I

MOLECULAR
METABOLISM

Check for
updates

Genetic deletion of Bco2 and /sx establishes a
golden mouse model for carotenoid research

Linda D. Thomas, Srinivasagan Ramkumar, Marcin Golczak, Johannes von Lintig"

ABSTRACT

Objective: Low plasma levels of carotenoids are associated with mortality and chronic disease states. Genetic studies in animals revealed that
the tissue accumulation of these dietary pigments is associated with the genes encoding -carotene oxygenase 2 (BCO2) and the scavenger
receptor class B type 1 (SR-B1). Here we examined in mice how BCO2 and SR-B1 affect the metabolism of the model carotenoid zeaxanthin that
serves as a macular pigment in the human retina.

Methods: We used mice with a /acZ reporter gene knock-in to determine BcoZ2 expression patterns in the small intestine. By genetic dissection,
we studied the contribution of BCO2 and SR-B1 to zeaxanthin uptake homeostasis and tissue accumulation under different supply conditions
(50 mg/kg and 250 mg/kg). We determined the metabolic profiles of zeaxanthin and its metabolites in different tissues by LC-MS using standard
and chiral columns. An albino /sx/~/Bco2~’~ mouse homozygous for Tyrc’2J was generated to study the effect of light on ocular zeaxanthin
metabolites.

Results: We demonstrate that BCO2 is highly expressed in enterocytes of the small intestine. Genetic deletion of Bco2 led to enhanced
accumulation of zeaxanthin, indicating that the enzyme serves as a gatekeeper of zeaxanthin bioavailability. Relaxing the regulation of SR-B1
expression in enterocytes by genetic deletion of the transcription factor ISX further enhanced zeaxanthin accumulation in tissues. We
observed that the absorption of zeaxanthin was dose-dependent and identified the jejunum as the major zeaxanthin-absorbing intestinal region.
We further showed that zeaxanthin underwent oxidation to e,e-3,3'-carotene-dione in mouse tissues. We detected all three enantiomers of the
zeaxanthin oxidation product whereas the parent zeaxanthin only existed as (3R, 3'R)-enantiomer in the diet. The ratio of oxidized to parent
zeaxanthin varied between tissues and was dependent on the supplementation dose. We further showed in an albino Isx~"~/Bco2~’~ mouse that
supra-physiological supplementation doses (250 mg/kg) with zeaxanthin rapidly induced hypercarotenemia with a golden skin phenotype and
that light stress increased the concentration of oxidized zeaxanthin in the eyes.

Conclusions: We established the biochemical basis of zeaxanthin metabolism in mice and showed that tissue factors and abiotic stress affect

the metabolism and homeostasis of this dietary lipid.
© 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION roles as precursors for chromophores in vision and hormone-like
compounds in a variety of physiological processes throughout the
mammalian life cycle [7].

Low carotenoid status has been associated with a number of chronic

Carotenoids affect a rich variety of physiological functions in nature and
are beneficial for human health serving as antioxidants in lipophilic

environments and light filters in the skin [1]. The carotenoids, zeax-
anthin and lutein, accumulate in high concentrations in the fovea
centralis within the macula lutea of primate eyes [2,3]. The macular
pigments filter short-wavelength light, decrease chromatic aberration,
and prevent light damage to the photoreceptors [4,5]. Additionally,
carotenoids such as B-carotene are the major precursors for retinoids
(vitamin A and its derivatives) in the human diet [6]. Retinoids play vital

disease states, including cardiovascular disease, cognitive impair-
ments, and age-related macular degeneration (AMD) [5,8—10].
Studies indicating that zeaxanthin and lutein can reduce the pro-
gression of AMD have attracted broad clinical interest [11]. However,
intervention trials revealed variable outcomes of the preventive effects
of carotenoids on the incidence of chronic disease [8]. Indeed, long-
term supraphysiological dosing of B-carotene has even proven to be
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harmful in some cases to people at risk of disease [12,13]. These
findings suggest the existence of a therapeutic window for dietary
carotenoids that is influenced by genetics and lifestyle [14].

