumors. The locus harbors multiple independent variants associated with several types 

of cancer risk59. Another example of a mQTL-specific colocalization is an ovary-specific, 

secondary mQTL association (rs7161194-cg05029961, P = 8.0 × 10−15) that colocalized 

with a body mass index GWAS signal in the microRNA-rich MEG9 locus (Fig. 5c), for 

which colocalization could not be identified considering the primary mQTL signal. The 

mVariant rs7161194 affects cis-microRNA expression60.

For 19% (144/749) of the colocalized e/mQTL-GWAS shared loci, the mQTL-GWAS 

association shows greater colocalization probability than the eQTL-GWAS association in 

at least one tissue and/or independent QTL colocalization. We observe multiple instances 

where the lead e/mQTL variants are in low/moderate linkage disequilibrium and the mQTL 

mirrors the GWAS association substantially more optimally than eQTL does, as in the 

hypertension-associated MYO9B locus (Fig. 5d). We also observe cases where the GWAS 

locus harbors association signals compatible with the existence of multiple independent 
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potentially causal variants, where GWAS colocalization with eQTLs and mQTLs contributes 

to differentiate and characterize these independent variants by their distinct colocalization 

patterns, as in the EFEMP2 locus linked to asthma (Fig. 5e). Together, these results provide 

evidence that integration of e/mQTL-GWAS colocalization signals can aid the fine-mapping 

of trait-associated variants and better characterize the molecular mechanisms underlying 

complex traits, as shown2,61,62.

Trait-linked mQTLs exhibit molecular regulatory pleiotropy and enrichment in trait-relevant 
tissues

Identification of QTL associations with traits in relevant tissues can provide insight into their 

underlying genetic and molecular mechanisms6. By analyzing the observed proportions of 

mQTL-GWAS colocalizations per tissue, we identified 18/65 traits with a disproportionate 

(test of equal proportions FDR < 0.05) amount of colocalizations in at least one tissue 

(Fig. 6a). Overall, the tissue with the largest proportion of colocalizations per trait matched 

the prior given current biological knowledge. For instance, blood clot and cell count traits 

were enriched in colocalizations derived from whole blood mQTLs, and breast cancer was 

nominally (Fisher’s exact test P = 0.02) enriched in breast-derived mQTLs. For traits where 

the observed tissue link is less obvious, the observed enrichment can be spurious or it 

could point to an uncharacterized role of a specific tissue in the trait’s biology. Together, 

these results suggest that mQTLs are potentially informative of complex traits’ relevant 

tissues and can thereby aid the characterization of trait etiology, as observed for eQTLs5–7. 

However, this scenario should be reevaluated with a mQTL catalog based on larger sample 

sizes and covering a wider range of potentially causal tissues

It is expected that many QTLs that impact traits do so by exhibiting molecular regulatory 

pleiotropy (that is, altering multiple molecules and/or molecular phenotypes). It has been 

shown that eQTLs where the lead eQTL variant (eVariant) regulates multiple eQTL genes 

(eGenes) are more likely to yield a trait association than eQTLs that regulate a single 

eGene4. However, the effect that regulatory pleiotropy plays in mQTL-trait associations has 

not been extensively characterized. Here, we observe that mQTL-GWAS colocalizations 

are enriched in mVariants regulating multiple, as opposed to single, mCpGs (OR = 2.65, 

Fisher’s exact test P < 2.2 × 10−16). Among trait-linked mCpGs that colocalize with at least 

one eGene, we observed enrichment (OR = 1.40, P = 6.3 × 10−8) for trait colocalizations 

involving multiple mCpGs and eGenes (tier 4 in Extended Data Fig. 7a), as in HOXD locus 

(Fig. 3a). These results suggest that mQTLs that exhibit regulatory pleiotropy have increased 

probability of impacting a complex trait.

Trait-linked mQTLs are preferentially located in regulatory regions and exhibit decreased 
methylation

To better understand the DNAm features that contribute to mQTL impact on traits, we 

characterized DNAm levels of trait-linked mCpGs and their overlap with open chromatin 

regions. Compared to mCpGs without identifiable trait links, we observe an enrichment 

(Fisher’s exact test P < 2.2 × 10−16, OR = 1.50) of trait-linked mCpGs in open chromatin 

regions; with which 53% (1,791/3,381) of trait-linked mCpGs overlap, with e/mQTL-

shared GWAS-colocalized loci exhibiting a stronger enrichment (OR = 1.96) compared 
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to mQTL-specific loci (OR = 1.36). Trait-linked mCpGs tend to have lower DNAm levels 

compared to trait-agnostic mCpGs (Wilcoxon rank-sum test P < 0.05), whereas trait-linked 

eGenes tend to be highly expressed (Extended Data Fig. 9b). These results suggest that 

genetically regulated DNAm loci that play a role in trait etiology tend to correspond to 

lowly-methylated CpG sites in active chromatin regions.

Typically, variants contributing to the genetic basis of a trait are thought to act by affecting 

gene regulation. Concordantly, we observe an enrichment (Fisher’s exact test P < 0.05) of 

trait-linked mCpGs in gene regulatory elements (OR = 1.63, P < 2.2 × 10−16), compared 

to mCpGs without an identified trait link; 71% (2,390/3,381) of trait-linked mCpGs fall 

into this category. However, mCpGs corresponding to mQTL-specific colocalizations show 

a different profile compared to e/mQTL-shared colocalizations (Fig. 6b). Although e/mQTL-

shared GWAS-colocalized mCpGs are depleted in distal enhancers (OR = 0.68) and enriched 

in gene body element regions (OR = 1.54–2.22), promoters (OR = 2.19) and proximal 

enhancers (OR = 2.12), mQTL-specific GWAS-colocalized mCpGs are enriched in both 

proximal (OR = 1.36) and distal (OR = 1.39) enhancers, but not in promoters, in line 

with previous observations23. Our results suggest that distal regulatory elements play an 

important role in DNAm impact on genotype-phenotype associations.

Integration of trait-linked mQTLs with functional annotation enables identification of 
candidate causal genes

We detect a considerable amount of GWAS hits colocalizing with at least one mQTL but 

with no eQTLs (Fig. 4). To identify candidate causal genes for such loci, we integrated 

mQTL-specific trait-linked mCpGs with functional maps, that is curated promoter- and 

enhancer-gene target predictions63,64 and eQTM associations generated herein. This set 

of mCpGs is enriched (Fisher’s exact test P < 2.2 × 10−16, OR = 1.64) in gene links; 

68% (1,308/1,911) of mCpGs are eCpGs and/or colocate with enhancers (Supplementary 

Table 7). Among highly supported loci (≥3 mCpG-gene links), we identify well-known 

gene–trait relationships, including APOB with cholesterol and ABO with blood traits. We 

also identified gene–trait links that are less characterized, such as RUNX1 with asthma and 

TMEM72 with red blood cell counts, with biological evidence compatible with predicted 

trait links (Supplementary Note). This strategy enabled the identification of candidate causal 

gene links for 1,129 GWAS loci (Fig. 6c). Overall, combining mQTL with functional maps 

strengthens evidence for already proposed trait-linked genes and prioritizes candidates for 

less characterized loci.

To further identify trait–gene links, we jointly modeled GWAS, mQTL and eQTL signal 

across 61 multi-context eQTL maps derived from tissue and cell types across contexts 

not profiled in GTEx eQTL maps, including induced pluripotent stem cells and stimulated 

immune cells (Methods). We identified e/mQTL-GWAS colocalized clusters (PR > 0.8, 

PP > 0.5) for 56% (824/1,461) of loci previously identified as mQTL-specific when 

only considering GTEx matching-tissue eQTLs (Fig. 6c and Supplementary Table 7). 

