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Abstract

Chemical exchange saturation transfer (CEST) MRI has emerged as a novel means for 

sensitive detection of dilute labile protons and chemical exchange rates. By sensitizing to pH-

dependent chemical exchange, CEST MRI has shown promising results in monitoring tissue 

statuses such as pH changes in disorders like acute stroke, tumor, and acute kidney injury. 

This article briefly reviews the basic principles for CEST imaging and quantitative measures, 

from the simplistic asymmetry analysis to multipool Lorentzian decoupling and quasi-steady-

state (QUASS) reconstruction. In particular, the advantages and limitations of commonly used 

quantitative approaches for CEST applications are discussed.
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Transition from pH-weighted MTRasym image (A) and tissue pH map reconstructed from pH-

specific MRAPT analysis (B).
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Introduction

pH is a physiological index tightly regulated in healthy tissue (1,2). A notable pH change 

often signals altered tissue states, such as those following acute ischemia (3-8) and the 

development of cancer (9-15). For example, tissue acidosis is associated with anaerobic 

glycolysis following acute stroke (16-19). pH drop compromises essential ATP-dependent 

functions, often leading to cell death and ultimately tissue infarction (20-24). In the 

case of cancers, excessive amounts of lactate are produced, disrupting pH homeostasis, a 

hallmark of the Warburg effect (25-27). It has been recognized that pH change profoundly 

affects tumor growth and metastasis (28). As such, pH measurement may provide novel 

insights into tissue microenvironment and response to therapy, and potentially facilitate the 

development of new therapeutics.

pH measurement in vivo, however, is not straightforward because common strategies 

such as pH immunohistology, fluorescence microscopy, or phosphorus magnetic resonance 

approaches are either invasive (29-33), of limited penetration depth (34,35), or insensitive 

(36-38). To address such an unmet biomedical need, Balaban and co-workers introduced 

chemical exchange saturation transfer (CEST) MRI as a new sensitive means of imaging 

pH and dilute labile protons (39-42), laying the groundwork for CEST MRI research over 

the following two decades (43-48). The proton exchange between macromolecule backbone 

labile (e.g., amide, amine, and guanidyl groups) and solvent protons is highly pH-dependent, 

often presenting as a U-shaped curve for acid-base catalysis and conferring pH sensitivity to 

CEST MRI (49). The typical peptide proton exchange ranges from the low teens for amide 

protons to a few thousand for amine and hydroxyl groups, depending on the molecule size 

and exchangeable groups (50). When the exchange rate between two proton groups is much 

lower than their chemical shift difference, it is considered slow exchange (51). The slow 

exchange process is particularly amenable to CEST MRI because the saturation of labile 

proton can be isolated from the solvent proton signal, resulting in efficient saturation of 

labile protons and their transfer to the bulk water for induction of the CEST effect. CEST 

MRI has been increasingly adopted to measure certain key metabolites such as glutamate, 

glutamine, creatine, ensemble amide protons from mobile proteins and peptides, and 

intracellular pH (52-59). Although the endogenous CEST signal has been attributed mainly 

to the intracellular compartment, the development of exogenous CEST contrast agents 

enables imaging of the extracellular space, complementing the endogenous intracellular 

imaging. Therefore, it is foreseeable that pH imaging (intracellular and extracellular) is 

beneficial, particularly in tumor imaging (60,61).
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CEST MRI experiments are complex, highly dependent on the scan conditions and post-

processing analysis. Despite the substantial progress the field has achieved in the theoretical 

framework of the CEST MRI quantification, many different CEST indices have been 

adopted. For example, the simplistic magnetization transfer ratio asymmetry analysis has 

been commonly used despite its limitation in the presence of multiple exchangeable groups. 

On the other hand, the development of Lorentzian and model-based fittings can account for 

multiple partially overlapping CEST effects. Such analyses are time-consuming, however, 

and often limited by image sensitivity. Where quantitative analyses such as omega plots 

and ratiometric approaches are feasible in contrast agent-based applications, their in vivo 

implementation requires thorough optimization and Lorentzian fitting. We aim to provide a 

concise overview of commonly used CEST MRI quantification methods and discuss their 

advantages and limitations.

Quantitative Description of CEST MRI Signal

2-pool CEST solution

CEST MRI measurement depends not only on the concentration and exchange properties 

of labile protons, but also on experimental conditions and relaxation constants (62-64). 

