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Abstract

Physics-driven deep learning methods have emerged as a powerful tool for computational 

magnetic resonance imaging (MRI) problems, pushing reconstruction performance to new limits. 

This article provides an overview of the recent developments in incorporating physics information 

into learning-based MRI reconstruction. We consider inverse problems with both linear and 

non-linear forward models for computational MRI, and review the classical approaches for 

solving these. We then focus on physics-driven deep learning approaches, covering physics-driven 

loss functions, plug-and-play methods, generative models, and unrolled networks. We highlight 

domain-specific challenges such as real- and complex-valued building blocks of neural networks, 

and translational applications in MRI with linear and non-linear forward models. Finally, we 

discuss common issues and open challenges, and draw connections to the importance of physics-

driven learning when combined with other downstream tasks in the medical imaging pipeline.
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I. Introduction

Magnetic resonance imaging (MRI) is a non-invasive radiation-free imaging modality 

with a plethora of clinical applications and extensively-studied physics underpinnings. 

The relationship between the acquired MRI data and the underlying magnetization is 

characterized by Bloch equations, and depends on a number of parameters, including the 

magnetic fields (e.g. the static B0 magnetic field), relaxation effects (e.g. T1, T2 relaxation), 

motions at different scales (e.g. physiological, flow, diffusion and perfusion), and acquisition 

parameters (e.g. echo time, flip angle) [1]. These intricate dependencies are encoded 

in the so-called k-space, corresponding to the spatial Fourier transform of the object’s 

magnetization. The acquired k-space signal y(t) at time t, prior to discretization, is given as

y(t) = ∫ M(ρ(r), ϑ, t, r)e−j2πk(t) ⋅ rdr + n(t) (1)

where r is the spatial location; ρ(r) is the underlying spin densities/transverse magnetization; 

ϑ is a set of (potentially unknown) parameters that model physiological or systemic 

changes, and themselves may depend on r; k(t) is the k-space location at time t 
sampled along a k-space trajectory under the influence of spatially and temporally varying 

magnetic fields; and n(t) is measurement noise. The physics-based signal model M(ρ(r), 

ϑ, tj, r), sampled at times tj, thereby describes the effects that influence the underlying 

magnetization, based on pre-specified and known image acquisition parameters. It depends 

on the imaging sequence and reflects physiological, functional or hardware characteristics. 

For many applications, an analytical expression can be derived (e.g. via hard pulse 

approximation from the Bloch equations) for which a few examples are summarized in 

Table I (linear and non-linear models). If no analytical expression can be derived for the 

imaging sequence, the Bloch equations need to be integrated directly as the signal model.

For a simplified acquisition model, the signal in M(ρ(r), ϑ, t, r) is often characterized as 

x(r), which absorbs the dependencies on the physiologic or systemic effects, as well as the 

signal evolution (or time-course), into the image/magnetization of interest. For example, this 

type of simplification is used when referring to images with different contrast weightings, 

such as T1 or T2 weighting. In this setup, following discretization, the physics-based forward 

model becomes linear and can be expressed as

y = Ex + n, (2)

where x ∈ ℂn is the image/magnetization of interest, y ∈ ℂm denotes the corresponding 

k-space measurements, E:ℂn ℂm is the forward MRI encoding operator, and n ∈ ℂm

is discretized measurement noise. In its simplest form, E corresponds to a sub-sampled 

discrete Fourier transform matrix FΩ:ℂn ℂm which samples the k-space locations specified 
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by Ω. In practice, however, all clinical MRI scanners from all vendors are equipped with 

multi-coil receiver arrays, and the corresponding multi-coil forward operator E:ℂn ℂm ⋅ nc

is given as

E =
FΩC1

⋮
FΩCnc

,

where nc is the number of coils in the receiver array, and Cq:ℂn ℂn is a diagonal matrix 

containing the sensitivity profile of the qth receiver coil. These coil sensitivities are typically 

pre-estimated from subject-specific calibration data [3]. We note that while FΩ typically 

refers to a sub-sampled Cartesian acquisition that can be implemented efficiently with a fast 

Fourier transform, non-Cartesian acquisitions are also used in some clinical applications.

Formation of images and other information from these measured k-space data constitutes 

the basis of computational MRI, which in itself has a rich history. The canonical inverse 

problem for computational MRI relates to the formation of images from sub-sampled/

degraded k-space data. Solving such inverse problems often necessitates incorporation of 

additional information about MRI encoding and/or the nature of MR images. Earlier works 

concentrated on the properties of the k-space, such as partial Fourier imaging methods that 

utilize Hermitian symmetry. With the advent of multi-coil receiver arrays, the redundancies 

among these coil elements became the important information for the next generation of 

inverse problems [3].

In addition to the above canonical linear inverse problems, there is a class of computational 

MRI methods that deals with the more complicated non-linear forward models incorporating 

physical, systemic and physiological parameters, as stated in Table I. The forward model in 

this case can be broadly given as [1]:

y = ℰ(v) + n, (3)

where v ∈ ℂnv is a vector that includes all unknown imaging/quantity and parameters of 

interest that describes the signal evolution in Eq. (1), and ℰ :ℂnv ℂm ⋅ nc is a non-linear 

encoding operator, i.e. the signal evolution arising from the physics-based signal model of 

Eq. (1). It can be decomposed into Ԑ = EM, where E is the canonical multi-coil forward 

operator and ℳ :ℂnvnϑ ℂn is the discretized signal model describing the spin physics. Here, 

we make the distinction that v includes all unknown quantities of interest that describes the 

signal evolution, as opposed to just an image as in Eq. (2). This broad definition is necessary 

to incorporate different setups [1], which are partially described in Table I. For example, 

for the motion model in Table I, v includes both the motion field and the image of interest. 

For this model, the former was specified by ϑ as the unknown physiological parameter, but 

one is typically interested in recovering the image itself. For a relaxation model, v includes 

both the magnetization and the relaxation map (e.g. T1 or T2). In this setup, the quantity of 

interest is the relaxation map, which was specified by ϑ as the unknown physical parameter, 

but the magnetization also needs to be recovered to fully describe the model. Thus, it is 
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not straightforward to tease out the unknown parameter from the magnetization in all cases, 

where the object of clinical interest may be either. Hence the unified notation [1] makes the 

inverse problem easier to specify without going into application details. Traditionally, the 

inverse problem corresponding to Eq. (3) is solved using model-based reconstructions.

Recently, deep learning methods have emerged as a powerful tool for solving many 

inverse problems in computational MRI. Among these, MRI reconstruction for accelerated 

acquisitions remains the most well-studied [4-6], along with several strategies for 

quantitative MRI [7], motion [8] and other non-linear physical models [9]. Out of a 

plethora of approaches for these problems, physics-driven methods,which explicitly use 

the known physics-based forward imaging models in deep learning architectures and/or 

training to control the consistency of the reconstruction with k-space measurements, have 

emerged as the most well-received deep learning techniques by the MRI community due 

to their incorporation of the MR domain knowledge. The goal of this manuscript is to 

provide a comprehensive review of inverse problems for computational MRI, and how 

physics-driven deep learning techniques involving the raw k-space data are being used for 

these applications.

II. Classical approaches for computational MRI

The simplest image reconstruction problem for computational MRI concerns the case where 

E is exactly the discrete Fourier transform matrix in Eq. (2), corresponding to Nyquist 

rate sampling for a given resolution and field-of-view. In this case, the image of interest is 

recovered via inverse discrete Fourier transform.

