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Abstract

Purpose: To develop a deep learning method for rapidly reconstructing T1 and T2 maps from 

undersampled electrocardiogram (ECG) triggered cardiac Magnetic Resonance Fingerprinting 

(cMRF) images.

Methods: A neural network was developed that outputs T1 and T2 values when given a measured 

cMRF signal timecourse and cardiac RR interval times recorded by an ECG. Over 8 million 

cMRF signals, corresponding to 4000 random cardiac rhythms, were simulated for training. The 

training signals were corrupted by simulated k-space undersampling artifacts and random phase 

shifts to promote robust learning. The deep learning reconstruction was evaluated in Monte Carlo 

simulations for a variety of cardiac rhythms and compared with dictionary-based pattern matching 

in 58 healthy subjects at 1.5T.

Results: In simulations, the normalized root-mean-square-error (nRMSE) for T1 was below 1% 

in myocardium, blood, and liver for all tested heart rates. For T2, the nRMSE was below 4% for 

myocardium and liver and below 6% for blood for all heart rates. The difference in the mean 

myocardial T1 or T2 observed in vivo between dictionary matching and deep learning was 3.6ms 

for T1 and −0.2ms for T2. Whereas dictionary generation and pattern matching required more than 

4 minutes per slice, the deep learning reconstruction only required 336ms.

Conclusion: A neural network is introduced for reconstructing cMRF T1 and T2 maps directly 

from undersampled spiral images in under 400ms and is robust to arbitrary cardiac rhythms, which 

paves the way for rapid online display of cMRF maps.
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Introduction

Quantitative MRI is a powerful tool for assessing cardiac health. Two clinically measured 

tissue properties are T1 and T2, which can be used for early detection and monitoring of 

fibrosis,1 inflammation,2 and edema,3 among other conditions. Cardiac Magnetic Resonance 

Fingerprinting (cMRF) is one technique for simultaneous T1-T2 mapping,4,5 which uses a 

time-varying sequence, an undersampled spiral k-space trajectory, and pattern matching with 

a dictionary of simulated signals to estimate quantitative maps.

Although cMRF is efficient, as data are collected during one breathhold, the reconstruction 

time is long and prohibits real-time display of the maps. The major hurdle is that the 

subject’s cardiac rhythm dictates the sequence timings because the scan is electrocardiogram 

(ECG) triggered, and thus a new dictionary must be simulated after every acquisition. 

The dictionary simulation time increases if slice profile imperfections or other effects 

are modeled; both dictionary simulation and pattern matching take longer if additional 

properties (e.g., B1
+) beyond T1 and T2 are quantified.6–8 A typical cMRF reconstruction for 

T1-T2 mapping requires 4 minutes for dictionary simulation (including corrections for slice 

profile and preparation pulse efficiency) and 10 seconds for pattern matching.

The combination of deep learning and MRF is gaining interest because of the potential 

for orders of magnitude reductions in computation time.9–11 Previously, a neural network 

was proposed that reduces cMRF dictionary simulation time to one second and generalizes 

to arbitrary cardiac rhythms, which eliminates the need for time-consuming and scan-

specific Bloch equation simulations.12 However, this approach still generates a scan-specific 

dictionary that occupies memory (220MB). Measuring additional properties beyond T1 and 

T2 would require exponentially more memory and time and quickly become infeasible. In 

addition, the maps have quantization errors due to the discrete step sizes in the dictionary.

Neural networks have been proposed to directly quantify T1 and T2 from MRF images 

in non-cardiac applications, thereby bypassing dictionary simulation and pattern matching 

to reduce computation time and memory requirements. However, existing methods are not 

directly applicable to cMRF. Previous approaches have only considered scans with fixed 

sequence timings, whereas the cMRF sequence timings are determined by the subject’s 

cardiac rhythm.11 Some existing neural network approaches cannot reconstruct maps 

from undersampled non-Cartesian data and require additional reconstruction steps.9 Other 

approaches require in vivo MRF datasets for training,10 which may be time-consuming and 

expensive to collect, and may not generalize to scenarios that are underrepresented in the 

training set.

