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Abstract

Pd(II)-catalyzed γ-C(sp3)−H (hetero)arylation of aliphatic ketones is developed using α-amino 

acid as transient directing groups (TDG). A variety of aliphatic ketones were (hetero)arylated 

at the γ-position via a 5,6-membered fused cyclopalladation intermediate to afford the remotely 

arylated products in up to 88% yield. The crucial ligand effect of 2-pyridone is further enhanced 

by reducing the loading of acid additives. Consequentially, the improved reactivity of this catalytic 

system has also made possible the cyclic γ-methylene C(sp3)−H arylation of ketones. Mechanistic 

investigtigation and comparison to the γ-C–H arylation of aldehydes revealed a structural insight 

for designing site selective TDG.
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Ketones are ubiquitous functional groups in natural products and synthetic intermediates. 

Wide range of transformations of aliphatic ketones that rely on the reactivity of ipso- and 

α-carbon centers have been developed.1 From the viewpoint of developing new synthetic 

disconnections, development of C–H functionalization of inert C(sp3)–H bonds at β- or even 

γ-positions is of great importance. Covalent installation of imine based directing groups 

have been explored to achieve β-C(sp3)–H functionalizations.2,3 In 2016, our group realized 

Pd(II)-catalyzed β-C(sp3)–H functionalization of free aliphatic ketones and o-tolualdehydes 

using L,X-type transient directing groups.4 This strategy, based upon reversible imine 

linkage in similar fashion to that of organocatalysis, provided strong impetus for further 

development of directed C–H activation of ketones,5 aldehydes6 and amines7 by omitting the 

extra steps for installation and removal of covalent directing groups. Using this protocol, β-

methylene4a,4b or even methine4j C(sp3)–H arylation of aliphatic ketones has been recently 

achieved (Scheme 1a).

Despite significant advances in Pd-catalyzed β-C(sp3)–H functionalizations of ketones using 

TDG, this approach has met limited success towards C–H activation at the relatively remote 

γ-position. For example, a single example of γ-C–H arylation requires the presence of 

tri-methyl groups at the β-position.4 To address this limitation, α-imino-oxy acids were 

developed as a covalent directing group in our laboratory. γ-C(sp3)–H arylation using 

this directing group were enabled by 2-pydrione ligands (Scheme 1b).8 Interestingly, 

iminyl-radical generated from α-imino-oxy acids or oxime esters effectively performed an 

intramolecular 1,5-HAT and forged new bonds at the γ-position (Scheme 1c).9 However, 

these methods have a common limitation: extra synthetic steps are needed for the 

covalent installation and removal of the directing groups. Therefore, we embarked on the 

development of γ-C(sp3)–H functionalization of free aliphatic ketones based upon TDG 

strategy.

Herein, we report the first TDG-enabled γ-selective PdII-catalyzed C(sp3)–H 

(hetero)arylation of aliphatic ketones with electron-deficient 2-pyridone ligands (Scheme 

1d). With the cheap and commonly available glycine (TDG1) as transient directing group, 

γ-C(sp3)–H (hetero)arylation and cyclic γ-methylene C(sp3)–H arylation could be achieved 

with up to 88% yield without the need of directing group installation and removal.

To address the challenge of the γ-C−H functionalization of aliphatic ketones, we began 

to search ligands and additives that can accelerate the C−H cleavage step. Guided by 

our previous findings on C(sp3)−H functionalization reactions that reducing the amount of 

chloroacetic acid can enhance the ligand effect of 2-pyridone by minimizing the competing 

carboxylates.10,11 We started testing different organic acids with lower pKa for γ-C−H 

arylation of 4-methyl-2-pentanone (1a) with 3-nitro-5-(trifluoromethyl)-2-pyridinone (L12) 

as ligand. To our delight, the NMR yield reached to its highest at 85% (mono:di = 58:27) 