In practical settings, often a sub-Nyquist rate is employed to enable faster imaging, 

where the previous simple strategy of taking the inverse Fourier transform leads to 

aliasing artifacts. Thus, in this regime, an inverse problem, incorporating additional domain 

knowledge, needs to be solved for image formation. The most commonly used clinical 

strategy for accelerated MRI is parallel imaging [3], which uses the redundancies among 

these coil elements for image reconstruction. Succinctly, parallel imaging methods that work 

in image domain [3] solved

xPI = arg min
x

1
2‖y − Ex‖2

2 = (EHE)−1EHy, (4)

where H denotes the Hermitian transpose. In theory, with nc coil elements, the ratio between 

the image size and the cardinality of Ω, or the acceleration rate (R), can be as high as 

nc. However, due to spatial or statistical dependencies between {Ck} and ill-conditioning 

of E that leads to noise amplification due to the matrix inversion [3], the achievable rates 

are often limited. Subsequently, compressed sensing methods were proposed to utilize the 

compressibility of MR images to reconstruct images from sub-sampled k-space data. These 

methods solve a regularized least squares objective function [10]

xCS = arg min
x

1
2‖y − Ex‖2

2 + τ‖Wx‖1, (5)
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where ∥·∥1 denotes the ℓ1 norm, W is a sparsifying linear transform, and τ is a weight 

term. Unlike (4), the objective function does not have a closed form solution. We also note 

that Eq. (5) corresponds to the analysis formulation of ℓ1 regularization, while the synthesis 

formulation which performs regularization in the transform domain directly also remains 

popular. The two are equivalent when W is a unitary transformation. Both the synthesis and 

analysis formulations lead to a convex problem, and can be solved using numerous iterative 

algorithms [10].

A. Solving the linear inverse problem in classical computational MRI

In general, we will consider a regularized least squares objective with a broader class of 

regularizers:

xreg = arg min
x

1
2‖y − Ex‖2

2 + ℛ(x), (6)

where R(·) may be one of the aforementioned regularizers, such as the ℓ1 norm of transform 

domain coefficients, or implicitly implemented via machine learning techniques, as we will 

later see.

There is a number of iterative algorithms for solving such objective functions, especially 

when it is convex [10]. A classical approach, when R(·) is differentiable, is based on 

gradient descent:

x(i) = x(i − 1) + ηEH(y − Ex(i − 1)) − η∇xℛ(x) ∣x = x(i − 1) , (7)

where x(i) is the image of interest at the ith iteration. However, often times nonsmooth 

regularizers are used in computational MRI. In this case, proximal algorithms are widely 

used [10]. One such method is proximal gradient descent, which amounts to solving two 

sub-problems:

z(i) = x(i − 1) + ηEH(y − Ex(i − 1)), (8a)

x(i) = arg min
x

1
2‖z(i) − x‖2

2 + ηℛ(x) ≜ proxℛ, η(z(i)) (8b)

where x(i) and z(i) are the image of interest and an intermediate image at the ith iteration 

respectively, Eq. (8b) corresponds to the so-called proximal operator for the regularizer, Eq. 

(8a) encourages data consistency, and η is a step size.

Another class of popular approaches rely on variable splitting, such as the alternating 

direction method of multipliers (ADMM), which solves:

x(i) = EHE + ρI −1 EHy + ρ(z(i − 1) − u(i − 1)) , (9a)
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z(i) = arg min
z

1
2‖(x(i) + u(i − 1)) − z‖2

2 + 1
ρℛ(z), (9b)

u(i) = u(i − 1) + (x(i) − z(i)), (9c)

where x(i) is the image of interest at the ith iteration, z(i) and u(i) are intermediate images, and 

ρ is a penalty weight. Here, (9a), (9b) and (9c) corresponds to data consistency, proximal 

operator and dual update sub-problems respectively. A simpler version of variable splitting 

is based on a quadratic penalty [10], which leads to the following equations:

x(i) = EHE + ρI −1 EHy + ρz(i − 1) , (10a)

z(i) = arg min
z

1
2‖x(i) − z‖2

2 + 1
ρℛ(z), (10b)

B. Solving the non-linear inverse problem in classical computational MRI

The general unconstrained optimization problem for a model-based reconstruction for the 

forward model in Eq. (3) can be stated as:

v = arg min
v

‖Eℳ(v) − y‖2
2 + Rv(v) (11)

where Rv is a (combination of) regularizer that acts on all unknown quantities of interest. 

While the notation is general, the regularizer may be separable among different quantities, e. 

g. different regularizers for the motion field and the image of interest. This description can 

be used to combine parallel imaging, compressed sensing and model-based reconstruction 

in a unified formulation. In addition to the motion and T2 mapping models discussed earlier 

in Section I, a non-linear forward model can also be used to describe dynamic imaging 

scenarios, such as contrast-enhanced imaging. Consider the signal model in Eq. (1), and 

time instances specified τ0(t) ≜ 0, τ1(t), τ2(t), …, τn(t). These time instances may correspond to 

different physical events, e.g. RF excitation for single-shot EPI acquisitions, sampling after 

an inversion pulse for T1 mapping, or cardiac triggering for myocardial parameter mapping 

or perfusion cardiac MRI. Let the discretized k-space measurements between τi−1(t) and 

τi(t) be denoted by yi. Thus, each yi, corresponding to {y(t)}τi−1(t)≤t<τi(t), essentially 

captures a snap-shot of this dynamic process between the specified sample instances. In 

the same vein as Eq. (3), these can be vectorized into y, where the corresponding v models 

the relevant pharmacokinetic quantities.

For the inverse problems with non-linear forward operators, the algorithms are less 

standardized, and typically application-dependent. Eq. (11) is usually non-convex, making 

its optimization a challenging task. Furthermore, inaccuracies or incompleteness of the 

modelling can further influence the optimization. One approach is to employ a Gauss-

Newton algorithm, and linearize the problem around the solution of the previous iteration or 

by approximating the non-linear behaviour with a linear combination of basis functions.
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III. Physics-driven ML methods in computational MRI

Deep learning methods have recently emerged as a powerful tool for computational MRI. 

These methods can be broadly split into two classes: purely data-driven and physics-

driven [6]. The former methods are typically implemented in image space, as removing 

artifacts from aliased images. These image enhancement networks are typically trained to 

map corrupted and undersampled images to artifact-free images. Indeed, learning image 

enhancement networks is the key ingredient to remove artifacts in image domain. However, 

when only image enhancement methods are used, the information of the acquisition 

physics is entirely discarded, hence, k-space consistency cannot be guaranteed. In this 

section, we will give an extensive overview on physics-driven deep learning methods 

for computational MRI, ranging from physics-informed enhancement methods to learned 

unrolled optimization, as well as reconstruction with generative models and plug-and-play 

priors.