The CEST MRI phenomenon can be mathematically described using Bloch-McConnell 

equations (65-67). However, the numerical nature of the Bloch-McConnell equations 

provides limited insights into the contrast mechanism. To address this, analytical CEST 

MRI solutions, albeit only approximations, have been developed. For a classical 2-pool 

exchange model under the condition of long RF saturation, the equilibrium CEST effect can 

be approximated by (68-70)

CESTR ≈ fr ⋅ ksw

R1w
⋅ α ⋅ (1 − σ) (1)

in which CESTR stands for CEST ratio, ksw and fr are the labile proton exchange rate 

and fraction ratio, and R1w is the bulk water longitudinal relaxation rate, with α and σ 
being two experimental factors. Briefly, α is the labeling coefficient that accounts for the 

saturation efficiency of labile protons (71). σ is the RF spillover factor, which describes 

the concomitant direct RF saturation of the bulk water signal that competes with the CEST-

specific MRI effect (72). The product of the experimental factors needs to be optimized to 

maximize the measurable CEST MRI effect. Overall, the 2-pool CEST MRI solution (Eq. 1) 

depicts a balance between bulk water signal decrease caused by its exchange with saturated 

labile protons and its signal recovery due to its T1 relaxation.

Spinlock-based multipool CEST solution

Although the multipool CEST MRI phenomenon can be modeled by extending Bloch-

McConnell equations, it quickly becomes tedious for more than three labile proton groups 

(73,74). The multipool CEST asymmetry effect can be described by superimposing multiple 

2-pool models, provided that each labile proton group is sufficiently dilute so the interaction 

term can be accounted for (75). Fortunately, the introduction of the spinlock theorem to the 

CEST MRI field enormously simplified the modeling of the CEST effect (76-78). Briefly, 

the Z-spectral intensity is described by
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Ssat

S0
= e−R1ρ ⋅ Ts + R1w

R1ρ
cos2θ ⋅ (1 − e−R1ρ ⋅ Ts) (2)

where Ts is the RF saturation time, R1ρ is the spinlock relaxation rate under the RF 

saturation, being R1ρ = R1wcos2θ + R2wsin2θ + ∑i = 1
N Rex

i , with Rex
i  being the ith pool CEST 

effect, θ = tan−1(ω1 ∕ Δω), in which ω1 and Δω are the RF saturation amplitude and offset, 

in radian, respectively. The spinlock formula has been extended to describe magnetization 

transfer (MT) ratio asymmetry (MTRasym), a commonly used metric to quantify CEST 

effects (79), and the pulse RF saturation scheme (80-82).

Generalized CEST solution

It is worth mentioning that Eq. 2 is accurate under the condition of complete relaxation 

recovery, which may not be fulfilled when the repetition time is shortened to reduce the 

overall scan time. Jiang et al. extended the CEST solution to incorporate experimental 

parameters such as flip angle (FA), relaxation delay (Td) and Ts (83). The Z-spectral 

intensity for CEST MRI with gradient-echo (GE) readout can be shown as

Ssat(R1ρ(B1, Δω), TR, FA, Ts)
S0(TR, FA)

=

1 − e−Td ∕ T1w ⋅ e−R1ρ(B1, Δω) ⋅ Ts + R1wcos2 θ
R1ρ(B1, Δω) ⋅ 1 − e−R1ρ(B1, Δω) ⋅ Ts

1 − cos(FA) ⋅ e−Td ∕ T1w ⋅ e−R1ρ ⋅ Ts

(1 − e−TR ∕ T1w) ∕ (1 − cos(FA) ⋅ e−TR ∕ T1w)

(3)

This generalized formula facilitates scan optimization and quantification.

Recently, Sun proposed quasi-steady-state (QUASS) CEST reconstruction, which solves the 

equilibrium R1ρ (i.e., R1ρ
QUASS(B1, Δω)) from the experimental CEST measurement under the 

condition of finite saturation time and relaxation delay (84). The equilibrium CEST effect 

can be reconstructed as

Ssat

S0

QUASS
= R1w

R1ρ
QUASS(B1, Δω)cos2θ (4)

One of the advantages of QUASS CEST MRI is that the CEST scans can be expedited 

without resorting to long scan duration, while the magnitude of the CEST effect can be 

recovered from QUASS reconstruction.

Quantitative CEST MRI Measurements

MTR asymmetry

The commonly used MTRasym takes the difference between the signals with RF saturation 

applied on the reference frequency (−Δω) and the labile frequency (Δω), symmetric around 

the bulk water resonance
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MTRasym = Ssat( − Δω) − Ssat(Δω)
S0

(5)

The asymmetry calculation corrects RF spillover and, to a lesser degree, the semisolid MT 

effects (47). Zhou et al. determined the amide proton exchange rate from water exchange 

spectroscopy and calibrated it against pH determined by phosphorus (31P) spectroscopy. 