when 1.5 equiv of chloroacetic acid was used (Table 1, entry 5). Other pyridone ligands 

were also tested. Unfunctionalized 2-pyridone (L1) and 5-substituted 2-pyridones (L2-L6) 

were examined first, which resulted in the highest yield of 65%. Substitution of electron 

withdrawing groups at the 3-position further improved the yield to 85% (L7-L10, L12), 

except for 3,5-dinitropyridione(L11). Not surprisingly, less than 10% arylation product was 
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obtained in the absence of the ligand. Varied β-amino acids were also tested as TDG to 

substitute glycine (TDG1) which inhibited the reactivity (see the Supporting Information 

for detailed screening information), probably due to the preference of the 5,6-membered 

coordination.

With the optimized conditions in hand, a variety of aliphatic ketones with methyl/cyclic 

methylene γ-C(sp3)−H bonds were tested using methyl 4-iodobenzoate as the coupling 

partner (Table 2). Substitution with methyl, pentyl, isohexyl and neopentyl groups at 

the β-position showed good reactivity (2a–2d). Larger substituents such as cyclohexyl or 

cyclopentyl groups were also compatible, providing 2e and 2f with good yields. Substrates 

containing phenyl, phthalimide and ether functionality were also tolerated with 48–64% 

yields (2g–2i). Ketones possessing β-quaternary centers could be well arylated at the γ-

position with a lower loading of chloroacetic acid of 0.8 equiv, providing 2j–2l with good 

to moderated yields. Besides, the formation of tetra-functionated product of di-iso-butyl 

ketone further illustrates the powerful reactivity of this catalytic system (2m). Notably, 

two examples of cyclic γ-methylene-C(sp3)−H bonds could also be successfully arylated 

with good to moderate yields (2n–2o), providing a promising strategy for methylene C−H 

functionalization via 6-membered cyclopalladation. Furthermore, the reaction could be 

readily carried out on 3.0 mmol scale with 2b as standard substrate, affording the desired 

product in 61% yield.

To broaden the synthetic application of this reaction, the scope of aryl and heteroaryl 

iodides was examined (Table 3). The model substrate 1b could be functionalized with excess 

of aryl iodides, exhibiting a good functional group compatibility (3a–3j). Aryl iodides 

derived from borneol and estrone were also tested, resulting in the desired products in 51% 

and 62% yields, respectively (3k–3l). More importantly, heterocycles could be installed 

through γ-C(sp3)−H functionalization with a modified condition. Various 4-iodopyridines 

derivates were tested as coupling partners. Good to moderate yields were acquired with 

2-substituted 4-iodopyridines containing halogen, trifluoromethyl and methyl groups (3m–

3q). For the less strongly coordinating 2,6-dichloro substituted pyridine, a total of 78% 

heteroarylated product was obtained (3r). Ketones could also be functionalized with 2 and 3-

iodopyridines derivates at the γ-position, providing 3s–3v in good to moderate yields. Good 

yields could also be achieved with other heteroaryl iodides, such as 6-iodoqunoline and 

3-iodoqunoline, which broadened the application of this protocol (3w–3x). However, non-

substituted iodopyridines exhibited poor reactivity, with trace product observed, probably 

due to the strong coordinating ability which deactivated the catalyst.

A plausible catalytic cycle is outlined in Scheme 2. Glycine reacts with aliphatic ketones 

reversibly to form the transient imine A. Palladium species then coordinates to imine A 
to generate a chelating complex B, which, upon binding to a pyridone ligand, undergoes 

C−H bond activation process to form intermediate C. Complex D is generated via oxidative 

addition with aryl iodides. Finally, reductive elimination of the palladium complex D leads 

to arylated E.