In this work, a deep learning reconstruction is proposed for cMRF that directly outputs T1 

and T2 maps from undersampled spiral images in under 400ms per slice without using a 

dictionary. The network is robust to arbitrary cardiac rhythms and eliminates the need for 

scan-specific Bloch equation simulations and pattern matching. The cMRF deep learning 

reconstruction is evaluated in simulations and compared with dictionary-based pattern 

matching using in vivo data acquired in 58 healthy subjects at 1.5T.
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Methods

cMRF Sequence Parameters

The cMRF sequence has been described in previous work,13 although the breathhold 

duration here was reduced from 15 to 10 heartbeats. A FISP readout is used that is relatively 

insensitive to off-resonance due to the unbalanced gradient moment on the slice-select 

axis.14 Multiple preparation pulses are applied with the following pattern (which repeats 

twice): inversion (TI=21ms), no preparation, T2-prep (30ms), T2-prep (50ms), T2-prep 

(80ms). The acquisition is ECG-triggered with a 250ms diastolic readout with 50 TRs 

collected each heartbeat and 500 TRs collected during the entire scan. Data are acquired 

using an undersampled spiral k-space trajectory with golden angle rotation15 that requires 48 

interleaves to fully sample k-space.16 Other parameters include a 192×192 matrix, 300mm2 

field-of-view, 1.6×1.6×8.0mm3 resolution, and constant TR/TE 5.1/1.4ms.

Neural Network Architecture

Figure 1 shows a diagram of the proposed network. The network takes two inputs—the 

measured signal timecourse from one voxel and the cardiac RR interval times from the ECG. 

The timecourse is split into real and imaginary parts and concatenated with the RR interval 

times, resulting in a vector of length 2N + M, where N is the number of TRs and M is 

the number of heartbeats. This study uses N = 500 and M = 10. The input is normalized by 

dividing the RR intervals (in milliseconds) by 1000 and dividing the signal by its l2-norm. 

The network has 18 hidden layers with 300 nodes per layer. Skip connections are used every 

4 layers beginning after the first, which avoids problems with vanishing gradients during 

training. Supporting Information Figures S1 and S2 provide justification for the number of 

hidden layers and use of skip connections. The final outputs are the T1 and T2 estimates for 

the given voxel.

Neural Network Training

The training dataset consists of cMRF signals simulated using the Bloch equations, 

corresponding to 4000 randomly generated cardiac rhythms. Each cardiac rhythm has an 

average heart rate (HR) between 40–120 beats per minute (bpm), and random Gaussian 

noise with a standard deviation (SD) between 0–100% of the mean RR interval is added to 

the RR interval times to introduce variability. Adding noise with a large SD (i.e., near 100%) 

mimics ECG mis-triggering because it results in large timing variations between heartbeats. 

For each cardiac rhythm, 2000 signals were generated with T1 and T2 values selected from 

a uniform random distribution between 50–3000ms and 5–700ms, respectively. In total, 8 

million (4000×2000) training signals were simulated including corrections for slice profile 

(assuming a 0.8ms duration sinc RF pulse with time-bandwidth product 2) and preparation 

pulse efficiency.6,7

Although adding Gaussian noise to training data is common in machine learning to 

promote robust learning, non-Cartesian undersampling artifacts do not fall along a Gaussian 

distribution. Therefore, the network is trained using simulated cMRF signals corrupted 

with noise that mimics non-Cartesian aliasing, hereafter called “pseudo-noise” (Supporting 

Information Figure S3 compares neural networks trained with pseudo-noise versus Gaussian 
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noise). A repository of pseudo-noise is generated before training (Supporting Information 

Figure S4). The pseudo-noise is meant to be agnostic to cardiac rhythm and image content. 