Clusters that lacked e/mQTLs colocalizations in the same tissue type tend to be present 

in relatively few eQTL contexts (Fig. 6d), potentially reflecting more spatiotemporally-

specific trait-impacting regulatory events. Among identified context-specific colocalized 
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eGenes (Supplementary Note), CLPTM1L (in adipose tissue) and TERT (in induced 

pluripotent stem cells) eQTLs colocalize with different GWAS signals for breast cancer 

subtypes (Extended Data Fig. 10), compatible with a putative causal TERT expression link 

hypothesized for this locus and trait (Fig. 5a). Our results illustrate the value of the mQTL-

trait maps generated herein, integrated with additional functional genomic and multi-context 

eQTLs maps, to facilitate the identification of trait-linked candidate genes.

Discussion

Most prior studies that have characterized DNAm in relation to gene expression patterns 

have focused on blood cells25,40, with some exceptions20. In contrast, our study has 

characterized the genome-wide DNAm profile of diverse, healthy human tissue types 

in a systematic manner. In line with prior studies20,65, we observe that the aggregated 

contribution of mQTLs to human traits, in terms of number of identifiable associations, is 

larger than eQTLs, despite mQTLs being derived from substantially smaller sample sets. 

Consequently, we demonstrate that mQTLs can reveal a substantial number of molecular 

links to traits otherwise missed by eQTL-GWAS colocalization approaches. For these cases, 

mQTLs provide evidence of regulatory mechanisms underlying GWAS findings in absence 

of eQTL-based links to specific genes, and can pinpoint putative candidate genes. Our 

results indicate that in addition to expression and protein QTLs66, systematic integration of 

trait-linked mQTL associations with functional genomic maps can help guide the design of 

variant-to-function studies for complex traits.

The lack of observed eQTLs for mQTL-specific GWAS colocalizations raises questions 

about how genetically regulated DNAm impacts trait-related biology. It is possible 

that DNAm-phenotype links involve additional molecular phenotypes other than gene 

expression67. However, our results suggest that eQTLs explain a substantial fraction of the 

missing links. That is, genes with low expression levels in bulk tissue or weak eQTL signal, 

as well as context-specific eGenes, are only revealed as eGenes for DNAm-trait linked 

loci when considering eQTL maps across multiple, distinct contexts (other than bulk tissue 

samples from adult nondiseased donors). Hence, we conclude that generally, trait-associated 

variants are more likely to result in detectable changes to DNAm than gene expression. In 

that sense, we highlight the usefulness of mQTL maps to proxy ‘elusive’ disease-associated 

eQTLs68, like in69. Taken together our results emphasize, supported by the trait-linked 

regulatory pleiotropy patterns observed, the importance of integrating multiple -omics, 

and the particular relevance of multi-tissue mQTL maps, to pinpoint molecular links and 

candidate genes to traits.

Importantly, maps of eQTMs, mQTLs and mQTL-GWAS links provided here are not 

comprehensive due to limited power, biased (gene-centric) set of CpG sites surveyed 

and lack of cellular resolution in these complex tissues (Experimental design limitations, 

Supplementary Note). The active versus passive role of DNAm variant-trait links32, and 

vertical versus horizontal pleiotropy scenarios70, are not resolved. In future studies, whole-

genome bisulfite sequencing44 and single-cell DNAm profiling71 can contribute to address 

these limitations, and the active role of DNAm on corresponding gene targets can be 

interrogated with recently developed CRISPR-derived experimental approaches72. Larger 
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GTEx DNAm cohort sample sizes would enable tissue-specific trans-mQTL mapping and 

further contribute to linking mCpGs to phenotypic variation, as observed in blood trans-

mQTL studies34,73.

Altogether, the dataset generated herein constitutes the largest cohort with multi-tissue 

DNAm data generated to date. It allows for integrative -omics analyses by enhancing 

existing transcriptome-, epigenome- and proteome-based GTEx datasets4,39,74,75 and 

provides the research community with a valuable resource to investigate the inherited 

susceptibility to human disease and complex traits from both cross-tissue and multi-omics 

perspectives. Our results contribute to a better understanding of the human DNA methylome 

and its relationship with both the transcriptome and complex traits.

Methods

Sample collection and ethical approval

The GTEx research protocol was reviewed by Chesapeake Bay Review, Roswell Park 

Comprehensive Cancer Center’s Office of Research Subject Protection and the institutional 

review boards at the University of Pennsylvania. Informed consent, standards and protocols 

for optimizing postmortem tissue collection and donor recruitment are detailed elsewhere76. 

Families of participant donors were not compensated. Analyses of GTEx DNA samples at 

the University of Chicago were not considered human subjects research by the institutional 

review board at the University of Chicago, because only deidentified data on deceased 

individuals were involved.

Statistics and reproducibility

No statistical method was used to predetermine sample size, as for each DNAm profiled 

tissue, sample size was chosen based on availability of biosamples. Samples were randomly 

allocated in plates; tissue types were not batched by plate. The experiments were not 

randomized. The investigators were not blinded to allocation during the experiments and 

outcome assessment, because the data are not from controlled randomized studies. We 

used all data passing standard quality controls (QCs), resulting in 987 samples. Details 

of data exclusions are available in ‘Generation of epigenome-wide DNAm methylation 

(DNAm) data’. For all the boxplots, horizontal lines inside the boxes show the medians. 

Box bounds show the lower quartile (Q1, the 25th percentile) and the upper quartile (Q3, 

the 75th percentile). Whiskers are minima (Q1 − 1.5 × IQR) and maxima (Q3 + 1.5 × 

IQR), where IQR is the interquartile range (Q3–Q1). Outliers are shown in the boxplots. 

Enrichment values corresponding to variant enrichment in functional annotations were 

estimated by maximum likelihood estimation with torus, from full summary QTL statistics. 

Odds ratio values derived from 2 × 2 contingency tables, and corresponding significance, 

were estimated with the R base function fisher.test. Enrichment across tissues was evaluated 

by modeling single-tissue enrichment estimates with a random-effects model with the R 

function metafor::rma. Further details are available in the corresponding Methods section.
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Acquisition and processing of genomics data

Gene regulatory element annotations were derived from ENCODE Encyclopedia 

version 5 (ENCODE5) predicted cCRE catalog, including distal enhancers 

[ENCFF535MKS], proximal enhancers [ENCFF036NSJ], promoter-like regions 

[ENCFF379UDA] and putative insulators [ENCFF262LCI], where [${id}] corresponds 

to ENCODE5 file id from https://www.encodeproject.org/. Putative insulators are 

defined herein by CTCF binding sites77 unrelated to enhancers, promoter-like 

regions and DNase-H3K4me3 marks. Gene body annotations were obtained from 

GENCODE version 26 website (https://www.gencodegenes.org/human/release_26.html). 

Genomic variant annotations were derived from Ensembl build 102 Variant 

Effect Predictor cache (ftp://ftp.ensembl.org/pub/release-102/variation/indexed_vep_cache/

homo_sapiens_vep_102_GRCh38.tar.gz). Different annotations were collapsed: splice 

region, acceptor and donor sites were collapsed to ‘splice site’ and coding 

sequence sites to ‘CDS’. Open chromatin annotations derived from DNase-seq were 

obtained from ENCODE project version 5 website (https://www.encodeproject.org/). 