The calibration was further applied to map MTRasym for absolute tissue pH (85). Due to the 

slow amide exchange rate, ischemia-induced MTRasym contrast peaks with a relatively mild 

RF saturation amplitude (86). In addition to APT, there are multiple partially overlapping 

exchangeable groups such as amine and guanidyl CEST MRI effects, suggesting the 

possibility of combining them and enhancing the pH contrast. For example, Jin et al. took 

the signal difference between 3.6 ppm (amide) and 2 ppm (guanidyl) as a new pH-weighted 

measure (87). Because of their exchange rate difference, a small pH change causes their 

signals to vary in an opposite direction, resulting in a larger signal change (pHenh). Jin et al. 

showed that whereas APT-weighted (APTw) at 3.6 ppm indicated a small signal drop (Fig. 

1a) following tissue acidosis induced by CO2 challenge, pHenh detects a more substantive 

signal increase (Fig. 1b). To rule out that the observed pHenh is not due to perfusion change, 

the experiments were repeated with an O2 challenge, which induces hemodynamic changes 

but not pH (Fig. 1c). Fig. 1d shows the average time course of APTw and pHenh obtained 

from the cortex, with the peak signal change in pHenh much stronger than APTw. It is 

important to note that exchange rates of amide, amine, and guanidyl groups with respect to 

pH differ substantially, allowing variant pH imaging methodologies. For example, MTRasym 

at 3 ppm (amine) obtained under a high RF saturation amplitude has been applied to map 

tumor pH (88), which may serve as a potential early biomarker for recurrent glioblastoma 

(89,90). pH-weighted imaging has also been correlated with tumor hypervascularity (91).

It is worth noting that an index similar to MTRasym is the apparent relaxation exchange 

(AREX), which utilizes inverse normalization to linearize the CEST calculation (77). Inverse 

asymmetry calculation also allows for T1 normalization, which is not easily applicable when 

using MTRasym. Specifically, we have

AREX = R1w ⋅ ( S0

Ssat( + Δω) − S0

Ssat(Δω)) (6)

In the presence of multiple CEST effects that are partially overlapping or bilaterally around 

the bulk water resonance, both MTRasym and AREX reflect a mixture of contrasts. The 

asymmetry analysis is simple to use, yet prone to confounding contributions from multipool 

CEST and changes in relaxation and asymmetric semisolid macromolecular effects. As 

a result, pH-weighted MTRasym has been demonstrated in acute stroke imaging without 

substantial changes in relaxation and semisolid MT effects.

Direct Saturation-Corrected (DISC) CEST

Instead of the asymmetry calculation, Sun et al. (92) and Jin et al. (93) proposed 

interpolating signals at two neighboring offsets around the labile proton offset as the 
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baseline to isolate APT and nuclear Overhauser enhancement (NOE) effects. However, 

linear baseline interpolation is simplistic because the direct RF saturation is nonlinear 

concerning the RF offset. Zhou et al. proposed a direct saturation-correction (DISC) 

algorithm to correct the direct RF saturation based on relaxation images. Furthermore, 

because the MT effect has a broad spectrum, it can be described as a linear baseline (94). 

The DISC-CEST method allows for using asymmetric boundary offsets

APTRDISC(Δωi) = δ1 ⋅ ΔZ(Δωi + δ2) + δ2 ⋅ ΔZ(Δωi − δ1)
δ1 + δ2

− ΔZ(Δωi) (7)

in which the upfield and downfield boundaries are Δωi − δ1 and Δωi + δ2, respectively. In 

addition, ΔZ is the Z-spectral intensity difference between the experimental measurement 

(multipool) and bulk tissue water signal due to direct RF saturation alone (one-pool). The 

DISC approach has been extended to 3T, which is advantageous over the simplistic linear 

estimation of the baseline (95). The limitation of the DISC analysis is that it provides a 

mixed measurement in the presence of multiple overlapping CEST effects. Therefore, weak 

RF saturation is often preferred to isolate the CEST effect (slow chemical exchange) of 

interest.

Magnetization transfer and relaxation normalized APT (MRAPT) analysis

Although MTRasym at 3.5 ppm has been associated with tissue acidification in acute stroke 

(96), it includes not only the APT effect but also T1, NOE effect at −3.5 ppm, and slightly 

asymmetric semisolid MT contributions (97-103). Studies from Jin et al. and Zhou et al. 

showed little NOE signal change in hyperacute stroke (93,104). However, both APT and 

NOE signal changes have been observed in acute stroke (105,106). Recently, Wu et al. 

traced the apparent NOE signal change during the acute stroke to a small T1 change. 