A. Physics Information in Image/k-space Enhancement Methods

As aforementioned, image enhancement networks typically learn a mapping from the 

aliased/degraded image, such as the zero-filled reconstruction, to a reference image, without 

consideration of the measured k-space data during the reconstruction process. For cartesian 

sampling, several attempts have been made to incorporate physics information in this line 

of work [11, 12] , including enforcing k-space consistency directly after image enhancement 

[11], or adding k-space consistency as an additional cost function term during training 

[12]. The former approach directly replaces the measured k-space lines, which may 

lead to artifacts, while the latter cannot guarantee k-space consistency during inference, 

especially for cases with unseen pathologies. Specifically, in [11], enforcing hard k-space 

consistency directly after image enhancement was proposed, where the enhanced image 

was transformed into Fourier space, and the points at the sampled locations were replaced 

by the original k-space measurements. However, we note that this approach cannot be 

applied to more complex sampling trajectories in non-Cartesian imaging. In [12], k-space 

consistency was added as an additional cost function term during training. However, this 

approach cannot guarantee k-space consistency during inference, especially for cases with 

unseen pathologies. Similarly, enhancement has been proposed in k-space, as a method 

of interpolation [13], where a non-linear interpolation function is learned from calibration 

data. This can be seen as an extension to the linear convolution kernels used in generalized 

autocalibrating partially parallel acquisitions (GRAPPA). As only the calibration data is 

required for training, this approach can be used when large training databases are not 

available, but its performance may be limited at high acceleration rates where the calibration 

data may be insufficient [6].

B. Plug-and-play Methods with Deep Denoisers

Plug-and-play (PnP) algorithms decouple image modeling from the physics of the MRI 

acquisition, by noting that the proximal operators in Eq. (8b) or Eq. (9b) correspond to 

conventional denoising problems [14]. In the proximal-based formulation, these proximal 

denoisers are replaced by other powerful denoising algorithms, which do not necessarily 

have a corresponding closed form R(·) expression, such as BM3D [14]. A related approach 
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is the regularization by denoising (RED) framework, which considers finding x that solves 

the first-order optimality condition

0 = EH Ex − y + λ(x − d(x)), (12)

where d(·) is the plug-in denoiser [14], and λ > 0 denotes the regularization parameter. The 

advantage of the RED formulation is that under certain conditions, the regularizer, R(·) can 

be explicitly tied to the denoiser, d(·). We refer the reader to a comprehensive review article 

on the subject [14] for more details. We also note that, beyond the computational MRI 

community, there has been work characterizing the guaranteed convergence of plug-and-play 

networks.

Recently, more effort has been made towards implementing CNN-based denoisers in these 

PnP frameworks [14, 15], depicted in Figure 1. These denoisers are typically trained using 

reference images in a supervised manner, where different levels of noise are retrospectively 

added to these images, and a mapping from the noisy images to reference images are learned 

[14]. In applications, where reference images are unavailable, Noise2Noise denoising 

framework has been proposed for training using pairs of noisy images. Extending on this 

work, regularization by artifact removal (RARE) trained CNN denoisers on a database of 

pairs of images with artifacts generated from non-Cartesian acquisitions [15]. These pairs 

were generated by splitting the acquired measurements in half, and reconstructing these with 

least squares as in Eq. (4), corresponding to a parallel imaging reconstruction, which led to 

starting images of sufficient quality for non-Cartesian trajectories that oversample the central 

region of k-space. The appeal of these methods is that the CNN-based denoisers are trained 

independently of the broader inverse problem. Thus, only the denoising network has to be 

stored in memory, allowing for easier translation to larger-scale as proposed in RARE [15] 

for 3D MRI datasets . This approach is also appealing since only one denoiser has to be 

trained on any data. Hence, this denoiser can, in principle, be applied across different rates 

or undersampling patterns. In practice, it is beneficial to provide the denoiser with additional 

information, such as the undersampling artifacts arising from uniform undersampling pattern 

in order to recognize characteristic aliasing artifacts.

C. Generative Models

While we have reviewed explicit regularization in Eq. (6), regularization can also be 

achieved by an implicit prior in order to constrain the solution space for our optimization 

problem. This concept is proposed by Deep Image Prior (DIP) as follows:

min
θ

1
2‖EGθ(z) − y‖2

2, (13)

where a generator network, Gθ:ℂd ℂn parametrized by θ ∈ ℝp, reconstructs an image 

x = Gθ(z) ∈ ℂn from a random d-dimensional latent vector z ∈ ℂd. This loss function is used 

to train the generator network with parameters θ. This formulation has the advantage that 

it works for limited (even single) datasets without ground-truth. However, early stopping 

has to be performed to not overfit to the noisy measurements. An extension of the DIP 

framework to dynamic non-Cartesian MRI was proposed in [16]. A mapping network first 
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generated an expressive latent space from a fixed low-dimensional manifold, e.g. a straight-

line manifold, using fully connected layers and non-linearities. A subsequent generative 

CNN generates the finally reconstructed image.

An alternative line of work is based on generative adverserial networks (GANs), where 

a generator and a discriminator network play a minimax game. The generator network 

samples from a fixed distribution in latent space such as Gaussian distribution and aims 

to map the sampling to a real data distribution in the ambient image space. Conversely, 

the discriminator network aims to differentiate between generated and real samples. The 

minimax training objective is defined as

min
θG

max
θD

LGAN(θD, θG) ≜ Ex[log DθD(x)] + Ez[log(1 − DθD(GθG(z))], (14)

where the distribution on x is the real data distribution, whereas the one on z is a fixed 

distribution on the latent space, and Ez and Ex denote the expected values defined over 

the random variables z and x. The generator GθG, parametrized by θG ∈ ℝpG, tries to 

map samples from the latent space to samples from the ambient image space, and the 

discriminator DθD, parametrized by θD ∈ ℝpD, tries to differentiate between the generated 

and the real samples.

The idea of using GANs in computational MRI was first proposed in [17]. In this case, 

the generator network used the zero-filled images as input instead of a random distribution, 

leading to the loss function

min
θG

max
θD

Ex[log DθD(x)] + Ey[log(1 − DθD(GθG(EHy))] . (15)

At inference time, the generator was used to produce the desired output. Here GθG was an 

image enhancement network, followed by a data consistency step, for instance implemented 

by a gradient descent step as in Eq. (8a); while the discriminator DθD was essentially 

used to implement an adversarial loss term to improve the recovery of finer details. Thus, 

this formulation used supervised training with paired data. A high-level overview of this 

approach is shown in Figure 2. A more recent work replaced this generator with a variational 

autoencoder based generator that also allowed for uncertainty quantification [18].

Another approach is based on inverse GANs, which utilize generative learning, followed by 

optimization similar to the DIP [19]. First, a GAN is trained to generate an MR image from 

a latent noise vector. The GAN does not involve any physics-based knowledge, as only clean 

MRI reference images are used for training. The physics-based information and the trained 

generator network GθG are then included in the optimization problem

min
z

1
2‖EGθG(z) − y‖2

2 . (16)
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This solves for the latent vector z which is bounded from above by a hypersphere constraint, 

generating an image that lies in the range space of the generator. In a final step, both the 

generator parameters and the latent vector are optimized following:

min
θG, z

1
2‖EGθG(z) − y‖2

2, (17)

This allows for adaptation of the generator to the undersampled k-space data at test 

time, and is not restricted to any sampling pattern. Initialization of (17) by the optimal 

latent vector found in (16) and early stopping (before reaching the minimum), allow the 

generator parameters θG to not deviate too far from the original generator parameters. The 

reconstructed image x is obtained by using the optimized values θG
∗ , z* for the generator, i.e., 

x = Gθ_G*(z*).

In another line of work, cycle consistent GANs (cycleGAN) that enable unpaired image-to-

image translation, have been analyzed using optimal transport, which provides a means 

to transport probability measures by minimizing average transport between measures [20]. 