DNase-seq profiles of adult individuals matching tissues analyzed herein were 

selected, including breast [ENCFF788BHK], colon transverse [ENCFF903WEH], 

kidney [ENCFF407WZV], lung [ENCFF886KAA], muscle [ENCFF983ONG], ovary 

[ENCFF500HAK], prostate [ENCFF557QYU] and testis [ENCFF761JZU]. Chromatin 

state predictions corresponding to an 18-state model derived from 6 marks - 

H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3 and H3K27ac - were 

obtained from ROADMAP FTP site (https://egg2.wustl.edu/roadmap/data/byFileType/

chromhmmSegmentations/ChmmModels/core_K27ac/jointModel/final/). Chromatin state 

predictions corresponding to adult individuals’ epigenomes matching tissues analyzed 

herein were selected, including colonic mucosa [E075], lung [E096], muscle skeletal 

[E108], ovary [E097] and primary mononuclear cells from peripheral blood [E062]. 

TF binding annotations were derived from ENCODE version 2 and 3 chromatin 

immunoprecipitation with sequencing clustered peaks combined from 1,256 experiments, 

representing 340 TFs in 129 cell and tissue types; obtained from UCSC table 

browser (http://genome.ucsc.edu/cgi-bin/hgTables, table encRegTfbsClustered, build hg38). 

CGI predictions were derived from UCSC table browser (http://genome.ucsc.edu/cgi-

bin/hgTables, table cpgIslandExt, build hg38). Enhancer-gene predictions were derived 

from Genehancer predictions from UCSC table browser (http://genome.ucsc.edu/cgi-

bin/hgTables, table geneHancerRegElementsDoubleElite, build hg38), and from https://

www.engreitzlab.org/resources/ (all element-gene connections with ABC scores ≥ 0.015).

Generation of epigenome-wide DNAm data

Epigenome-wide DNAm was derived from 1,000 tissue samples from 9 unique tissue 

types obtained from 424 GTEx subjects, mostly (~83%) from European ancestry given 

available genotype data4 and the majority self-identified as White (Supplementary Table 

1). DNA samples were extracted from GTEx tissue samples using Qiagen Gentra Puregene 

method at GTEx Laboratory Data, Analysis and Coordinating Center (LDACC), and sent 

to the Institute for Population and Precision Health Laboratory on 96-well plates. Tissue 

types were not batched by plate. Bisulfite conversion was applied to 500 ng of DNA 

using EZ-96 DNA methylation kit (Zymo Research). All samples were then prepared and 
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analyzed in accordance with the manufacturer guidelines and protocol for the Infinium 

MethylationEPIC array (Illumina). Catalog numbers of technologies and reagents udrf are 

as follows: Infinium Methylation EPIC 96 samples (catalog no. WG-317–1003), Infinium 

Methylation Assay AMP (catalog no. 15072768), Infinium HD Assay Kit WG-Post1 LV1 

(catalog no. 11300771), Infinium Assay Kit Post 2, LMV (catalog no. 15023542), Infinium 

Assay Kit Single Post 3 LV (catalog no. 15023551), Infinium Assay Kit Post 4 LV (catalog 

no. 15023544). The MethylationEPIC array was used to measure DNAm levels for 866,895 

(867 K) genomic locations, encompassing primarily CpG dinucleotides but also non-CpG 

sites. For simplicity, we refer to both types of sites as CpGs or CpG sites. Raw DNAm data 

was processed with ChAMP software78 (v.2.8.6). For sample QC, we excluded (1) three 

samples with undetectable or missing methylation values (detection P > 0.01) in ≥5% of 

CpGs and (2) six samples with mismatched sex. For CpG QC, we excluded (1) CpGs that 

had detection P > 0.01 in ≥1 sample (N = 44,135) and that had a bead count <3 in ≥5% 

samples (N = 660), (2) cross-reactive CpGs (N = 40,812), (3) variant-overlapping CpGs or 

within a single base pair extension (N = 7,708) and (4) CpGs mapping to sex chromosomes. 

For filters 2 and 3, we selected CpG probes identified in Pidsley et al.79 (Tables S4 and 

S5), where variants were defined at minor allele frequency (MAF) > 5% in 1000 Genomes 

Project. A total of 754,054 CpGs passed QC, could be mapped and lifted over from GRCh37 

to GRCh38 human genome build and were retained for further analysis.

Raw DNAm values were background-adjusted using the single sample normal-exponential 

out-of-band (ssnoob) method80,81 with dye bias correction implemented in minfi (v.1.36.0). 

DNAm β values were normalized using the beta mixture quantile (BMIQ) method, 

implemented in ChAMP v.2.8.6, adjusting for type I/II probe bias82; output β values 

for each CpG were used in downstream analysis. After normalization, we removed one 

additional sample with an array-derived genotype profile not matching the whole-genome 

sequencing (WGS)-derived one. Principal-component analysis was conducted on DNAm β 
values within each tissue type, and three samples were removed for being outliers with 

respect to the top five principal components of the corresponding tissue. A total of 987 

samples passed final QC and were retained for further analysis.

Estimation of tissue similarity based on DNAm and gene expression

Mean DNAm and gene expression levels for each tissue type were used to calculate 

tissue distances (1 – Spearman rank-correlation coefficient (Spearman’s rho)) in a pairwise 

fashion. For DNAm, Spearman’s rho was calculated on the mean DNAm for each CpG 

(across all samples for a given tissue) in M-value units, and each CpG was weighted by its 

cross-tissue variance. The entire set of post-QC profiled CpGs (N = 754,054) was considered 

for the analysis. For gene expression, Spearman’s rho was calculated on the mean expression 

for each gene (across all samples for a given tissue) in log2(x + 1) transformed transcript per 

million units, and each gene was weighted by its cross-tissue variance. Only genes expressed 

in at least one of the nine tissues (N = 37,686) were considered for the analysis. We 

performed hierarchical clustering of the tissues using pvclust 2.0.0 (ref. 83) with complete 

linkage and nboot = 1,000.
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eQTM mapping

We define an eQTM as the association of CpG DNAm with proximal gene expression, 

considering a ±1.5 Mb window centered on the CpG locus, thereby enabling the 

identification of short- and long-range CpG–gene associations. We analyzed samples with 

available DNAm, expression and genotype data (Supplementary Table 1), comprising a 

total of 490 samples, from 25 (testis) to 131 (lung) per tissue, excluding kidney cortex 

due to insufficient sample size (N = 5). We obtained DNAm residuals by regressing 

DNAm-derived probabilistic estimation of expression residuals (PEER) factors84 used in 

cis-mQTL mapping (see below) from inverse-normalized-transformed DNAm levels, and 

gene expression residuals by regressing expression-derived PEER factors used for eQTL 

mapping in4 from inverse-normalized-transformed gene expression levels. For each CpG 

site in each tissue, we calculated Spearman correlation of DNAm with gene expression 

residuals of proximal (±1.5 Mb window) genes. We applied Bonferroni multiple testing 

correction to nominal P values, accounting for multiple genes tested per CpG. Then, we 

adjusted for multiple CpGs tested by applying q-value multiple testing correction85 to the 

set of top Bonferroni-adjusted P values per CpG. We defined significant CpGs involved 

in eQTMs (eCpGs) at FDR < 0.05, and for those, significant eQTMs were defined at 

Bonferroni-adjusted P value < 0.05. To overcome QTM-mapping limited power due to 

per-tissue available sample sizes, we used an approach to perform a cross-tissue QTL 

analysis by leveraging QTL signal across tissues42, implemented in the R package mashr 

(v.0.2.6). We assessed eQTM replication for all tissues in the FUSION Skeletal Muscle 

Study cohort20. Replication was assessed by means of π1, which enables the estimation of 

the true positive rate of findings derived from a discovery dataset in a replication dataset86. 

See additional details of eQTM identification and characterization in Supplementary Note.