Specifically, there have been reports of a non-negligible T1 increase in the acute ischemic 

lesion (107,108). The exchange spectrum (Rex) was calculated by subtracting the water 

spinlock relaxation rate from the experimental measurement. Whereas Z-spectra showed 

comparable APT and NOE signal changes, the CEST-specific exchange spectra revealed that 

APT signal change dominates that of NOE.

The MRAPT analysis has been developed to improve pH specificity in the pH-weighted 

MTRasym image (109). This is built on the observations that 1) there is little pH difference in 

the intact white matter and gray matter (110); 2) pH effect in MT contrast is negligible 

(111); and 3) APT signal change dominates NOE's in acute ischemia (93,107). The 

background homogenization provides a straightforward approach to model and correct non-

pH signals in the routine MTRasym image. Specifically, we have

ΔMRAPTR = R1w ⋅ MTRasym − F(R1w, MMTR) (8)

where the mean MTR at ±3.5 ppm is denoted as MMTR. pH-specific ΔMRAPTR has 

been calibrated against pH determined from lactate MR spectroscopy (108,112), with the 

correlation between ΔMRAPTR and pH substantially improved over that of MTRasym. 

Specifically, Fig. 2a shows that pH-specific ΔMRAPTR from the diffusion lesion highly 

correlates with tissue pH. Fig. 2b shows the pH-weighted MTRasym image, while Fig. 
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2c shows the pH-specific ΔMRAPTR image. Fig. 2d converts the ΔMRAPTR image to 

absolute tissue pH. Note that pH captured not only the severe pH drop in the ischemic 

core, but also mild acidic tissue in the primary motor cortex. It is also worth pointing out 

that the development of pH-specific MRI makes fast B0 inhomogeneity correction feasible 

by incorporating the field inhomogeneity into the MRAPT regression model (113). Also, 

the MRAPT analysis can be generalized to APT MRI with pulsed-RF saturation (114) 

and different RF saturation amplitudes (115). Although the MRAPT analysis is simple to 

implement and highly pH specific, it assumes little concomitant MT change, so regression 

established from the intact tissue applies to the diseased tissue. The approach is limited to 

well-defined applications such as acute stroke imaging, where MT change is minimal.

Quantitative CEST (qCEST) analysis

There has been tremendous interest in solving the labile proton ratio and exchange rate 

beyond the CEST-weighted images (116,117). McMahon et al. quantified the exchange 

rate using either saturation power or time dependence (QUESP and QUEST) by fitting the 

CEST signal as a function of RF saturation amplitudes and durations (118). Randtke et 

al. proposed Hanes-Woolf linear QUESP and inverse QUEST to improve the quantification 

(119,120). Sun extended the QUEST algorithm with ratiometric analysis (QUESTRA) to 

enhance the quantification accuracy (121). This approach addresses the issue that the rate at 

which the CEST effect approaches its equilibrium state is not governed by R1w but by R1ρ. 

Hence, using the reference signal provides a simple normalization strategy to account for 

the spinlock relaxation without the need to measure it. These algorithms were extended to 

describe non-equilibrium initial and weak labeling conditions (122). Although a quantitative 

CEST solution determines labile proton exchange rate and concentration of the underlying 

CEST system, it has been mainly limited to applications using exogenous CEST contrast 

agents. The multipool contribution needs to be isolated for in vivo applications, so the same 

labile group is measured under different conditions (e.g., B1). However, this task is not 

trivial because the typical endogenous CEST effect is a few percent; hence, of very limited 

sensitivity.

It has been noted that RF amplitude provides a unique dimension for quantitative CEST 

analysis (123). Dixon et al. proposed an omega plot to solve the exchange rate without 

a priori knowledge of the labile proton ratio in paramagnetic CEST (PARACEST) MRI 

(124). In short, the plot of the CEST effect versus inverse RF power level is linear, with 

the x-intercept providing a direct measurement of the exchange rate. It has been shown that 

with the correction of the RF spillover effect, the omega plot could be extended to describe 

diamagnetic CEST (DIACEST) agents (125,126). Also, quantitative CEST MRI has been 

preliminarily applied to study muscle and brain tissue (127,128).

QUASS CEST MRI

The finite relaxation delay and saturation time can be accounted for using the recent QUASS 

algorithm, which reconstructs the equilibrium CEST effect from experimental measurement. 