To create the repository, random T1, T2, and M0 maps are synthesized where each voxel has 

a random value between 50–3000ms for T1, 5–700ms for T2, and 0–1 for M0. A random 

cardiac rhythm is also generated with an average HR between 40–120bpm, with Gaussian 

noise having SD between 0–100% of the mean RR interval added to the RR interval times. 

Signals are simulated using the Bloch equations to yield a time series of reference images. 

Data acquisition is simulated using the spiral k-space sampling pattern, and undersampled 

images are gridded using the non-uniform fast Fourier Transform (NUFFT).17 The fully-

sampled reference images are subtracted from the undersampled images. Each voxel in the 

resulting difference images is treated as an independent pseudo-noise sample and saved 

in the repository. For a 192×192 matrix, these steps result in 36,864 (1922) pseudo-noise 

samples. The complete repository contains 1.8 million pseudo-noise samples generated by 

repeating this process 50 times using random parameter maps and cardiac rhythms.

When training the network (Figure 2B), pseudo-noise samples are randomly selected from 

the repository every epoch and added to the simulated cMRF signals, similar to an approach 

described for contrast synthesis by Virtue, et al.18 Let s t  denote an arbitrary cMRF signal 

and n t  denote an arbitrary pseudo-noise sample. The pseudo-noise is randomly scaled by 

a factor C so the SNR is between 0.2 and 1.0, which was empirically determined to be 

appropriate for the k-space trajectory employed in this study (Supporting Information Figure 

S5) and would need to be tuned for other trajectories. The SNR is defined as follows:

SNR = s t 2

n t 2
[Eq.1]

Each cMRF signal is also multiplied by a random phase shift ϕ1, and the pseudo-noise is 

multiplied by a different random phase shift ϕ2. Phase shifts are performed because in vivo 

datasets have arbitrary phase due to factors such as receiver coil sensitivity profiles and 

off-resonance. Supporting Information Figure S6 compares the performance of networks 

trained with and without random phase shifts. The final cMRF signal used for training is 

denoted by s t .

s t = s t ⋅ eiϕ1 + C ⋅ n t ⋅ eiϕ2 [Eq.2]

A separate validation dataset was created by generating 400 random cardiac rhythms and 

simulating 500 cMRF signals for each rhythm corrupted by pseudo-noise and phase shifts. 

The neural network was implemented in PyTorch and trained for 5 epochs using an Adam 

optimizer with learning rate 10−4 and batch size 128. The network parameters with the 

smallest validation loss were saved. A normalized l1 loss function (Equation 3) was used that 

was the sum of the relative errors in T1 and T2, where B is the batch size, T1, i
net and T2, i

net are the 

network estimates for T1 and T2, and T1, i
ref and T2, i

ref are the reference T1 and T2 values.
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loss = 1
B ∑

i = 1

B T 1, i
net − T 1, i

ref

T 1, i
ref + T 2, i

net − T 2, i
ref

T 1, i
ref [Eq.3]

Simulation Experiments

Monte Carlo simulations were performed using a digital cardiac phantom (MRXCAT)19 to 

evaluate the accuracy of the deep learning reconstruction. The phantom used myocardial 

T1/T2=1400/50ms, blood T1/T2=1950/280ms, and liver T1/T2=800/40ms. Datasets with 

different cardiac rhythms were simulated where the average HR was swept from 40 to 

120bpm (step size 10bpm), and Gaussian noise was added to the RR interval times with 

SD 0%, 10%, 20%, 50%, 75%, and 100% of the mean RR interval to introduce heart rate 

variability. For each combination of average HR and noise level, 50 cMRF datasets with 

different cardiac rhythms were simulated by performing Bloch equation simulations, spiral 

k-space sampling, and gridding. The undersampled images and RR interval times were input 

to the neural network to reconstruct T1 and T2 maps. The mean T1 and T2 values were 

computed in the myocardial wall, left ventricular blood pool, and liver and are reported 

using normalized root mean square error (nRMSE).