QTL mapping for methylation and gene expression QTLs (mQTLs, eQTLs)

We define mQTLs as proximal variants (that is, in cis) to a CpG with a significant genotype 

effect on its DNAm estimates, considering a ± 500 kb window from the CpG locus. To 

assess mQTLs, we considered quality controlled (QC-ed) inverse-normalized DNAm data, 

generated and presented here as part of the eGTEx project, and QC-ed genotype data derived 

from GTEx v84 filtered at variant MAF > 0.01 per tissue. For each variant-CpG pair, 

we used an adaptation of v.2.184 FastQTL87, available at https://github.com/broadinstitute/

gtex-pipeline/tree/master/qtl, to fit a linear regression model (core_PEERs) separately in 

each tissue, and tested for significance of genotype on methylation estimates while adjusting 

for additional known and unknown factors:

core_PEERs: Y = β0 + βG Genotype + β 1…m C + β 1…n PEER + ε,

where Y  is the inverse-normal-transformed DNAm levels, β0 is the intercept and β is the 

corresponding effect size. βG is the effect size of genotype on DNAm.

C represents a subset of covariates that were used in cis-eQTL mapping4. These covariates 

include five genotype principal components, two covariates derived from the generation 

of genotype data by WGS and biological sex status. The WGS covariates are described 
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elsewhere4 and represent the WGS sequencing platform (HiSeq 2000 or HiSeq X) and WGS 

library construction protocol (PCR based or PCR-free).

PEER represents PEER factors84 derived from DNAm. See additional details of PEER 

generation in Supplementary Note.

We corrected for multiple testing of variants per CpG87 and multiple CpGs tested86, defining 

significant mQTL CpGs (mCpGs) at FDR < 0.05. A similar approach was used to identify 

eQTLs. Conditional QTL analysis was used to identify multiple independent mQTLs and 

eQTLs for mCpGs and eGenes, respectively, as well as corresponding lead variants for 

each independent QTL locus. This approach accounts for allelic heterogeneity, where 

distinct genetic variants at a locus simultaneously and independently affect methylation 

at a given CpG site. For that, we applied a stepwise regression procedure as described 

elsewhere43 (details can be found in Supplementary Note). Similarly as in eQTM mapping, 

we used mashr to identify mQTLs and eQTLs detectable after leveraging QTL signal 

across tissues (Supplementary Note). Across the article, we refer to CpGs and genes 

with at least one significant mQTL or eQTL as mCpGs and eGenes, respectively, and 

to mQTL and eQTL significant variants as mVariants and eVariants, respectively. We 

assessed mQTL replication and/or validation of mQTL tissue-specific patterns for all tissues 

in the FUSION Skeletal Muscle Study20 (https://www.ebi.ac.uk/birney-srv/FUSION/), the 

ROSMAP brain23 (http://mostafavilab.stat.ubc.ca/xQTLServe/) and the GoDMC studies33 

(http://mqtldb.godmc.org.uk/) (Supplementary Note, Supplementary Table 3).

To evaluate the adequateness of the mQTL mapping model of choice, two alternative mQTL 

mapping models were benchmarked:

core_PEERs_age_plate:Y = β0 + βG Genotype + β 1…m C + Age + DNAm profiling plate + ε

core_age_plate:Y = β0 + βGGenotype + β 1…m C + β 1…n PEER + Age + DNAm profiling plate + ε .

For each model, we assessed the number of significant (FDR < 0.05) mCpGs, the proportion 

of true positives, and the replication rate in the FUSION cohort. We observe that the 

chosen model (core_PEERs) outperforms alternative model choices, as it detects on average 

across tissues 15–230% more mCpGs than the other models tested, with similar replication 

rates (Supplementary Table 3). See additional details of mQTL and eQTL identification, 

characterization and validation in Supplementary Note.

QTL enrichment in genomic annotations

Functional enrichment analyses were performed using torus88(v.1.0.0.dev), similarly 

to GTEx Consortium4. In brief, the command ‘torus -d ${qtl_statistics} -annot $

{annotation_file} -est–fastqtl’ was used, where ${qtl_statistics} correspond to QTL-

mapping data for eQTLs (full eQTL-tested gene set per tissue) or mQTLs (subset of 21,000 

mQTL-tested CpGs), and ${annotation_file} corresponds to QTL-tested annotated variants. 

Variants were annotated with Ensembl’s Variant Effect Predictor using datasets from 
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several sources: gene regulatory element and open chromatin annotations were obtained 

from ENCODE5, gene body annotations were obtained from Ensembl, chromatin state 

predictions from ROADMAP, TF binding and CGI annotations were obtained from UCSC 

browser (see Obtention and processing of functional genomic data). For each tissue, torus-

derived enrichment estimates correspond to point estimates (derived by maximum likelihood 

estimation) of the log of odds ratio. Enrichment across tissues was evaluated by modeling 

single-tissue enrichment estimates (log of odds ratio) with a random-effects model (rma 

function, metafor R package v.2.0.0). Single-tissue and cross-tissue enrichment estimates are 

provided in Supplementary Table 4.

Colocalization of mQTLs with eQTLs

We investigated the associations between mQTLs and eQTLs by means of QTL effect size 

colocalization with coloc89 (v4.0.0) using default priors. For each significantly (PP4 > 0.5) 

colocalized mQTL-eQTL pair in each tissue, the top-colocalized e/mVariant was defined as 

the one with the largest PP4 value. See additional details of mQTL-eQTL colocalization in 

Supplementary Note.

Characterization of colocalized mQTL-eQTL loci

Identification of mQTL-eQTL regulatory pleiotropy.—Considering QTLs, we define 

regulatory pleiotropy as the event of a variant or a set of variants in a QTL region impacting 

multiple eGenes and/or mCpGs. To characterize the pleiotropic nature of mQTLs, we 

quantified the number of mCpGs and eGenes involved in loci harboring eQTL-mQTL (e/

mQTL) colocalizations, and classified mCpGs involved in at least one significant e/mQTL 

colocalization (PP4 > 0.50) in four tiers, depending on their mCpG and eGene connectivity 

level (Extended Data Fig. 6). Of note, no inference of the nature of the pleiotropic effect, 

whether vertical or horizontal, is made in this classification. Tiers are defined as follows: 

(a) tier 1: mCpGs that colocalize with a single eGene and vice versa (1:1 connectivity); b) 

tier 2: mCpGs that colocalize with multiple eGenes, and each one of those eGenes uniquely 

colocalizes with that single mCpG (1:m connectivity); (c) tier 3: mCpGs that colocalize with 

a single eGene, which colocalizes with multiple mCpGs (n:1 connectivity); and (d) tier 4: 

mCpGs that colocalize with a multiple eGenes, where at least one of the eGenes colocalize 

with multiple mCpGs (n:m connectivity).

Colocalization of QTL with GWAS signal

Colocalization of ovary cancer GWAS with QTL signal of HOXD pleiotropic 
locus.—We hypothesized that the mCpGs and eGenes in the HOXD region may be 

linked to ovarian cancer risk and tested it by means of QTL-GWAS colocalization. Ovary 

cancer GWAS summary statistics90 were obtained from the Ovarian Cancer Association 

Consortium (OCAC) website http://ocac.ccge.medschl.cam.ac.uk/ and were filtered (not 

imputed) as in Barbeira et al.5. Considering OCAC GWAS along with QTL statistics from 

the set of pleiotropic mCpGs and eGenes identified in the HOXD locus (Fig. 3a), we 

performed colocalization analysis with coloc89 (v4.0.0) using default priors. Considering 

QTLs statistics, colocalization was performed based on effect size and associated standard 

error values; P values and corresponding variant MAFs were used for OCAC GWAS data. 
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The probability of one causal variant associated with both traits (PP4) was used to identify 

significant (PP4 > 0.50) colocalizations.