Fig. 3 shows the routine and QUASS MTRasym images from a dual pH creatine phantom 

using Td/Ts ranging from 1.5 to 7.5 s. Fig. 3a shows that the routine MTRasym intensity 

increases with Td and Ts as it approaches the equilibrium CEST state. Figs. 3b and 3c show 
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the corresponding CEST Z- and asymmetry spectra, respectively, revealing large variations 

as a function of Ts and Td, as expected. In comparison, the QUASS Z- (Fig. 3d) and 

asymmetry- (Fig. 3e) spectra overlap with each other, revealing consistent pH-specific CEST 

MRI contrast (Fig. 3f). The data shows that the QUASS algorithm can unify CEST scans 

obtained under different conditions. Also, it has been shown that the ratiometric analysis 

based on the QUASS solution provides improved quantification of the labile proton fraction 

ratio and exchange rate over those with apparent measurement (129). In addition, using the 

inverse Z-spectrum normalization combined with QUASS reconstruction enables proper T1 

correction (130). Furthermore, the QUASS processing has been recently demonstrated in 

fast multislice CEST imaging at 3T (131) and brain tumor applications (132,133). Although 

the QUASS algorithm enables equilibrium CEST quantification, it requires parametric T1 

mapping (134), which could lengthen the total scan time.

Lorentzian fitting

The Lorentzian fitting has been developed to describe CEST measurement in the presence of 

multiple labile proton groups. Briefly, the normalized Z-signal change can be described by

1 − Ssat

S0
≈

∑i = 1
N fr

iksw
i ⋅ αi

R1ρ
≈ ∑i = 1

N fr
iksw

i

R1w
⋅ αi (9)

in which the superscript i represents the ith labile proton group. The labeling coefficient can 

be approximated as a Lorentzian function. The choice of the number of labile pools depends 

on the field strength, RF saturation scheme, Z-spectral sampling density, and SNR. For 

example, multipool Lorentzian models including water (0 ppm), semisolid macromolecular 

MT (−2 ppm), amide (3.5 ppm), amine (2.75 ppm), guanidinium (2 ppm), and NOE effects 

at 1.6 ppm and 3.5 ppm upfield from water have been deployed to describe brain CEST 

effects (104,135-137). Although the accuracy improves with the number of CEST pools, the 

nonlinear multiparameter fitting is subject to substantial errors when the spectral resolution 

and SNR are insufficient. To enhance the robustness of fitting, Zhou et al. proposed the 

image downsampling expedited adaptive least-squares (IDEAL) algorithm to regularize 

the fitting against noise (138). Nevertheless, for applications at low fields such as 3T, 

the Z-spectrum has a relatively coarse spectral resolution. Therefore, models of 3 or 4 

exchangeable pools are often chosen to minimize the risk of overfitting (139,140). To 

address the pronounced MT effect, Heo et al. proposed fitting and extrapolating semisolid 

magnetization transfer reference (EMR) to remove it from Z-spectra (141,142). The EMR 

approach has been applied to isolate APT from NOE effects in acute stroke patients and 

showed improved lesion depiction (105).

Several factors need to be considered when deploying the multipool Lorentzian fitting. 

First, the Lorentzian fitting is valid when the saturation time is sufficiently long: The 

transient terms could introduce an asymmetric baseline because the spinlock relaxation rate 

increases when the RF saturation approaches the bulk water resonance (143). Second, in 

the presence of notable changes in relaxation rates, which is not uncommon in diseased 

tissues, the bulk water spinlock relaxation term will induce a symmetric baseline shift. Such 

a baseline change needs to be considered when assigning the origin of the CEST contrast. 
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Third, although T1 normalization improves the measurement of the labile proton ratio and 

exchange rate (144-146), how to properly account for the T1 effect in CEST imaging in vivo 

(147,148) is controversial. One particular limitation of Lorentzian fitting is that it requires a 

reasonably densely sampled Z-spectrum; therefore, it could be time-consuming.

Model-based fitting

The Bloch-McConnell equations have been extended to describe the multipool CEST 

effect. For example, Sun et al. applied 5-pool models to determine exchange properties 

of iopamidol (74). However, multipool fitting requires many free parameters and is at 

the risk of overfitting. Chappell et al. introduced the Bayesian model to regularize the 

fitting (149). Specifically, Ray et al. demonstrated that Bayesian model-based analysis 

(BayCEST) with relaxation compensation provides robust pH-sensitive measurement (150). 