In Vivo Experiments

cMRF scans from 58 healthy adult subjects were retrospectively collected in a HIPAA-

compliant, IRB-approved study. The scans were performed on a 1.5T MRI scanner 

(MAGNETOM Aera, Siemens Healthineers, Germany) at a medial short-axis slice position 

during an end-expiration breathhold with a 192×192 matrix size, 300mm2 field-of-view, 

and 1.6×1.6×8.0mm3 resolution. T1 and T2 maps were reconstructed in two ways: 1) using 

the Bloch equations to simulate a scan-specific dictionary and performing pattern matching 

as in previous cMRF work,13 hereafter called “dictionary matching”, and 2) using the 

deep learning reconstruction. The dictionary contained 23,345 entries with T1 [10:10:2000, 

2020:20:3000]ms and T2 [4:2:100, 105:5:300, 320:20:500]ms. The mean T1 and T2 over 

the entire myocardial wall were compared between both reconstructions using a two-tailed 

Student’s t-test for pairwise comparisons, with p<0.05 considered statistically significant. 

The mean T1 and T2 were also compared using linear regression and Bland-Altman 

analyses.20 Intrasubject variability for dictionary matching and deep learning were assessed 

by computing the SD in T1 and T2 over the myocardium for each subject. Intersubject 

variability was assessed by computing the coefficient of variation (CV), obtained by 

calculating the SD of the mean T1 and T2 measured for each subject and dividing by the 

group-averaged T1 and T2.

Results

Computation Time

Gridding required 30s and was required for both deep learning and dictionary matching 

reconstructions. The average time to quantify T1 and T2 maps from the gridded images using 

deep learning was 336ms. For comparison, simulating a scan-specific dictionary required 4 

minutes, and pattern matching required an additional 10s. Each dictionary occupied 220MB 
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of memory. The deep learning reconstruction does not utilize a dictionary, and the network 

parameters only occupied 7MB.

Simulation Experiments

Figure 3 shows results from the Monte Carlo simulations. The deep learning reconstruction 

was more accurate at estimating T1 than T2. The nRMSE for T1 was generally below 1% for 

all tissue types (myocardium, blood, and liver). Note that a 1% error corresponds to a 14ms 

difference from the true T1 of 1400ms in myocardium. The T2 nRMSE was below 4% for 

myocardium and liver, and below 6% for blood. A 4% error corresponds to a 2ms difference 

from the true T2 of 50ms in myocardium. The quantification accuracy for T1 and T2 was 

similar regardless of average HR or the variability of the cardiac rhythm.

In Vivo Imaging

Maps from two representative subjects are shown in Figure 4. Subject A had a steady 

cardiac rhythm (mean RR 775±28ms), while Subject B had a variable cardiac rhythm 

(mean RR 77±215ms) with one missed ECG trigger during heartbeat 10. The maps in 

the myocardium were visually similar between the deep learning and dictionary matching 

reconstructions. There were differences in some areas, such as subcutaneous fat. Figure 5A 

shows the linear regression analysis between the mean myocardial T1 and T2 values from 

deep learning and dictionary matching. The measurements were strongly correlated, with 

R2=0.93 for T1 and R2=0.95 for T2. As seen in the Bland-Altman analysis (Figure 5B), 

the mean T1 bias was 3.6ms with 95% limits of agreement (−18.9, 26.1)ms, and the mean 

T2 bias was −0.2ms with 95% limits of agreement (−1.9, 1.5)ms. Using a paired t-test, the 

differences in the mean myocardial values between deep learning and dictionary matching 

were statistically significant for T1 p = 0.019  and T2 p = 0.038 . Figure 5C compares 

the intrasubject standard deviations. The SD for T1 was 106.9ms for dictionary matching 

and 110.2ms for deep learning, and the difference was statistically significant p = 0.013 . 