Determination of GWAS significant loci.—To investigate possible associations 

between genetically regulated molecular and complex traits, including disease and ‘healthy’ 

phenotypes, we used GWAS summary statistics of 87 GWASs; data production and QC 

are described in detail in Barbeira et al.5. We identify significant GWAS hit loci (that 

is, genomic windows containing GWAS signal) similarly as described in Barbeira et 

al.5. In brief, the GWAS summary statistics were split into 1,702 approximately linkage 

disequilibrium-independent regions91 (Supplementary Table 5). Each region was categorized 

as a significant GWAS hit locus (GWAS hit) provided it encompassed a non-imputed GWAS 

significant (P < 5 × 10−8) variant.

Determination of QTL-GWAS significant loci.—For each GWAS and each QTL tissue 

pair, colocalization was performed with coloc (v.4.0.0) and fastenloc (v.1.0). The latter is an 

improved version of enloc92 and was recently described in multiple studies93,94.

coloc approach.—For each GWAS, at each GWAS locus, we identified overlapping 

(>1 bp) mCpG loci from each of the 9 analyzed tissues, considering per-tissue significant 

(FDR < 0.05) mCpGs resulting from the single-tissue QTL-mapping approach. For each 

overlapping mCpG-GWAS region pair, we applied coloc89 to mQTL along with GWAS 

summary statistics. For mCpGs with secondary QTLs, that is multiple independent 

mQTLs, conditional - to independent lead mVariants - QTL signals were also tested for 

colocalization. By this, we prevent putative colocalizations to be missed or miscalculated, 

as coloc assumes a single variant to be causal of QTL-GWAS effects94. Prior probabilities 

of a variant yielding (a) a mQTL association (p2), (b) a GWAS association (p1) and (c) a 

mQTL and a GWAS association (p12) were estimated from fastenloc enrichment values in 

an analogous manner as done with enloc in5 and provided in Supplementary Table 6. Only 

the regions with at least 50 variants in common between the GWAS and mCpG loci were 

tested for colocalization. Both for QTLs and GWAS statistics, colocalization was performed 

on effect size (effect size) and associated standard error (effect size s.e.) values. Used GWAS 

statistics were imputed from available z-score (z), allele frequency (f) and sample size values 

(N) by effect size ≈ z/(f(1 – f)N)^(1/2) and effect size s.e. ≈ effect size/z.

fastenloc approach.—First, GWAS posterior inclusion probability values were obtained 

with torus from available z-scores. Then, for each tissue, the DNAm levels, genotypes 

and mQTL-mapping covariates for CpGs and corresponding cis windows considered in the 

mQTL analysis were processed with dap-g95 (v.1.0.0). Next, we used fastenloc to obtain 

regional colocalization probabilities for all tuples of interest (GWAS hit, trait, tissue, mCpG) 

by subsetting corresponding GWAS hits, and significant (single-tissue mQTL set: FDR < 

0.05) mCpGs from the genome-wide fastenloc output. An equivalent approach was used 

for eQTL-GWAS colocalization; the dap-g precomputed eQTL annotations from GTEx (v8) 

data were obtained from the fastenloc github repository: https://github.com/xqwen/fastenloc. 

Evaluation of mQTL-GWAS colocalization approach is described in Supplementary Note.
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Characterization of signatures of trait-linked mCpGs

Tissue-specific enrichment in mQTL-GWAS colocalizations.—To identify traits 

with a tissue-specific colocalization enrichment profile, we performed a multisample test for 

equality of proportions without continuity correction. For each trait with >5 mQTL-GWAS 

colocalizations, we compared the observed proportions of mQTL-GWAS colocalizations per 

tissue to the overall proportion of colocalizations for all tissues. We identified traits with 

a disproportionate amount of colocalizations in at least one tissue at Bonferroni-adjusted P 
< 0.05. For these traits, scaled-by-trait colocalization proportions per tissue are shown in 

Fig. 6a, where tissues and traits were clustered via complete-linkage hierarchical clustering 

based on euclidean distance. A two-sided Fisher’s exact test was conducted to determine 

significant tissue-trait enrichments at Bonferroni-adjusted P < 0.01, which are indicated 

by crossed cells in Fig. 6a. This approach has several limitations. We did not observe 

tissues of relevance for several traits, possibly due to the examination of mQTLs derived 

from only 9 tissues. For certain tissue–trait pairs, the limitedness of the mQTL catalog 

examined herein, and the low number of colocalizations identified, may have also impacted 

the completeness and accuracy of the identified tissue-specific enrichment profiles. This 

analysis would benefit from a more powered and exhaustive mQTL catalog.

Characterization of molecular regulatory pleiotropy of trait-linked mCpGs.—
We evaluated the enrichment of mVariants corresponding to mQTL-GWAS colocalizations 

in mVariants regulating multiple versus single mCpGs. For each mCpG tested for mQTL-

GWAS colocalization, we kept the corresponding colocalization result with the highest coloc 
PP4 value and the corresponding mVariant. We classified mVariants as pleiotropic if they 

were estimated to be associated with multiple mCpGs, or as non-pleiotropic, if they were 

associated with a single mCpG. Association was defined considering dap-g fine-mapping 

estimates used in the fastenloc mQTL-GWAS colocalization approach, and mQTL credible 

sets were defined at 90% confidence. We classified mVariants as being also eVariants if they 

were estimated to be associated with at least one eGene, estimating eQTL credible sets in an 

analogous manner to mQTL sets. Significant enrichment of trait-linked versus trait-unlinked 

mVariants in multiple-mCpG and eVariant sets was defined at two-sided Fisher’s exact test 

P < 0.05. Additionally, we subsetted mCpGs tested for mQTL-GWAS colocalization that 

were involved in e/mQTL colocalizations, and classified them into mCpG-eGene pleiotropy 

tiers (Extended Data Fig. 6). Enrichment of trait-linked versus trait-unlinked eGene and 

mCpGs in each tier was estimated at two-sided Fisher’s exact test P < 0.05. Given its 

complex linkage disequilibrium structure and genotype imputation inaccuracies, the major 

histocompatibility complex (MHC) locus is challenging to analyze. To ensure that pleiotropy 

results are not biased by MHC, we evaluated pleiotropy excluding CpG cis loci overlapping 

the MHC region, as well as corresponding eQTL-mQTL colocalized eGenes. The pleiotropy 

distributions were not significantly different (test of equal proportions P < 0.05).

Characterization of DNAm signatures of trait-linked mCpGs.—To evaluate the 

overlap of trait-linked mCpGs with open chromatin regions, we used annotations derived 

from ENCODE5 open chromatin regions (see Obtention and processing of functional 

genomic data). See additional details in Supplementary Note.
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We evaluated the putative enrichment of increased disease-risk alleles in gains or losses 

of DNAm, both across and within GWAS traits. From the set of 87 GWAS tested for 

mQTL colocalization, we subsetted colocalization results corresponding to 31 GWAS 

disease traits with for which at least one significant mQTL colocalization was identified. 

For each GWAS trait and mCpG tested for mQTL-GWAS colocalization, we kept the 

corresponding colocalization result with the highest coloc PP4 value. For each GWAS trait, 

we classified tested mCpGs into methylation gain or loss categories, based on the sign of the 

allelic mQTL effect associated with increased disease risk (that is, positive GWAS effect). 