BayCEST was further shown in acute stroke patients to be advantageous over MTRasym in 

defining the ischemic lesion (151). Msayib et al. compared different indices in acute stroke 

patients, including MTRasym, AREX, and APT* with local linear baseline assumptions, 

post-acquisition Lorentzian difference analysis, and APTR* from 3-pool and 4-pool 

Bayesian models (152). Fig. 4 shows that the 3-pool Bayesian model exhibits the lowest 

spatial variability, yet captures pH drop in the ischemic lesion. Foo et al. also concluded 

that the model-based fitting is advantageous when SNR is inadequate (153). It is interesting 

to point out that using the BayCEST approach, Ray et al. concluded that 2/3 of APT 

contrast originates from changes in protein concentration, while the remaining 1/3 comes 

from changes in tumor pH (154). Whereas the model-based fitting approach is robust, it 

requires a reasonably densely sampled Z-spectrum, which could be computation-intensive 

and time-consuming.

Ratiometric analysis

The original ratiometric pH imaging requires the CEST agent to have at least two 

exchangeable groups of different chemical shifts and exchange properties, so their ratio 

depends only on the exchange rate and, hence, pH (42). Aime et al. reported iopamidol, 

a CT contrast agent, as a new CEST MRI contrast (155-157). The iopamidol ratiometric 

analysis depends only on pH, not on T1 and CEST agent concentration. Due to its FDA-

approved status, iopamidol is highly translational for in vivo CEST imaging (158,159). 

Longo et al. showed that pH is a sensitive biomarker of early acute ischemic injury before 

creatinine level change (160). Pavuluri showed that in addition to pH, iopamidol MRI could 

quantify renal perfusion status (161).

Beyond iopamidol, several iodinated contrast agents have been explored for pH imaging, 

including Iopromide (162) and Imidazole (163). Furthermore, the ratiometric CEST MRI 

has been extended to CEST agents of a single liable proton group. Specifically, RF 

power-based ratiometric takes the ratio of CEST measurements performed under different 

B1 saturation amplitudes instead of two different chemical shifts, and was demonstrated 

using iobitridol (164-166). Wu et al. further generalized the ratiometric pH imaging by 

mixing CEST effects at different chemical shifts and RF saturation levels (167). Fig. 5 

shows the generalized ratiometric renal pH imaging in a rodent kidney. The iopamidol 

CEST effects at 4.3 ppm and 5.5 ppm were isolated using Lorentzian fitting with RF 
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amplitudes of 1 and 2 μT, respectively. Absolute renal pH can be mapped using the 

modified ratiometric pH imaging. The generalized pH imaging is versatile for CEST 

applications at non-high magnetic fields, where the CEST effects might partially overlap, 

decreasing the dynamic range of routine ratiometric analysis. Similarly, Zu et al. used 

the RF saturation pulse flip angle as an alternative to measuring the chemical exchange 

rate (168). The ratiometric pH imaging approach has also been explored for endogenous 

pH mapping. McVicar et al. demonstrated the endogenous ratiometric MRI of amine 

and amide concentration-independent detection (AACID) for mapping ischemic tissue pH 

(169). However, endogenous ratiometric pH imaging assumes that the concentration of 

different labile groups is relatively stable, which needs to be validated independently under 

pathological conditions.

The ratiometric MRI approach has also been applied in vivo to map pH in cancerous tissues. 

Chen demonstrated dual RF power ratiometric pH imaging using Ioversol in mouse breast 

cancer (170). Recently, Tang et al. translated Ioversol pH MRI to examine hepatic tumor 

patients at 3T. Fig. 6a shows a patient with hepatic hemangioma, with its corresponding pH 

map (Fig. 6b). Note that pH was consistent with the surrounding liver tissue, confirming 

benign hemangioma. Fig. 6c shows a patient with hepatic carcinoma, with its pH in Fig. 

6d. Its pH is significantly lower than the normal tissue. Indeed, pH in hepatic carcinoma 

was acidic (6.66 ± 0.19), while the extracellular pH was 7.34 ± 0.09 in hemangioma, 

demonstrating pH MRI as a differential diagnostic imaging methodology (171). Increasing 

data have documented that tumor extracellular pH is lower in faster-growing tumors, serving 

as a surrogate marker for differentiating benign and malignant tumors and early response to 

treatment.

It is helpful to mention that CEST pH MRI has certain advantages over the relaxation-

based pH imaging approach. For example, although the relaxivity of macromolecular Gd 

complexes can be extracellular pH-responsive (172), it requires a double-contrast injection 

approach, sequential or concurrent, to determine the contrast concentration, which is 

cumbersome (173-175). Another notable extracellular pH imaging approach is biosensor 

imaging of redundant deviation in shifts (BIRDS), which utilizes pH-responsive chemical 

shifts to measure pH (176-178). However, its major limitation is that the contrast agent 

has very short T1 and T2 relaxation times, requiring customized imaging sequences. 