While traditional GANs and DIP-like networks are trained to minimize a distance measure 

in either image space or k-space, CycleGAN aims to minimize this in both k-space and 

image domain. In essence, this is achieved by minimizing two forms of losses, one for cyclic 

consistency and one for GAN training. The former is given by

Lcycle(θG) = Ex[‖x − GθG(Ex)‖2
2] + Ey[‖y − EGθG(y)‖2

2], (18)

where the generator uses k-space measurements y as input. Here, the first term ensures 

consistency in the image domain, while the latter enforces consistency in the k-space 

domain. The second part of the training loss is a Wasserstein GAN loss,

LWGAN(θG, θD) = max
‖DθD‖L ≤ 1

Ex[DθD(x)] − Ez[DθD(GθG(z))] .
(19)

This equation is a generalization of Eq. (14) with improved training stability, where the DθD 
now outputs a scalar value instead of a probability and as such is referred to as a critic 

instead of a discriminator, and ∥DθD∥L ≤ 1 indicates that it is restricted to be a Lipschitz-1 

function. The final training loss is given as a weighted combination of these

LcycleGAN = γLcycle(θG) + LWGAN(θG, θD), (20)

where γ is a weighting hyperparameter. This approach was applied to unsupervised training 

of generative models for MRI reconstruction [20].

Variational Autoencoders (VAEs) build on the dimensionality-reducing encoder-decoder 

structure of autoencoders. Different from autoencoders, the encoder in a VAE learns a 

conditional distribution on the latent space, conditioned on the input distribution. Then, 

a vector is sampled from this probability distribution and fed to a decoder, which 

approximates the original data distribution conditioned on the latent space distribution. 
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Hence, the latent code is learned in VAEs for a class of input images, while for conventional 

GANs, the latent vector amounts to random noise. Another application of VAEs in the 

field of MRI reconstruction is uncertainty quantification [18], where the VAE encodes the 

acquisition uncertainty and a Monte Carlo sampling approach is used to sample from the 

learned distribution and generate uncertainty maps along with the reconstructed image.

D. Algorithm unrolling and unrolled networks

Algorithm unrolling considers the traditional iterative approaches considered in Section II-A 

and adapts them in a manner that is amenable to learning the optimal parameters for image 

reconstruction [6]. Traditional approaches require numerous iterations during optimization 

to solve the MRI reconstruction problem. Additionally, only a fixed, handcrafted regularizer 

is used, which do not necessarily model MR images accurately. Instead of solving a new 

optimization problem for each task, the whole iterative reconstruction procedure, including 

the image regularizer, can be learned. The original idea was proposed in the context of 

sparse coding, but has found great use in computational imaging applications, including 

computational MRI. In this line of work, a conventional iterative algorithm for solving Eq. 

(6) is unrolled and solved for a fixed number of iterations, as overviewed in Figure 3. 

The concept of algorithm unrolling will be introduced throughout this section. In practice, 

any iterative optimization algorithm can be unrolled for solving Eq. (6). In the context of 

MRI, algorithm unrolling is based on ADMM as described in Eq. (9a)-(9c), gradient descent 

schemes [4], proximal gradient schemes [21], primal-dual methods [22], or variable splitting 

methods [5, 23]. Note that these algorithms contain a processing step associated with the 

regularization, such as the proximal operator as in Eq. (8b) or (9b), and a data consistency 

step that ensures the image estimate is consistent with the acquired k-space data, such as the 

gradient descent step in Eq. (8a) or the ℓ2 minimization step in (9a). We refer to this latter 

step that controls fidelity with the raw k-space data as data consistency layer (or block).

We introduce the concept of unrolled networks on Variational Networks (VNs), which are 

an example for an unrolled gradient descent scheme. In this method, the gradient descent 

approach in Eq. (7) is unrolled for a fixed number of Nt steps. In VNs, the gradient of the 

regularizer ∇xR(x)∣x=x(i−1) is derived from the Fields-of-Experts (FoE) regularizer [4], i.e.,

ℛ(x) = ∑
j = 1

Nk
Φj(Kjx) .

This can be seen as a generalization of the Total Variation semi-norm for a number of 

Nk convolution operators Kj :ℂNx ℂNx and non-linear potential functions Φj :ℂNx ℝ. 

Calculating the gradient with respect to x yields:

∇xℛ(x) = ∑
j = 1

Nk

Kj
HΦj

′(Kjx), (21)

where Φ j
′ :ℂNx ℂNx denotes the gradient vector of Φj with respect to x. Plugging Eq. (21) 

in Eq. (7) yields
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x(i) = x(i − 1) + ηEH(y − Ex(i − 1)) − ∑
j = 1

Nk

Kj
HΦj

′(Kjx(i − 1)) i = 0, …Nt − 1, (22)

where Nt denotes the number of cascaded stages, and one updated (i) denotes a single stage. 

The network is said to be unrolled for a fixed number of stages Ni for training. In Eq. (23) 

the trainable network parameters are the convolution operators Kj, the activation functions 

Φ′j and the weight η. The parameters can be shared over stages or varied over stages. 

The activation functions Φ′ are modelled by a weighted combination of Gaussian radial 

basis functions, whose weights are learned, allowing us to approximate arbitrary activation 

functions.

x(i) = x(i − 1) + ηEH(y − Ex(i − 1)) − ∑
j = 1

Nk

Kj
HΦj

′(Kjx(i − 1)) i = 0, …Nt − 1, (23)

VNs are characterized by the energy-based formulation of the regularizer such as the FoE 

regularizer [4]. In other approaches, this energy-based formulation is discarded and the 

gradient with respect to x is replaced by a CNN with trainable parameters θ:

∇ℛ(x) ∣x = x(i − 1) = CNNθ(x(i − 1)) . (24)

Another line of work considers the variable splitting approach in Eq. (10a)-(10b), used in 

data consistent CNNs [21] and MoDL [5], which again replace the gradient with respect to x 
by a CNN with trainable parameters θ as in Eq. (24). This leads to the following scheme:

x(i) = EHE + ηI −1 EHy + ηz(i) , (25a)

z(i) = CNNθ(x(i − 1)) (25b)

where η is an additional learnable parameter. Eq. (25a) can be solved directly via matrix 

inversion for single-coil datasets [21], or using an iterative optimization approach based on 

conjugate gradient (CG) for the more commonly used multi-coil setup [5], where matrix 

inversion is computationally infeasible. Note in this case, the CG algorithm itself has to 

be unrolled for a fixed number of iterations for easy back-propagation through the whole 

network. Once again, the CNN in Eq. (25b) can be any kind of regularization network, as the 

idea is agnostic to the particulars of the CNN that is used in this step.

Proximal gradient descent unrolling, which utilizes Eq. (8a)-(8b), leads to the replacement of 

the proximal operator of R(·) by a CNN with trainable parameters θ, leading to:

z(i) = x(i − i) + ηEH(y − Ex(i − i)) . (26a)
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x(i) = CNNθ(z(i)) (26b)

This method was utilized in [21].

In the context of learned unrolled schemes, classical multi-layer CNNs [5, 21] or multi-

scale regularizers such as UNET, Down-Up Networks [24], multi-level wavelet CNNs [22] 

are commonly used. Also, the parameters of these networks can be either shared, e.g. 