Enrichment of each disease in methylation gains and losses was determined at Bonferroni-

corrected two-sided Fisher’s exact test P < 0.05. No disease was identified as enriched for 

DNAm gains or losses. Despite individual traits not being significantly enriched for DNAm 

change biases, it is possible that a global bias could be detected when considering all traits at 

once. To test this hypothesis, each disease was labeled as ‘DNAm-gain’ if the corresponding 

number of colocalized mCpGs associated with a DNAm gain outnumbered the DNAm-loss 

ones and labeled as ‘DNAm-loss’ otherwise. An exact binomial test was performed to assess 

whether the proportion of DNAm-gain or DNAm-loss labeled diseases deviated significantly 

(P < 0.05) from 50%, which was not the case (P = 0.86).

Characterization of trait-linked mCpGs overlap with gene regulatory regions.
—Gene regulatory element annotations were derived from ENCODE5 cCREs catalog 

and gene body element annotations were obtained from GENCODE (see Obtention and 

processing of functional genomic data). To annotate mCpGs for cCRE and gene body 

elements, we extended the span of their genomic location by ±100 bps and checked for 

overlap (≥1 bp) with element regions. Trait-linked mCpGs were classified as e/mQTL shared 

or mQTL specific (Supplementary Note: Evaluation of mQTL-GWAS colocalization). 

Enrichment significance of e/mQTL-shared or mQTL-specific trait-linked mCpGs in each 

gene regulatory region or gene body element category was estimated at two-sided Fisher’s 

exact test P < 0.05.

Characterization of trait-linked mCpGs overlap with functional maps.—To 

evaluate the overlap of mQTL-specific trait-linked mCpGs with genomic regions linked 

to specific genes, we considered functional maps based on curated regulatory-region to gene 

target predictions63,64 and eQTM predictions generated herein. We extended the genomic 

location span of mCpGs by ±100 bp, and checked for overlap (≥1 bp) with eCpGs and 

regulatory regions (gene links). Enrichment of mQTL-specific trait-linked mCpG in gene 

links was evaluated with two-sided Fisher’s exact test, considering gene links observed 

for non-colocalized mCpGs. For each trait/gene-linked mCpG, we annotated corresponding 

regulatory-region gene targets and eCpG-correlated genes; a particular gene was annotated 

to a mCpG if overlap was found in one or more functional maps. Annotations were 

collapsed at a GWAS hit level by adding up the number of predicted mCpG-gene links 

corresponding to the locus, hence providing an estimate of mCpGs that support a gene 

candidate per trait-associated locus (Supplementary Table 6).

Colocalization of trait-linked mCpGs with multi-context eQTL maps.—To expand 

on the identification of eGenes underlying mQTL-GWAS specific GWAS hits (Fig. 4), we 
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considered non-GTEx multi-context eQTL resources and performed GWAS-mQTL-eQTL 

multivariate colocalization with HyPrColoc96 (v.1.0.0), which implements an efficient 

deterministic Bayesian algorithm to detect colocalization across multiple traits (for example, 

multi-omic traits from different contexts). The eQTL mappings were obtained from 

eQTL Catalogue37 (https://www.ebi.ac.uk/eqtl/) release 4, eQTLGen97 (https://eqtlgen.org/

cis-eqtls.html) and i2QTL98 (https://doi.org/10.5281/zenodo.4005576) Consortium. The 

eQTL map set comprised 61 gene-level eQTL mappings identified in cohorts other than 

GTEx, most of derived from RNA sequencing, encompassing a wide range of tissues and 

cells, including simulated blood cells, highly powered pluripotent cells and whole blood 

datasets (Supplementary Table 8). For each mQTL-GWAS specific GWAS hit (Fig. 4), we 

jointly modeled (1) the mQTL signal corresponding to the top colocalizing mCpG, (2) the 

external eQTL datasets and eQTL signal for genes with nominal (P < 1 × 10−3) eQTL 

signal for a variant matching the top colocalizing mQTL-GWAS variant and (2) the GWAS 

signal of the colocalized trait. Only cases with >50 overlapping variants were considered. 

A single external eQTL dataset was modeled at a time. We refer to PR as the regional 

association probability that all the traits share an association with one or more variants 

within the region and PA as the alignment probability that the shared associations between 

all traits are owing to a single shared putative causal variant. The posterior probability of 

full colocalization (PPFC = PR*PA) represents the posterior probability that all traits share 

a causal variant within that region. Clusters were identified when PR > 0.8 and PPFC > 

0.5 (PA > 0.625) were satisfied. Prior.1 represents the prior probability that a variant is 

associated with a single trait, and (1 – prior.2) represents the prior probability that a variant 

is associated with an additional trait given that it is associated with one trait. We set prior.1 

= 1 × 10−4, and prior.2 = 0.98. We performed sensitivity analysis by setting prior.2 to 

0.95, 0.98 and 0.99, and we also calculated the corresponding empirical false positive rate 

by permuting eQTL with respect to mQTL and GWAS estimates (Supplementary Note); 

significant colocalization instances are provided (Supplementary Table 8).
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Extended Data

Extended Data Fig. 1 |. Characterization of methylomes across tissues, eQTM discovery and 
tissue specificity patterns.
(a) Sample similarity based on DNAm profiles. Dimensionality reduction was performed 

with a t-Distributed Stochastic Neighbor Embedding approach (t-SNE). (b) Hierarchical 

tissue clustering based on complete methylomes (left panel) and transcriptomes (right 

panel) of nine tissues (x axis). The molecular phenotypes displayed (y axis) correspond 

to the top 20,000 most divergent CpG sites and genes across tissues. DNAm and gene 
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expression values are column-wise scaled. (c) Number of eQTMs per tissue, defined at 

LFSR < 0.05 or FDR < 0.05, shown with per-tissue eQTM-mapping sample sizes in 

parentheses. FDR: False Discovery Rate. LFSR: Local False Sign Rate. (d) Tissue sharing 

profile of eQTMs. (e) Contribution (x axis, square-root transformed log(OR)) of selected 

factors to eQTM likelihood (presence) for different gene regulatory elements (y axis). 

Dist.: Distance. OR: Odds Ratio. Factor units: CpG–gene distance [Kb], eQTM Sign [‘1’ 

for negative correlation between methylation and expression, ‘0’ otherwise], CpG DNAm 

[M-value], gene expression [log2(TPM + 1)]. OR estimates were derived from across-tissue 

meta-analysis (nine tissues) of predictor coefficients of eQTM likelihood, fitted with a 

logistic regression model (Methods).

Extended Data Fig. 2 |. DNAm-derived PEER factors association with technical, clinical and 
epidemiological covariates.

Oliva et al. Page 21

Nat Genet. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proportion of variance - mean adjusted R2 across top three PEERs (R2adj) - of the PEER 

factors explained in part by known donor and sample clinical and biological covariates. 

Each cell shows the proportion of variance explained by the covariate with respect to the 

three top PEERs in a specific tissue. Only covariates with R2adj ≥ 0.02 in any tissue are 

shown. Tissues and covariates are ordered based on hierarchical clustering with complete 

agglomeration with Euclidean distance. Gray cells indicate unavailable data. The cells at the 

bottom of the panel shows that the PEERs are capturing batch effects, as expected.

Extended Data Fig. 3 |. DNAm-derived PEER factors association with tissue cellular abundances.
Proportion of variance - mean adjusted R2 across top three PEERs (R2adj) - of the PEER 

factors explained in part by tissue cellular abundances. Each bar shows the proportion 

of variance explained by the cell abundance with respect to the three top PEERs in a 

specific tissue. (b) Fraction of cell abundance (y axis) estimated by DNAm cell-type 

deconvolution with EpiSCORE, stratified by cell type (x axis) in corresponding tissue. 