Finally, the distinct site-selectivity observed with the non-substituted acyclic ketones when 

compared to our recent report on corresponding aldehyde substrates11 are investigated. With 
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aldehydes, the selectivity was switched to γ- with 5-membered chelating TDG. However, 

pentan-2-one (1p) containing both β-methylene and γ-methyl C(sp3)−H bonds afforded 

β-C−H arylation with either 5 or 6-membered TDG (Table 4). To obtain some mechanistic 

insight into the lack of γ-selectivity with 5-membered chelating TDG, we conducted 

deuterium incorporation experiments under the standard conditions in the presence of 2-

chloroacetic acid-d and HFIP-OD (see the Supporting Information for details). The absence 

of deuterium incorporation at the β- and γ-position of the arylated products suggests that the 

C−H cleavage proceeds irreversibly, and is expected to serve as the rate-limiting step based 

on our previous studies.5e With this experimental evidence in hand, we pursued further DFT 

modeling and revealed that 5,5-membered coordination is favored over the 5,6-coordination 

due to increased 1,2 steric strain between the methyl group of the substrate and the TDG 

ring, evident from the difference in distance between them. Calculated regioselectivity is 

in excellent agreement with experimental observations. (Scheme 3). This mechanistic study 

provides a valuable structural insight into how to design site selective TDG for ketones and 

aldehydes.12

In summary, we have developed a protocol for PdII-catalyzed primary γ-C–H 

(hetero)arylation of aliphatic ketones enabled by a simple α-amino acid TDG and 2-

pyridone ligands. This reaction features broad substrate scope without extra steps of 

installation and removal of directing groups. Functionalization of cyclic γ-methylene 

C(sp3)−H via a 5,6-membered coordination has also been demonstrated. Mechanistic study 

on the site selectivity of acyclic ketones and its comparison with corresponding aldehydes 

points to a valuable structural insight for designing site selective TDG.
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Scheme 1. 
PdII-Catalyzed C(sp3)−H Functionalization of Ketones directed by TDG and Covalent 

Auxiliaries
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Scheme 2. 
Proposed Catalytic Cycle
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Scheme 3. 
DFT Modeling of The TDG Influence on Site-selectivity of C(sp3)−H Cleavage
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Table 1.

Ligand Evaluation for γ-C(sp3)−H Arylation of Aliphatic Ketonesa, b

a
Conditions: 1a (0.1 mmol, 1.0 equiv), methyl 4-iodobenzoate (2.0 equiv), Pd(OAc)2 (10 mol%), TDG1 (glycine, 30 mol%), L12 (60 mol%), 

AgTFA (3.0 equiv) and ClCH2COOH (1.5 equiv) in HFIP (0. 5 mL), 120°C, under air, 48 h.

b
Yield determined by 1H NMR; CH2Br2 as internal standard.

c
Loading that gave the highest yield within a serial of concentrations.

d
Ratio of mono:di.
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Table 2.

Scope of Ketonesa, b

a
Conditions: 1 (0.1 mmol, 1.0 equiv), methyl 4-iodobenzoate (2.0 equiv), Pd(OAc)2 (10 mol%), TDG1 (30 mol%), L12 (60 mol%), AgTFA (3.0 

equiv) and ClCH2COOH (1.5 equiv) in HFIP (0. 5 mL), 120°C, under air, 48 h.

b
Isolated yields.

c
with ClCH2COOH (0.8 equiv) as additive

d
The reaction condition was modified with TDG1 (35 mol%), L10 (80 mol%) and ClCH2COOH (1.2 equiv) in HFIP (0.45 mL).
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Table 4.

Site-selective Arylation of Pentan-2-one with Different TDGa, b

a
Conditions: 1 (0.1 mmol, 1.0 equiv), methyl 4-iodobenzoate (2.0 equiv), Pd(OAc)2 (10 mol%), TDG (30 mol%), L12 (60 mol%), AgTFA (3.0 

equiv) and ClCH2COOH (1.0 equiv) in HFIP (0. 5 mL), 120°C, under air, 12 h.

b
Yield and ratio determined by 1H NMR of the crude mixture.

c
Reaction time: 48h.
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