[5], or varied, e.g. [4], over the stages. However, similar performance has been achieved 

with both gradient descent and variable splitting-type algorithms as reported in the first 

fastMRI reconstruction challenge [25]. The differences reported in the context of the second 

fastMRI reconstruction challenge focus more on managing different coil sensitivities and 

regularization networks [26].

1) Training unrolled networks: The output of the unrolled network depends on 

the variables in both the regularization network and data consistency layers, and can be 

represented with a function funroll(y, E; {θi, ηi}i = 1
Nt ). For the most generalized representation, we 

allow the regularizer CNN parameters θ and the data consistency parameters η to vary 

across the unrolled iterations (cascaded stages). However, as noted earlier, the parameters 

can also be shared between stages. While for ease of notation, we have referred to the 

multi-coil operator as E, this operator implicitly includes the sub-sampling mask Ω. For 

the following, we will make this dependence explicit, and use EΩ and yΩ for the multi-coil 

operator and the measured k-space data, respectively.

The standard learning strategy for unrolled networks is to train them end-to-end, using 

the full network that has been unrolled for Nt steps. For end-to-end training of unrolled 

networks, the most commonly used paradigm relies on supervised learning, where a 

database of fully-sampled measurements/ground-truth images as a reference. Given a 

database of pairs of input and reference data, the supervised learning loss function can 

be written as

min
{θi, ηi}i = 1

Nt

1
N ∑

n = 1

N
L(xref

n , f(yΩ
n , EΩ

n ; {θi, ηi}i = 1
Nt )), (27)

where θ represents the network parameters, N is the number of samples in the training 

database, L(·, ·) is a loss function characterizing the difference between network output and 

referenced data, xref
n  denotes the ground-truth image for subject n. The domain for the loss 

function can be image, k-space or a mixture of them. Numerous loss functions such as ℓ1, ℓ2, 

adversarial and perceptual losses have been used in supervised deep learning approaches [6].

However, in many applications, fully-sampled reference data may be impossible to acquire, 

for instance due to organ motion or signal decay, or may be impractical due to excessively 

long scan times. In these cases, self-supervised learning enables training of neural 

networks without fully-sampled data by generating training data from the sub-sampled 

measurements themselves. One of the first works in this area, self-supervised learning via 
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data undersampling (SSDU) [23], partitions the acquired measurements Ω, for each scan 

into two disjoint sets, Θ and Λ. One of these sets, Θ, is used during training to enforce 

data consistency within the network, while the other set, Λ, remains unseen by the unrolled 

network and is used to define the loss function in k-space. Hence, SSDU performs end-to-

end training by minimizing the following self-supervised loss:

min
θ

1
N ∑

n = 1

N
L yΛ

n , EΛ
n f yΘ

n , EΘ
n ; θ , (28)

where the network output is transformed back to k-space by applying the encoding operator 

EΛ
n  at unseen locations in training. Thus, the self-supervised loss function measures the 

reconstruction quality of the model by characterizing the discrepancy between the unseen 

acquired measurements and network output measurements at the corresponding locations. 

Once the network is trained, the reconstruction for unseen test data is performed by using 

all acquired measurements Ω. In another line of work [27], Stein’s unbiased risk estimate of 

mean square error (MSE) is leveraged to enable unsupervised training of neural networks for 

MRI reconstruction. In particular, the loss function obtained from an ensemble of images, 

each acquired by employing different undersampling operator, has been shown to be an 

unbiased estimator for MSE.

Finally, like generative models based on DIP, there has been interest in training unrolled 

networks on single datasets without a database. In this setting, the number of trainable 

parameters is usually larger than the number of pixels/k-space measurements, and training 

may lead to overfitting. Recent work in this area has tackled this challenge by developing 

a zero-shot self-supervised learning [28] approach that includes a third additional partition, 

which is used to monitor a self-validation loss in addition to the previous self-supervision 

setup. This self-validation loss starts to increase once overfitting is observed. Once the 

model training is stopped, the final reconstruction is calculated by using the network 

parameters from the stopping epoch, while using all acquired measurements.

2) Memory challenges of unrolled networks and deep equilibrium 
networks: A major challenge for training unrolled networks is their large memory 

footprint. When an algorithm is unrolled for Nt iterations, a straightforward implementation 

involves the storage of Nt CNNs, along with Nt DC operations in GPU memory. The 

latter itself can have a large footprint, when a CG-type approach is used [5]. This creates 

challenges for training unrolled networks for large-scale or multi-dimensional datasets, 

especially since deeper networks tend to lead to better performance [25, 26]. Recently, 

this was tackled with the development of memory-efficient learning schemes [29]. In 

memory-efficient learning, intermediate outputs from each unrolled iteration are stored on 

host memory during forward pass, and backpropagation gradients are computed using this 

intermediate data and gradients from the preceeding step. Thus, this approach conceptually 

supports as many unrolling steps as desired, with the drawback of additional data transfer 

between GPU and the host memory.

Another alternative for handling the large memory footprint of unrolled networks is deep 

equilibrium networks [30]. Unrolled networks that share learnable weights across stages 
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show competitive performance [5], while each stage can be represented with a single 

function leading to a compact representation. Unrolled networks execute this function for a 

finite number of steps Nt, whereas deep equilibrium networks characterize the limit as the 

Nt → ∞. Provided this limit exists, it corresponds to the solution of the fixed point equation 

for an operator corresponding to a single stage. This approach leads to two advantages for 

training. First, only one stage has to be stored during training, leading to a smaller memory 

usage. Second, the convergence behavior for different values of Nt during inference is 

more well-behaved compared to unrolled networks, which are designed to achieve maximal 

performance for a specific value of Nt. On the other hand, deep equilibrium networks are run 

until convergence and do not have fixed inference time unlike unrolled networks, which may 

not be ideal in clinical applications. Furthermore, these approaches require large training 

time due to the Jacobian inversion during gradient computation.

IV. State-of-the-art in MRI practice and domain-specific challenges

A. Real vs complex building blocks

As complex-valued data is used in computational MRi, this has to be considered in the 

network processing pipeline, not only during data consistency, but also in the network 

blocks itself. Two processing modes are possible: 1) Real/Imaginary or magnitude/phase 

are considered in two input channels stacked via the feature dimension, 2) complex-valued 

operations are performed on complex-valued tensors. While the former allows us to use 

real-valued operations, the complex-valued relationship between real and imaginary parts 

is lost. Complex-valued operations maintain the complex nature of the data, but some 

operations require twice the amount of trainable parameters. For example in complex-valued 

convolutions, a real and imaginary filter kernel needs to be learned. Additionally, the number 

of multiplications doubles compared to real-valued processing. If complex-valued layers 

and tensors are involved, complex backpropagation following Wirtinger calculus has to be 

considered [31] which is supported in most recent frameworks (Tensorflow ≥ v1.0, PyTorch 

≥ v1.10). An overview of the most common layer operations together with their complex-

valued Wirtinger derivatives is shown in Table II. In the context of MRI reconstruction, 

complex-valued processing is conducted in both ways.