Breast cell abundances are stratified by sex to illustrate sex-differential cell abundances. 

Cell abundances were estimated for all available samples per tissue: NBreast,Males = 14, 

NBreast,Females = 38, NBlood,Pooled = 54, NColon,Pooled = 224. B: B cells, NK: Natural Killer 

cells, CD4T: CD4+ T-cells, CD8T: CD8+ T-cells, Mono: Monocytes, Neutro: Neutrophils, 
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Eosino: Eosinophils, Basal: Basal Epithelial cells, EC: Endothelial cells, Fat: Adipocytes, 

Luminal: Luminal Epithelial cells, Lym: Lymphocytes, Macro: Macrophages, Epi: Epithelial 

cells, Mye: Myeloid cells, Stromal: Stromal cells.

Extended Data Fig. 4 |. Tissue specificity of QTLs.
(a) Tissue sharing profile of mQTLs and eQTLs. (b-c) Cross-tissue sharing of mCpGs and 

eGenes. Cross-tissue mean percent of mCpGs and eGenes per tissue-sharing category is 

shown in parentheses. Of note, testis is an outlier for eQTL tissue specificity, as 23.5% of 

eGenes were not detected in any other tissue. Avg.: average (mean). (c) Cross-tissue sharing 

of mQTL tissue-leveraged effect magnitudes (y axis) per gene regulatory region (x axis, 36 

data points per box plot). P-values of paired two-sided Wilcoxon signed rank tests are shown 

for corresponding pairwise comparisons; p-value of Kruskal-Wallis rank sum test is shown 

for the three-way comparison. Enh.: Enhancer. (d, e) Validation of tissue-specific mQTLs 

in muscle, blood and brain mQTL external cohorts, see (b) for tissue color legend. In (d), 

for each cohort, the average of absolute mQTL effect sizes and corresponding standard error 

is displayed for each set of tissue-specific mQTLs identified in each GTEx tissue (x axis). 

In (e), Spearman correlation between external and GTEx mQTL effect sizes, and associated 

standard error, is shown. Fisher’s z transformation was applied to Spearman correlation 

coefficients; standard errors were calculated based on the transformed coefficients. In 

(d,e), the number of QTL associations (N) tested for each pairwise comparison is as 

follows: NFUSION,GTEx = 195|4142|336,4630,287,4643|1428|360|369, NGoDMC,GTEx = 22|

1353|47|1478|70|1019|292|83|102 and NROSMAP,GTEx = 57|2428|156|2587|163|2673|791|214|

Oliva et al. Page 23

Nat Genet. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



109, where GTEx corresponds to Breast|Colon|Kidney|Lung|Muscle|Ovary|Prostate|Testis|

Blood tissues, respectively.

Extended Data Fig. 5 |. Representativity of GTEx mCpGs in external cohorts.
Overlap of mCpGs identified in GTEx (FDR < 0.05) with mCpGs identified in external 

mQTL cohorts at different nominal p-value thresholds (P < 1e-03 and P < 1e-05). Results 

are represented for all mCpGs - detected in EPIC and/or 450 K Illumina array - and for 

450 K Illumina array CpG sites exclusively. P-value thresholds correspond to external cohort 

nominal mQTL associations, derived from QTL mapping by multiple regression two-sided 

t-tests.
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Extended Data Fig. 6 |. Enrichment of QTLs in chromatin states.
(a) QTL enrichment (x-axis) in tissue-matching open chromatin regions derived from 

ENCODE DNase-seq profiles per tissue (y-axis). Whole blood is excluded due to lack of a 

tissue-matching DNase-seq profile. Enrichment differences between tissues may be due in 

part to per-tissue DNase-seq data quality. (b) QTL enrichment (x-axis) in active chromatin 

states. OR: Odds Ratio. Enrichment values correspond to maximum-likelihood estimated 

log(ORs) for single-tissue in (a) and from across-tissue (nine tissues) meta-analysis in (b). 

In all panels, whiskers represent the 95% confidence interval of the enrichment value.
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Extended Data Fig. 7 |. Characterization of mQTL pleiotropy.
(a) Scheme of possible scenarios of eQTL-mQTL colocalization regarding QTL variants’ 

pleiotropic effect on multiple mCpGs and eGenes. (b) Quantification of mQTL-eQTL 

pleiotropy per tier per tissue, in percent of mCpGs belonging to each tier. Tier details 

illustrated in (a). Avg.: average (mean). (c) Distribution of the number of eGenes per mCpG 

(left panel) and mCpGs per eGene (right panel) involved in mQTL-eQTL colocalization 

events, stratified by tissue. Avg.: average (mean).

Extended Data Fig. 8 |. Evaluation of mQTL-GWAS colocalization approach.
(a) Density plot of mQTL-GWAS colocalization scores based on coloc run with default (y 

axis) and fastenloc-derived priors (x axis) on UKB standing height GWAS; Spearman’s 

rho is shown. Each dot corresponds to a colocalization test for a particular GWAS 

hit, independent mQTL and tissue combination. (b) Density plot of mQTL-GWAS 

colocalization scores based on coloc (x axis) and fastenloc (y axis) approaches on all 

GWASs; Spearman’s rho is shown. Each dot corresponds to a colocalization test for a 

particular GWAS, GWAS hit, independent mQTL and tissue combination. Dots within the 

top-right quadrant correspond to significant (RCP > 0.3 and PP4 > 0.3) colocalizations. PP4: 

coloc-derived posterior probability where the two traits share a single causal variant. RCP: 

fastenloc-derived probability of a genomic region harboring a colocalized signal.
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Extended Data Fig. 9 |. Signatures of QTL-GWAS colocalizations and trait-linked QTLs.
(a) Percent of QTL-colocalized GWAS hits (y axis) per GWAS trait (x axis) stratified by 

GWAS trait category and colocalization group (see Fig. 4). Only GWAS traits with > = 

10 colocalized GWAS hits are displayed. (b) Mean DNAm - in M-values - of mCpGs 

(left panel) and gene expression - in log2(TPM + 1) - of eGenes (right panel) tested for 

colocalization, stratified by tissue and colocalization group (see Fig. 4). Mean DNAm and 

gene expression across tissues is indicated by a dashed line. Whiskers represent the 95% 

confidence interval of the mean, calculated based on 5,000 replications of bootstrapped 

samples (random sampling with replacement). The number of mCpGs/eGenes (N) tested 

per bootstrap is as follows: NMeanMethylation = (12472|51|124), (147806|306|1111), (17574|

24|221), (157356|359|1234), (13623|45|162), (127008|147|1041), (65147|103|60), (13576|38|

101), (20127|126|254) and NMeanGeneExpression = (10050|27|168), (10800|110|103), (1147|4|

22), (13053|144|149), (12594|33|218), (5120|55|47), (6744|43|75), (17025|18|164), (11545|

95|291) for QTL-GWAS tested, e/mQTL-shared and e/mQTL-specific eGenes/mCpGs in 

Breast|Col on|Kidney|Lung|Muscle|Ovary|Prostate|Testis|Blood tissues, respectively.
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Extended Data Fig. 10 |. Breast cancer linked e/mQTLs in the TERT-CLPTM1L locus.
Colocalized molecular phenotypes for this locus, identified by breast cancer GWAS-QTL 

multivariate colocalization approach (Methods), are provided in the top summary table. The 

mQTLs colocalizing with these breast cancer GWAS signals (that is, mCpGs cg03935379 

and cg07380026) are shown in Fig. 5a, b. Additional details are provided in Supplementary 

Table 8. Plots illustrate association p-values in the locus for breast cancer estrogen positive 