In comparison, pH CEST agents, particularly FDA-approved iodinated-based ones, 

allow concentration-independent pH imaging and are highly translational. Nevertheless, 

exogenous CEST agents-based pH imaging requires the administration of contrast agents at 

relatively high concentrations, mostly appliable in tumor and renal imaging applications.

Practical Considerations of CEST MRI Experiments

It has been well recognized that experimental parameters such as the RF saturation scheme 

(RF saturation pulse shape, amplitude, and duration), repetition time, and flip angle could 

profoundly impact the CEST MRI measurement. Therefore, the CEST MRI needs to be 

carefully optimized to improve its sensitivity and specificity.

Igarashi et al. Page 10

NMR Biomed. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pulse sequence

The most straightforward implementation of the CEST MRI pulse sequence includes a 

relaxation delay, during which magnetizations recover toward their thermal equilibrium 

states, followed by a continuous wave (CW) RF irradiation to induce the CEST effect, 

during which the bulk water signal approaches its CEST equilibrium state following 

the spinlock relaxation rate. The sequence often concludes with a fast image readout 

such as echo planar imaging (EPI) or fast spin echo (FSE) readout (179). Although the 

CW saturation scheme is simple to implement and model mathematically, the pulse RF 

saturation scheme has been chosen due to the RF duty cycle, specific absorption rate, 

and hardware limitation (180-182). In addition, the flip angle has been explored as a 

novel means for isolating the amide CEST effect from the baseline (183,184). Fortunately, 

CW or pseudo-CW (90% or higher RF duty cycle) RF saturation has been recently 

demonstrated in mainstream MRI systems, including General Electric, Philips, and Siemens 

scanners. Although single slice readout was adopted in early clinical CEST imaging, 

recent CEST development includes substantially improved spatial coverage, including fast 

multislice (185-187) and 3D readout (141,188-190). Demetriou et al. recently provided a 

comprehensive review of CEST MRI pulse sequences (191).

Correction of field inhomogeneity in CEST MRI measurement

Field inhomogeneity is not uncommon in MRI experiments, particularly in areas of the 

tissue air interface. Because the field inhomogeneity directly impacts the saturation of 

labile protons and the asymmetry analysis, CEST measurement is very prone to field 

inhomogeneity. The B0 inhomogeneity on MTRasym can be modeled as a baseline shift 

due to direct RF saturation and a Lorentzian-shaped modulation of the labeling coefficient 

(192). For in vivo applications, the water saturation shift reference (WASSR) approach has 

been widely used to correct the Z-spectrum from field inhomogeneity (193-195). More 

recently, deep learning has been applied to provide fast correction of field inhomogeneity 

without Z-spectrum (196). It is worth pointing out that the routine field inhomogeneity 

correction algorithms assume intravoxel homogeneity. However, due to the relatively coarse 

spatial resolution of CEST MRI, it is unavoidable to have inhomogeneity within a single 

voxel. To address this, an intravoxel inhomogeneity correction (CIVIC) post-processing was 

developed (197). It describes the experimental CEST spectrum (Zapp) as a convolution of 

the ideal CEST spectrum (Zorig) and a point spread function (PSF) that characterizes the 

intravoxel inhomogeneity distribution (i.e., F(ΔB0)), as

Zapp = Zorig ⊛ F(ΔB0) (10)

Using a high-resolution field map, Zorig can be reconstructed, which complements the 

routine voxel-based field inhomogeneity correction. In addition, although B1 inhomogeneity 

has been considered relatively mild at typical field strengths, fast B1 mapping and correction 

have been established (198).

Igarashi et al. Page 11

NMR Biomed. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Optimization of CEST sensitivity efficiency

Because the typical endogenous CEST effect is only a few percent, optimization of CEST 

scans is necessary to improve its detection. Initial work was dedicated to optimizing the RF 

saturation amplitude, with the goal of inducing sufficient labile proton saturation without 

an excessive spillover effect on the bulk water signal (64). In addition to the magnitude 

of the CEST MRI effect, its signal-to-noise ratio per unit time (SNR efficiency) serves 

as an alternative parameter to optimize (199) because the CEST MRI effect increases 

monotonically with the RF saturation time, yet the incremental gain over an excessively 

long saturation time becomes marginal. Thus, the repetition time needs to be considered to 

balance the magnitude and scan time. For an illustrative 2-pool system, the SNR efficiency 