1) Convolution: The discrete convolution maps the Nf,in input feature channels to Nf,out 

output feature channels of an image x ∈ Kn with filter kernels ki, j ∈ Kk of kernel size k via

xj = ∑
i = 1

Nf, in

xi ∗ ki, j j = 1, …, Nf, out, (29)

where the subscripts denote the feature channels. Convolutions can be performed along 

multiple dimensions. For real-valued convolutions it is K = ℝ. For complex convolutions, 

K = ℂ, the convolution operation is extended to

xi ∗ ki, j = (Re(xi) ∗ Re(ki, j) − Im(xi) ∗ Im(ki, j))
+ i ⋅ (Im(xi) ∗ Re(ki, j) + Re(xi) ∗ Im(ki, j)) (30)
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2) Activation: While convolution functions operate in a local neighborhood of a pixel, 

activation functions operate in a pixel-wise way. When applying non-linear activation 

functions ϕ to complex values, the impact on magnitude and phase information needs to 

be considered. The reader is referred to [31] for some comparative work. One possibility 

is to apply the activation function to the real and imaginary part separately as separable 

activations, however, the natural correlation between real and imaginary channels are not 

considered in this case. When using separable ReLUs, phase information is mapped to the 

first quadrant, i.e., the interval [0, π
2 ], as all negative real and imaginary parts are set to zero 

and only the positive parts are kept. Alternative approaches have been proposed that retain 

phase information, for example siglog, defined as

ϕsiglog = x
1 + ∣ x ∣ .

As another option, the phase information can be fixed and only the magnitude information is 

altered by the activation. An example therefore is the ModReLU

ϕModReLU(x) = max(0, ∣ x ∣ + β) x
∣ x ∣ (31)

where β is the bias that is trainable. A new complex activation function called Cardioid was 

also proposed for MRI processing [31]

ϕCardioid(x) = 1
2(1 + cos(∠x + β)) x (32)

The complex cardioid can be seen as a generalization of ReLU activation functions to the 

complex plane. Compared to other complex activation functions, the complex cardioid acts 

on the input phase rather than the input magnitude. A bias β can be additionally learned.

The specific choice among these complex activation functions is application-dependent. For 

phase sensitive applications, such as water-fat imaging and phase contrast imaging, it was 

shown that complex networks outperformed the real-valued networks, with the separable 

ReLUs performing best, whereas for MR fingerprinting, the complex cardioid outperformed 

other activations functions [31].

3) Normalization: Adding normalization layers (batch, instance or layer/group 

normalization) directly after convolution layers are a common way to enable faster and 

more stable training of networks. Statistics are estimated from the input and used to 

re-parametrize the input. Complex-valued normalization layers require to estimate the 

normalization via the covariance matrix and are straight-forward to implement. The 

subsequent layers are less tolerant to changes in previous layers. The selection of the 

normalization layer is task dependent. Although normalization layers are often important to 

train a network, they might lead to unwanted artifacts for image restoration tasks.
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4) Pooling: Pooling layers are used as down-sampling operation to reduce the spatial 

resolution in the image and to introduce approximate invariance to small translations. Small 

patches are analyzed in the individual features maps to keep important information about 

extracted features. Common pooling layers are Average Pooling and Max Pooling. For 

complex-valued images, the maximum operation does not exist. Instead, the pooling layer is 

modified such that it keeps values with, e.g., the maximum magnitude response.

B. Canonical MRI reconstruction with the linear forward model

Physics-driven MRI deep learning methods have become the most popular approach in 

computational MRI due to their improved robustness, especially for the accelerated MRI 

problem that relies on the linear forward model in Eq. (2). Such methods have been 

the top performers in community-wide reconstruction challenges, such as the fastMRI 

challenge [25, 26], for Cartesian sampling. The success for physics-driven learning for MRI 

reconstruction is not limited to the Cartesian sampling pattern. Promising results were also 

shown for non-Cartesian sampling schemes [15, 22]. These algorithms have in common 

that data consistency is included, and expressive regularization networks are used. Imaged 

pathologies do not need to be included in the training dataset as long as enough k-space 

data is available to guide the reconstruction to recover the pathology encoded in k-space. 

Additionally it was shown that the pathologies may appear or disappear depending on 

the selection of the undersampling pattern for a given number of sampled k-space lines 

[25]. Theoretical analysis, reader studies and uncertainty quantification are tools that might 

support us to identify the clinically possible acceleration limit.

However, even physics-driven deep learning methods face some challenges for accelerated 

MRI. The impact of domain shift, i.e., training and testing on different data was studied 

in [24], for different acceleration factors. All training and evaluation is based on the 

fastMRI knee and neuro datasets [25]. While for acceleration 4, the proposed Down-Up 

networks with varying data consistency layers generalize well for both anatomies, the type 

and amount of training data becomes more critical for acceleration factor 8. Since fewer 

data is available for data consistency at this acceleration, the networks start to reconstruct 

anatomical structures that are not real. When trained on a subset of knee data and applied to 

neuro data, the ventricles start resembling knee structures, for acceleration 8 as depicted in 

Figure 4.

All previously mentioned approaches consider the complex-valued MR images as images 

with two real-valued feature channels. CINENet [32] combined both data consistency layers 

with complex-valued building blocks as depicted in Figure 5, for dynamic 3D (3D+t) 
data. These complex-valued building blocks include convolutions, activations, pooling, 

and normalization layers. To process the 3D+t in the regularization network, convolution 

operations are split into 3D spatial convolutions, followed by 1D temporal convolutions.

Finally, as aforementioned the need for fully-sampled data for training had hindered the 

use of deep learning reconstructions for certain applications. Thus, alternative methods 

have been explored. Dynamic contrast-enhanced MRI (DCE-MRI) represents one such 

challenging acquisition, where k-space data is acquired continuously while contrast agent 

been injected to the patient. The dynamic distribution of the contrast agent causes the 

Hammernik et al. Page 17

IEEE Signal Process Mag. Author manuscript; available in PMC 2024 January 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



image contrast dynamics, hence, both the k-space and image are time-series. With the recent 

advances outlined in Section III-D1, training in such scenarios can also be done in with more 

realistic datasets without resorting to simulations. For instance, in another contrast-based 

cardiac acquisition, called late gadolinium enhancement imaging, unrolled networks have 

been trained using prospectively accelerated acquisitions without fully-sampled reference 

data [33], and were shown to improve on clinically used compressed sensing methods, 

doubling the achievable acceleration rates, as depicted in Figure 6.

C. Inverse problems in MRI with non-linear forward models

Recently, deep learning models have been proposed to address the computationally 

demanding task of non-linear inverse problems in MRI. A neural network 

fNM, θ : ℂm ⋅ nc ℂnv, parametrized by θ, which maps the acquired data y to the unknown 

parameters v (e.g. magnetization and relaxation maps) is learned either in a supervised setup 

[7]:

arg min
θ

Ey ‖Eℳ(fNM, θ(y)) − y‖2
2 + λ‖fNM, θ(y) − vref‖2

2
(33)

or in a self-supervised setup

arg min
θ

Ey ‖Eℳ(fNM, θ(y)) − y‖2
2 + ℛ(fNM, θ(y)), (34)

where figureR(·) is a conventional regularizer that is not based on reference data, such 

as spatial total variation. In the following, we will expand on some applications for which 

non-linear forward models are beneficial.

1) Relaxivity mapping: MRI allows for quantitative measurements of inherent tissue 

parameters (T1, T2, T2
∗, T1ρ), which is often referred to as relaxivity or quantitative mapping. 