(ER+) GWAS (top panel), breast cancer estrogen negative (ER−) GWAS (middle panel) 

and TERT eQTL signal in induced pluripotent stem cells (iPSCs) (bottom panel). Genotype-
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phenotype association p-values correspond to rs10069690, lead signal for breast cancer ER- 

GWAS. Linkage disequilibrium between loci is quantified by squared Pearson coefficient of 

correlation (r2) in population from European origin. Breast GWAS p-values were obtained 

from Milne et al. 2017, and iPSC TERT eQTL p-values from Bonder et al 2021. Mb: mega 

base. P-values correspond to nominal GWAS or QTL associations, derived from multiple 

regression two-sided t-tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Scheme of data generation and analysis overview.
Multi-tissue DNAm Illumina EPIC-array-based profiles are integrated with GTEx project 

sample-matched gene expression to map DNAm-expression correlations (eQTMs). Sample-

matched genotype data are integrated to map mQTLs and eQTLs. e/mQTL signal is 

colocalized with GWAS data and multi-context eQTLs, and integrated with eQTMs and 

functional maps, to link variants and genes to traits. This figure was created with adapted 

templates from http://biorender.com.
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Fig. 2 |. mQTL discovery and e/mQTL functional mechanism characterization.
a, Number of CpGs with a mQTL (mCpGs) per tissue defined at local false sign rate 

(LFSR) < 0.05 or FDR < 0.05, shown with per-tissue mQTL-mapping sample sizes (N) 

in parentheses. mCpGs, CpG sites with a significant mQTL association. ∪, union. b, 

Cross-tissue sharing of mQTL (left panel) and eQTL (right panel) tissue-leveraged mashr-

derived effect magnitudes. Tissues ordered based on hierarchical clustering with complete 

agglomeration with Euclidean distance. c, QTL enrichment (x axis) in CpG islands (CGIs), 

gene body sites and candidate cis-regulatory elements. NC, non-coding; CDS, coding 

sequence; UTR, untranslated exon region.; OR, odds ratio. d, QTL enrichment (x axis) 

in transcription factor binding sites (TFBS). Top (largest OR value) 15 significant TFBS 

enrichments for mQTLs (left panel) and eQTLs (right panel) are shown. For panels c 

and d, enrichment values correspond to maximum-likelihood estimated log(ORs) derived 

from across-tissue (nine tissues) meta-analysis (Methods), and whiskers represent the 95% 
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confidence interval of the enrichment value. e, Percentage and number (in parentheses) of 

mQTL loci (FDR < 0.05) relative to eQTL-colocalization (PP4 > 0.5) category.
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Fig. 3 |. Characterization of HOXD-locus e/mQTL pleiotropy in the ovary.
a, Ovary-tissue mQTL and eQTL landscape for HOXD locus. Variant rs6433571 (diamond) 

impacts multiple mCpGs (red lines) and eGenes (blue lines). Rectangular lines indicate 

distal eGenes not shown. Regulatory element annotations correspond to ENCODE candidate 

cis-regulatory elements (cCREs); promoters are shown in red, proximal and distal enhancers 

in orange and yellow, respectively, and CTCF-only regions (putative insulators) in blue. 

Dashed and solid gray lines correspond to gene transcription start sites and variant 

rs6433571 location, respectively. b, Cross-tissue expression levels, in transcripts per million 

(TPM), of eGenes in the HOXD locus identified in ovary tissue. c,d, QTL effect size of 

variant rs6433571 minor allele G on HOXD-locus eGenes (c) and mCpGs (d) per tissue. 

Gray cells in panel c correspond to genes below the expressed threshold in a particular 

tissue, hence not tested for eQTL signal. For panels b–d, complete-linkage hierarchical 

clustering based on Euclidean distance was performed for tissues and molecular phenotypes.
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Fig. 4 |. Colocalization of mQTLs and eQTLs with GWAS traits.
Venn Diagram represents the overlap between colocalized GWAS hits per QTL type. Bar 

plot represents the number of colocalized GWAS hits (y axis, square-root transformed) per 

GWAS trait (x axis), trait class and QTL type. BMI, body mass index; c., cell count; LDL, 

low-density lipoprotein; HDL, high-density lipoprotein; RBC, red blood cell; T1D, type 1 

diabetes; T2D, type 2 diabetes; ER, estrogen receptor.
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Fig. 5 |. Examples of trait-linked e/mQTLs.
a,b, Genotype-phenotype association P values in the TERT locus for breast cancer GWASs 

(top panel) and mQTL signal in ovary (bottom panel). c, Genotype-phenotype association 

P values of the MEG9 locus. Panels illustrate GWAS signal for body mass index (top), 

cg05029961 primary (middle) and secondary (bottom) mQTL signal in ovary tissue. 

Secondary mQTL association was obtained adjusting for the top significant variant of 

primary mQTL signal. Small nucleolar RNA loci (snoRNAs) and microRNA loci are 

depicted in blue and red, respectively. d, Genotype-phenotype association P values of the 

MYO9B locus. Panels illustrate GWAS signal for hypertension (top), cg19418318 mQTL 

signal (middle) and MYO9B eQTL signal (bottom) in prostate. e, Genotype-phenotype 

association P values of the EFEMP2 locus. Top panels illustrate primary (left) and secondary 

(right) GWAS signals for asthma. Middle and bottom panels illustrate cg14030993 mQTL 

and EFEMP2 eQTL signal respectively. For all panels, top GWAS-colocalized e/mQTL 

is typed in bold, linkage disequilibrium between loci is quantified by squared Pearson 

coefficient of correlation (r2), and colocalization probability (PP4) of mQTL with GWAS 

signal is shown. In panels a, c and d, the diamond-shaped point represents the top significant 
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mQTL variant; in panel b, it represents the top significant secondary QTL variant; in 

panel e, it represents either the top significant mQTL (left) or eQTL (right) variant. P 
values correspond to nominal GWAS or QTL associations, derived from multiple regression 

two-sided t-tests.
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Fig. 6 |. Characteristics of trait-linked mQTLs.
a, Proportion of colocalized mQTLs with GWAS hits per tissue (y axis) and GWAS trait (x 
axis) scaled by GWAS trait. GWAS traits are clustered by trait-wise scaled colocalization 

proportion values. Significant (Fisher’s two-sided exact test Bonferroni-corrected P < 0.01) 

tissue-trait enrichments are labeled with a black cross. b, Trait-linked mCpG enrichment 

(x axis) in gene body regions and candidate cis-regulatory elements, stratified by QTL-

GWAS colocalization group (Fig. 4). Enrichment values correspond to maximum-likelihood 

estimates of the OR, derived from N = 270,783 trait-association tested mCpGs, and whiskers 

represent the 95% confidence interval of the enrichment value. enh., enhancer. c, Venn 

diagram represents overlap between GWAS hits with absence or presence of identified 

gene links by integrative approach. Analyzed GWAS hits were derived from the previous 

pairwise colocalization approach, considering mQTL-specific loci, that is mQTL-GWAS 

colocalizations in absence of eQTL-GWAS colocalization in the same GTEx tissue source 

(Fig. 4). d, Number of eQTL contexts/catalogs per eQTL-mQTL-GWAS-colocalized cluster 

(y axis, square-root transformed) derived from the multivariate colocalization approach 

considering 61 eQTL contexts/catalogs beyond GTEx (Methods). Observations are stratified 

by QTL-GWAS colocalization group derived from the previous pairwise colocalization 

approach, that is mQTL-GWAS colocalizations in presence (e/mQTL shared) or absence 

(mQTL specific) of eQTL-GWAS colocalization in the same GTEx tissue source (Fig. 4).
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