The SD for T2 was 6.8ms for dictionary matching and 7.3ms for deep learning, and the 

difference was statistically significant p < 0.0001 . The intersubject variability was similar 

for both reconstructions. For T1, the CV was 4.4% for dictionary matching and 4.5% for 

deep learning; for T2, the CV was 9.1% for dictionary matching and 8.9% for deep learning.

Discussion

This study introduces a deep learning method for rapidly performing cMRF T1 and T2 

quantification that is robust to arbitrary cardiac rhythms. A neural network was trained 

to directly output T1 and T2 maps from undersampled spiral cMRF images and cardiac 

RR interval timings. The deep learning reconstruction does not require Bloch equation 

simulations to create a dictionary or use pattern matching. The main advantage is the large 

reduction in computation time, which could enable real-time display of cMRF maps. The 

deep learning method takes less than 400ms per slice to reconstruct T1/T2 maps from cMRF 

images, which is more than a 700-fold speedup compared to dictionary matching. The 

deep learning reconstruction also requires less memory than dictionary matching. Whereas 

the dictionary occupies 220MB of memory, the network coefficients only occupy 7 MB. 

Although this study focuses on T1 and T2 quantification, the savings in computation time 
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and memory may be more pronounced for applications seeking to measure additional tissue 

properties.

The deep learning reconstruction yielded accurate T1 and T2 estimates in simulations, with 

T1 errors below 1% and T2 errors below 6% regardless of the variability in the cardiac 

rhythms. In vivo, the deep learning reconstruction had similar accuracy and precision as 

dictionary matching. Although a statistically significant bias was observed in the mean and 

SD of the myocardial T1 and T2 values compared to dictionary matching, their magnitude 

was small (3.6ms difference in mean T1 and −0.2ms difference in mean T2).

There are several interesting features of the cMRF deep learning reconstruction. First, 

whereas dictionary matching leads to quantization errors because the T1 and T2 estimates 

are restricted to discrete values, the neural network produces continuous outputs. Supporting 

Information Figure S7 compares dictionary matching and deep learning in an example 

where the T1 and T2 values of a ground truth signal do not lie exactly on the T1-T2 

grid used to populate the dictionary. Second, the network is trained for a fixed k-space 

undersampling pattern. To achieve the best performance, the network should be retrained if 

data are acquired with a different sampling pattern, as the distribution of aliasing artifacts 

would change (Supporting Information Figure S8).

Recently, other neural network approaches have been described for MRF and for cardiac 

parameter mapping. DRONE uses a 2-layer fully-connected network for MRF T1 and 

T2 quantification, although the sequence timings are fixed and non-Cartesian k-space 

undersampling is not taken into consideration.9 Cao, et al. have proposed a 4-layer fully-

connected network and developed a method for simulating training data with non-Cartesian 

undersampling artifacts, although limited to MRF sequences with fixed timings.11 Fang, 

et al. have developed a U-net for high-resolution spiral MRF in the brain. However, the 

network uses in vivo training data, which may be time-consuming and expensive to collect, 

and may not generalize to pathological scenarios underrepresented in the training set. 

In this study, a neural network is trained using simulated cMRF signals, which has the 

advantage that an arbitrarily large training set can be generated to improve performance. 

Also, whereas a U-net may introduce blurring, the network used here operates voxelwise 

and therefore does not induce spatial smoothing. Another recent technique is DeepBLESS, 

which is a deep learning reconstruction for simultaneous cardiac T1-T2 mapping using a 

non-fingerprinting sequence.21 Similar to this study, it is trained to be robust to arbitrary 

cardiac rhythms. However, highly undersampled radial images are first reconstructed using 

compressed sensing before being input to the network, which requires three minutes of 

additional computation time.