In recent years, research developments have contributed towards the goal of retrieving 

multiple parametric maps from a single scan [1]. A model-based reconstruction in these 

cases eliminates the need for reconstructing individual images along the relaxivity curve 

(data sampled at different time-points along the T1/T2/T2
∗/T1ρ relaxation based on Eq. (1) 

after excitation with appropriate preparatory pulses). However, model-based reconstruction 

methods have prolonged reconstruction times compared to reconstruction of individual 

images followed by a parametric fitting, which hinders their clinical translation. Deep 

learning models have been proposed to enable fast inference and shifting time-demanding 

workloads to the offline training procedure, showing feasibility in a number of quantitative 

mapping applications [7, 31]. In this setting, physics information, arising from the 

underlying known forward model (Eq. (2) or (3)), has primarily been incorporated to the 

loss function during training, similar to Eqs. (33) and (34) [7].

2) Susceptibility mapping: Physics-driven deep learning methods have also been 

studied in the context of quantitative susceptibility mapping. First works incorporated the 

physical principles of the dipole inversion model that describes the susceptibility-phase 

relationship into the loss function during neural network training [9]. More recently, the 

idea of fine-tuning pre-trained network weights on a scan-specific basis using the physics 
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model was proposed [34], similar to the loss function in Eq. (34) without the additional 

regularizers.

3) Motion: Acquisitions under physiological and patient motion require methods for 

handling motion in order to avoid aliasing or blurring of the imaged anatomy. In addition 

to various prospective motion triggering, gating or correction methods, motion can be 

retrospectively modeled into the forward model and can thus be considered inside a 

motion-compensated/corrected reconstruction [2]. These methods perform two fundamental 

operations: image registration and image reconstruction. Hence, they require reliable 

motion-resolved images from which the motion can be estimated. Motion field estimation 

can be controlled or supported by external motion surrogate signals or initial motion field 

estimates [2].

While deep learning allows for efficient motion estimation, only few works embed motion 

estimation in image reconstruction. Among these, LAPNet formulates non-rigid registration 

directly in k-space [35], inspired by the optical flow formulation. The estimated motion 

fields are then used to enhance the data consistency and exploit the information of all motion 

resolved states to reconstruct images of the body trunk. In the context of coronary MRI, 

a motion-informed MoDL network was proposed [8], using diffeomorphic motion fields 

estimated from the zero-filled images using a UNet and subsequent scaling and squaring 

layer. These motion fields are then embedded into the data consistency layer, solved via the 

conjugate gradient algorithm as in MoDL. The network is unrolled for 3 iterations, with 

intermittent denoising networks. The full model is trained using a reconstruction loss and 

a motion estimation loss. Hence, both reconstruction and motion estimation improve as the 

motion-estimation networks rely on the reconstructions of the previous unrolled iteration. 

Another approach achieved motion correction by rejecting motion-affected k-space lines 

[36]. Inspired by [2], warping with a motion field is embedded in the forward operator for 

Cartesian cine imaging, where the motion fields are estimated by a neural network [37]. An 

example reconstruction results of the systole and diastole for accelerations R=4 and R=8 is 

depicted in Figure 7.

V. Discussion

A. Issues and open problems

Deep learning has dominated research in computational MRI during the last few years, 

and while there are still a number of open questions and issues, both on the basic science 

and on the translational front, they evolved as the developments are going on in the field. 

During the early stages of the developments, access to raw MRI k-space training data 

was a major limiting factor hat held the field back. The availability of open databases 

has largely removed this obstacle and public research challenges have also helped to 

compare developed approaches on standardized datasets [25, 26]. However, they have also 

highlighted new issues. While it was demonstrated that deep learning models generally 

outperform handcrafted regularizers in iterative image reconstruction in terms of quantitative 

metrics like ssIM, PsNR and RMsE, their performance in the regime of over-regularization 

(when the influence of the prior becomes dominant because of the low-quality of the data) 
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is challenging to assess. The results of classic regularizers like Tikhonov, total variation 

or ℓ1-wavelets in this scenario can be interpreted much easier by end-users. They lead to 

very characteristic artifact patterns that are easy to spot as being technical artifacts. Deep 

learning models have the computational capacity to generate realistic-looking images with 

either missing or artificially hallucinated image features [24] that are inconsistent with the 

measurement data if they are used at acceleration levels that are too high with respect to the 

encoding capabilities of the multi-element receive coil.

A solution is to move from qualitative image assessment towards the assessment of clinical 

outcomes. In particular, does the diagnostic quality improve for patients when deep learning 

methods are used instead of handcrafted regularizers? However, conducting such clinical 

studies is slow and costly, and in many cases an imaging exam cannot even be considered to 

be a true ground truth, which requires follow-ups with pathology or surgery departments.

Research challenges are also limited in terms of their ability to assess model generalization. 

The 2020 fastMRI challenge [26] included a track that specifically evaluated generalization 

with respect to deploying a trained model at a scanner from a different manufacturer. While 

the winning models performed well in this test, the performance of some approaches was 

impacted negatively by trivial modifications in the data, for example whether raw data is 

saved with oversampling in the readout direction or not. In light of the substantial range 

of imaging parameters that can be changed during an MRI acquisition, it is still an open 

question if deep learning models should serve a general purpose role, or if specialized 

models should be tailored to a more narrow range of imaging settings for dedicated exams.

Another open issue of almost all developments is that they are performed with 

retrospectively accelerated acquisitions, i.e., the accelerated acquisition is obtained by 

applying a simulated undersampling on the fully sampled dataset. While this is acceptable if 

true k-space raw data is used and no subtle data crime is performed [38], not all MR-signal-

acquisition effects are captured with retrospective undersampling. In particular, spin-history, 

gradient and RF-hardware related effects seen in prospectively accelerated acquisitions, i.e. 

when data is acquired with true undersampling on the scanner, are usually not captured in 

retrospective acceleration. This can cause issues when moving to prospectively accelerated 

acquisitions on real MR-scanners. However, it should be pointed out that this is a general 

issue of all computational imaging methods that are developed retrospectively, and not a 

unique issue of deep learning techniques.

While physics-based learning for MRI reconstruction has been successfully established 

over the past years, there are some potential pitfalls and limitations of these approaches in 

practice. or instance, when DICOM images are used for experiments instead of raw k-space 

data, learning-based approaches may lead to overall optimistic results, while real-world 

unprocessed data performs much worse, resulting in biased state-of-the-art results [38]. 

In another line of work, the stability of various single-coil networks to small adversarial 

perturbations at their input was studied [39], and it was found that networks may exhibit 

large perturbations at the output. Furthermore, the definition of acceleration factor might 

also often be misleading. As shown in [25], different sampling patterns yield different 

results, which opens the question how potential mis-reconstructions can be identified and 
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how the uncertainty of the reconstructions regarding the sampling pattern can be quantified. 

Finally, we would like to note that the reported undersampling factor and acceleration 

rates have to be carefully investigated. In the Cartesian setting, undersampling factor and 

acceleration rates are equivalent and defined by the number of sampled lines divided 

by the number of total lines in k-space. However, in the non-Cartesian case, the overall 

effective undersampling depends on the size of oversampling performed along the readout 

trajectories, without affecting the acceleration factor between the readouts.

B. Domain-specific knowledge in post-processing and multi-task imaging

The medical imaging pipeline consists of many tasks that are mostly viewed separately. 

The imaging pipeline starts with data acquisition, followed by image reconstruction. 

The reconstructed image is then further analyzed using post-processing tasks, image 

segmentation, and quantitative evaluation, and/or methods for diagnosis and treatment 

planning are applied to facilitate medical decisions.