has been derived as

SNRput ∝ CESTR
TR ⋅ 2 + CESTR2 ⋅ SNRS0 (11)

where SNRS0 is the control image SNR, which depends on the flip angle, repetition time, 

and echo time. The derivation of the full analytical solution makes it feasible to simulate and 

optimize multiple parameters simultaneously before experimental validation (83). However, 

the optimization strategy based on the magnitude and SNR efficiency of CEST MRI 

measurement could contradict each other. Whereas the magnitude of the CEST MRI effect is 

higher when using a small flip angle, the CEST MRI SNR efficiency peaks when using flip 

angles between 60 to 75 degrees. The ultimate optimization depends on the purpose of the 

experiments. Fortunately, the QUASS algorithm allows for sensitivity-based experimental 

optimization with little loss in the quantification accuracy.

The scan time can be reduced by sampling fewer frequency offsets. For example, sampling 

multiple offsets only around ±3.5 ppm expedites MTRasym measurement, circumventing 

time-consuming Z-spectral acquisition (200). For the Z-spectral imaging, it has been 

demonstrated that an uneven sampling scheme may provide similar results as the fully 

sampled Z-spectrum, particularly at 3T (201,202).

Conclusion

Steady progress has been achieved in CEST imaging, with increased specificity and 

sensitivity to pH. The technical advancement enables emerging applications in disorders 

such as acute stroke and cancer. Further development of robust CEST analysis and post-

processing algorithms will expedite its adoption in the clinical setting, facilitating the 

transition from CEST-weighted imaging to quantitative maps of tissue pH and metabolites.

Abbreviations

APT Amide proton transfer

CEST Chemical exchange saturation transfer

CESTR CEST ratio
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CNR Contrast to noise ratio

ΔMRAPTR Delta MRAPT ratio

MT Magnetization transfer

MMTR Mean magnetization transfer ratio

MTR Magnetization transfer ratio

MTRasym MTR asymmetry

MRAPT MT and relaxation normalization APT

NOE Nuclear overhauser enhancement

pHw pH-weighted

QUAS Quasi-steady-state

rCNR Relative CNR

rCESTR ratiometric CESTR

ΔMRAPTR Delta MRAPT ratio
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Fig. 1. 
Comparison of pH-weighted APTw and pHenh following hypercapnic and hyperoxia 

challenges. a) Signal change in APTw map following hypercapnia. b) Signal change in 

pHenh map following hypercapnia. c) pHenh MRI signal change following hyperoxia. d) The 

timecourse of APTw and pHenh following hypercapnic and hyperoxia challenges (Jin et al. 

Neuroimage 2017;157:341-350.)
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Fig. 2. 
Tissue pH MRI from pH-specific MRAPT analysis. a) The pH-specific ΔMRAPTR and 

pH are highly correlated. b) pH-weighted MTRasym map. c) pH-specific ΔMRAPTR map. 

d) Tissue pH image derived from ΔMRAPTR image and its pH calibration (Wang et al. 

Neuroimage 2019;191:610-7.)
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Fig. 3. 
Comparison of the conventional and QUASS CEST MRI from a creatine pH phantom. 

a) Routine MTRasym at 1.9 ppm obtained under different Td and Ts. b) Z-spectra and c) 

asymmetry spectra. d) The corresponding QUASS Z-spectra and d) QUASS asymmetry 

spectra. e) The QUASS MTRasym at 1.9 ppm under different Td and Ts. (Sun. Magn Reson 

Med 2021;86(2):765-776.)

Igarashi et al. Page 27

NMR Biomed. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Comparison of different CEST indices in acute stroke patient imaging. The model-based 

Bayesian CEST images capture pH drop in the ischemic lesion with the least spatial 

variability (Msayib et al., NeuroImage: Clinical 2019;23:101833.)
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Fig. 5. 
A representative normal kidney pH map from the generalized ratiometric pH imaging at 

4.7 T. The iopamidol CEST effects were measured with two RF amplitudes, and the 

peaks were isolated for 4.3 ppm (1 μT) and 5.5 ppm (2 μT). Their ratio map is pH-

dependent, which permits absolute pH mapping (Wu et al. Magnetic Resonance in Medicine, 

2018;79:1553-58.)
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Fig. 6. 
Liver pH imaging with CEST MRI of Ioversol. a) A structural image of a hepatic 

hemangioma patient. b) pH map shows consistent pHe with the surrounding normal tissue. 

c) A structural image of a hepatic carcinoma patient. d) Tumor pH map is noticeably lower 

than normal tissue (Tang et al. Frontiers in oncology 2020;10:578985.)
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