This study has several limitations. First, it is still necessary to grid the spiral k-space 

data, which requires 30s on a standard workstation using a CPU; thus, the computation 

bottleneck is now gridding rather than dictionary simulation. Gridding could be accelerated 

using parallel GPUs22 or by applying GRAPPA operator gridding (GROG) to shift the 

k-space data points onto a Cartesian grid,23 although these approaches were not investigated 

here. Second, although the cMRF T1 and T2 estimation is robust to field inhomogeneities 

(Supporting Information Figure S9), no corrections were made for off-resonance blurring 
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during the spiral readout, which can degrade spatial resolution and lead to fat signal 

contamination, especially near epicardial fat or in regions with intramyocardial fat 

(Supporting Information Figure S10). Third, both dictionary-based and deep learning cMRF 

reconstructions can be affected by partial volume artifacts (Supporting Information Figure 

S11). Fourth, B1
+ corrections were not considered. Fifth, no attempt was made to model 

the complicated spin history of flowing blood, and thus the blood T1/T2 estimates may 

not be reliable. Sixth, no post-contrast T1/T2 mapping was performed, although simulations 

suggest the network could be used for post-contrast data (Supporting Information Figure 

S12). Seventh, no comparison was made between deep learning cMRF and conventional 

T1/T2 mapping techniques, although prior work has compared dictionary-based cMRF with 

conventional mapping.13 Finally, the in vivo results were limited to healthy subjects, and 

additional validation of the deep learning cMRF reconstruction should be performed in 

patients with known cardiac pathologies.

In conclusion, this work introduces a deep learning method for reconstructing T1 and T2 

maps from undersampled spiral cMRF images in less than 400ms per slice with similar 

accuracy and precision in vivo as dictionary matching. By eliminating the need for scan-

specific dictionary generation and pattern matching, this approach may enable rapid at-the-

scanner reconstructions and facilitate the clinical translation of cMRF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Neural network for cMRF T1 and T2 map reconstruction.
A neural network is used with 18 hidden layers with 300 nodes per layer (blue rectangles) 

and rectified linear unit (ReLU) activation functions (yellow arrows). Skip connections 

(black lines) are used every 4 layers. The inputs to the network are a measured cMRF 

signal timecourse concatenated with the cardiac RR interval times, and the outputs are the 

estimated T1 and T2 values. The network operations are performed independently for each 

voxel.

Hamilton et al. Page 10

Magn Reson Med. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Generation of training data.
The network is trained using simulated cMRF signal timecourses. A pseudo-noise sample is 

randomly drawn from the repository (generation of pseudo-noise is described in Supporting 

Information Figure S4). The amplitude of the pseudo-noise is scaled by a factor C so 

the SNR of the noisy signal is between specific bounds (0.2–1.0 for this study). Random 

phase shifts ϕ1 and ϕ2 are applied to the cMRF signal and pseudo-noise, respectively. The 

pseudo-noise is added to the cMRF signal to yield the noisy signal that will be used for 

training.

Hamilton et al. Page 11

Magn Reson Med. Author manuscript; available in PMC 2023 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Monte Carlo simulation results for (A) T1 and (B) T2 in myocardium, liver, and blood.
The different color lines refer to the standard deviation (SD) of Gaussian noise that is added 

to the RR interval times, with the SD given as a percentage of the mean RR interval. SD 0% 

refers to a constant heart rate, while SD 100% refers to a highly variable heart rate.
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Figure 4. cMRF T1 and T2 maps in two healthy subjects at 1.5T.
T1 and T2 maps are shown corresponding to dictionary-based pattern matching and the deep 

learning reconstruction, along with difference maps. Subject A had a steady cardiac rhythm, 

while Subject B had a variable cardiac rhythm with one missed ECG trigger. The mean and 

standard deviation in T1 and T2 over the entire myocardium are displayed as insets.
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Figure 5. Analysis of the in vivo data.
Linear regression plots are shown comparing the mean myocardial (A) T1 and (B) T2 values 

using dictionary matching and deep learning. Bland-Altman plots are shown comparing 

the mean myocardial (C) T1 and (D) T2. The solid line indicates the bias, and the dotted 

lines indicate the 95% limits of agreement. Boxplots comparing the intrasubject standard 

deviation (SD) for (E) T1 and (F) T2 in the myocardium are also presented.
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