Thus, there have been efforts to combine several of these tasks into a multi-task imaging 

framework. Most work on solving multiple tasks jointly has been conducted in the field 

of motion-corrected image reconstruction, as summarized in Section IV-C3. In [36], joint 

motion detection, correction and segmentation was proposed. In contrast to the previously 

mentioned approaches, the motion was detected directly in k-space and, hence, influence 

the data consistency layer. Additionally, a bidirectional recurrent CNN (BCRNN) was used 

to account for spatio-temporal redundancies. The motion-corrected image was obtained by 

cascading 10 data consistency layers and BCRNNs. Afterwards, a UNet was applied for 

cardiac segmentation. Evaluated on the UK Biobank data, this work showed that training a 

joint network for reconstruction and segmentation outperforms sequential training of these 

networks.

A unified network for joint MRI reconstruction and segmentation was also proposed [40]. 

For image reconstruction, an unrolled network with alternating data consistency layers and 

denoising networks are used. The denoising networks are based on an encoder-decoder 

structure, where the encoder is shared with the image segmentation network. Hence, 

common features are extracted using the encoder, while the decoder adapts to the underlying 

task. Evaluation and simulation of k-space is performed on the MRBrainS segmentation 

challenge dataset. Their results suggests that high-quality segmentation benefits from this 

multi-task architecture. While this method both optimizes for image reconstruction and 

another downstream task such as segmentation, it is still an open question if intermediately 

reconstructed images are needed, or if one could directly obtain, e.g., segmentation in 

k-space.

VI. Conclusion

Physics-driven deep learning techniques are the current state-of-the-art methods for 

computational MRI. Spanning methods that incorporate physics of MRI acquisitions into 

loss functions to plug-and-play techniques, and generative models to unrolled networks, 

a large number of approaches have been proposed to improve the solution of linear and 

non-linear inverse problems that arise in MRI. These methods are starting to make their 
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way into translational and clinical settings, while also potentially altering the downstream 

tasks in the medical imaging pipeline. Thus, there are numerous opportunities for new 

technical developments and applications in physics-driven computational MRI from the 

signal processing community.
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Fig. 1: 
Overview of the PnP framework in physics-driven deep learning methods for computational 

MRI. The data consistency layer enforces fidelity with k-space measurements based on the 

known forward model. Note that a Cartesian sampling scheme is shown for easier depiction, 

but data consistency is also applicable to non-Cartesian trajectories.
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Fig. 2: 
Overview of GAN methods in physics-driven deep learning methods for computational 

MRI. A generator network (G), typically followed by a data consistency layer, implemented 

using a gradient descent step as in Eq. (8a), is used to generate an image. In the supervised 

setting, this generator is jointly trained with a discriminator network (D) that implements 

an adversarial loss to aid in the recovery of fine details of the image. In the unsupervised 

setting, such as cycleGANs, physics information is further enforced in the loss function 

both in image and k-space domains. Note that the figure shows the training phase, and at 

inference time, only the G network is used.
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Fig. 3: 
Overview of algorithm unrolling in physics-driven deep learning methods for computational 

MRI. An iterative algorithm for solving Eq. (6) is unrolled for a fixed number of iterations, 

and trained end-to-end using corresponding fully-sampled/reference data. The red network 

block R denotes a regularization network. This is followed by a data consistency (DC) layer. 

The implementation of the DC layer depends on which algorithm is used for unrolling. 

If a gradient descent scheme is used, the DC layer implements a gradient descent update 

involving the raw k-space data, and other constants that are involved in the forward model. If 

variable splitting based methods are used, this involves solving a problem similar to Eq. (9a). 

The parameters can be either shared or vary over the single iterations, also termed stages.
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Fig. 4: 
Down-Up Networks combined with a proximal mapping layer for data consistency [24], 

trained with different data configuration. While the reconstruction performance generalizes 

well independent of the type of training data for R=4, the ventricles of the brain change here 

when trained with the wrong data, i.e., knee data for R=8.
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Fig. 5: 
A) CINENet combines data consistency layers and a UNet architecture with complex-valued 

building blocks for convolution, activation, normalization and pooling layers. To process the 

3D+t data, convolutions are split into 3D spatial convolutions and 1D temporal convolutions. 

B) Impact of complex-valued operations over 2-channel (real/imaginary) processing in two 

subjects for a prospectively undersampled 3D cardiac CINE (3D+t) acquisition with R=15. 

A separate fully-sampled (R=1) reference scan is obtained for comparison.
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Fig. 6: 
Reconstruction results from a high-resolution late gadolinium enhancement acquisition on 

a cardiac patient (arrows: scar areas). This scan cannot be fully-sampled due to contrast-

related scan time constraints. Unrolled networks can be trained in a self-supervised manner 

[23], leading to reconstructions that outperform current clinically used approaches, such as 

compressed sensing, and allowing acceleration rates twice as fast [33].
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Fig. 7: 
Motion-Compensated reconstruction. A motion estimation network (GRAFT) is embedded 

in the reconstruction procedure [37]. The motion-compensated reconstruction outperforms 

iterative SENSE without motion compensation. If motion compensation is not performed, 

undersampling artifacts are substantially present. Systole and diastole frames are depicted 

for R=1, R=4 and R=8.
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TABLE I:

Analytically derived physics-based signal models for pre-specified imaging sequences for set and known 

image acquisition parameters (dominant one influencing the signal model is depicted) and the to be estimated 

unknown parameters [1, 2].

physical effect image acquisition parameters unknown parameter ϑ signal model M(ρ(r), ϑ, tj, r)

off-resonance echo time tj Δω ejΔω(r)tjρ(r)

motion echo time tj motion field Uj ρ(Uj(r))∣det(∇Uj)(r)∣

T1 relaxation inversion times tk, equilibrium magnetization ρ0 T1 ρ0(r)(1 − e− tj
T1(r))

T2 relaxation echo time tj T2 e− tj
T2(r)ρ(r)

flow velocity v flow-encoded acquisitions Vj v ejv·Vjρ(r)

diffusion tensor D diffusion-encoded acquisitions bj D e−bj
TDbjρ(r)
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TABLE II:

Overview of important functions along with their pair of Wirtinger derivatives.

Function f(x)
∂f
∂x

∂f
∂xH

Magnitude ∣ x ∣ = xHx 0.5 xH
2f(x)

x
2f(x)

Phase −i log x
∣ x ∣ − i

2x
i

2xH

Real Component
1
2 x + xH 1

2
1
2

Imaginary Component
1
2i x + xH 1

2i
i
2

Normalization
x

xHx 0.5
1

2 xHx 0.5 − z2

2 xHx 1.5

Scalar product wHx w H 0

Max Pooling xn, n = arg maxk∣xk∣
1 if n = arg maxk ∣ xk ∣
0 else 0

Dropout

1
pxn if n ∈ Ω

0 else

1
p if n ∈ Ω

0 else
0

Separable activation

(ReLU, Sigmoid, …) f(Re(x)) + if(Im(x))
1
2

∂f
∂x (Re(x)) + ∂f

∂x (Im(x)) 1
2

∂f
∂x (Re(x)) − ∂f

∂x (Im(x))

Cardioid [31]
1
2 1 + cos(∠x) x 1

2 + 1
2 cos(∠x) + i

4 sin(∠x) − i
4 sin(∠x) x

xH

Complex sigmoid
1

1 + e−x
e−x

(1 + e−x)2
0
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