Many vertebrates, including humans, absorb carotenoids intact and
accumulate them in specific patterns in tissues [15]. However, mice the
most common model for biomedical research do not accumulate the
pigments in significant amounts. In the past decades, genes encoding
proteins of carotenoid metabolism have been identified, including the
gene encoding [-carotene-oxygenase 2 (BCO2) and the class B scav-
enger receptor type 1 (SR-B1) [16—19]. Mutations in the BCO2 gene
were established as important genetic factors that determine carotenoid
tissue accumulation in vertebrates. BCO2 mutations are associated with
the yellow fat phenotype in bovine, sheep, and rabbits [20—22] and a
yellow skin phenotype in chicken [23]. The BCOZ2 gene encodes a
carotenoid cleaving dioxygenase (CCD) that catalyzes oxidative cleavage
at positions C9, C10 and C9’, C10’ of the carbon backbone of many
carotenoids and apocarotenoids [24,25]. The broad substrate specificity
and the phenotype of BCO2 mutant animals indicate that BCO2 is the
major carotenoid metabolizing enzyme. While mutations in the BC0O2
gene are associated with carotenoid excess, mutations in the gene
encoding SR-B1 are associated with carotenoid deficiency [26]. More-
over, genetic polymorphism in the gene affects macula pigment density
in the human eyes and was implicated as a genetic factor modulating
AMD susceptibility [27,28].

Here, we studied the interplay of SR-B1 and BCO2 in the metabolism
and homeostasis of the model carotenoid zeaxanthin in mice. We
observed that BCO2 expression in enterocytes of the intestine serves
as the gatekeeper for zeaxanthin absorption and body distribution. We
further identified the transcription factor ISX as an important modulator
of the intestinal activity of SR-B1 and zeaxanthin absorption. Zeax-
anthin absorption was concentration-dependent and the parent com-
pound underwent oxidation into e,e-3, 3'-carotene-dione enantiomers.
We established an albino /sx~/Bco2~’~ mouse as a resourceful
animal model to study carotenoid metabolism and to characterize the
physiological roles and benefits of the pigments in a mammalian
model. Similar to humans, this mouse model accumulates carotenoids
and displays the pigments in the skin and eyes.

2. MATERIALS AND METHODS

2.1. Materials

All chemicals, unless otherwise stated, were purchased from Fisher
Scientific and Sigma Aldrich. TRIzol RNA isolation reagent was ob-
tained from Invitrogen. The anti-mouse and anti-rabbit horseradish
peroxidase-conjugated secondary antibodies were purchased from
Abcam (Cambridge, United Kingdom). RIPA buffer was purchased from
Cell Signaling Technology (Danvers, MA). 3R,3'R-zeaxanthin beadlets
were a gift from DSM (Sisseln, Switzerland).

2.2. Animals, husbandry, and experimental diets

All mice experiments in these studies were conducted using protocols
approved by Case Western Reserve University’s Institutional Animal
Care and Use Committee (IACUC) and adhered to the guidelines of the
Association for Research in Vision and Ophthalmology Statement for
the Use of Animals in Ophthalmic and Vision Research. Both male and
female mice on a pigmented C57BL/6 J or albino B6(Cg)-Tyrc-2J/J
genetic background were used for this study. Wild-type (WT) mice
were purchased from the Jackson laboratory. The generation of
Bco2~'~ mice in the C57BL/6 J background was previously described
[29,30]. The generation of /sx/~/Bco2~’~ mice on an albino B6(Cg)-
Tyrc-2J/J background was carried out by conventional breeding

between pigmented C57BL/6 J Isx~’~/Bco2~’~ and albino B6(Cg)-
Tyrc-2J/J WT mice to generate B6(Cg)-Tyrc-2J/J Isx~"~/Bco2 "~
knockout mice. All mice were bred on a standard chow diet consisting
of 15,000 IU vitamin A/kg (Prolab RMH 3000, LabDiet, St. Louis, MO,
USA) at a vivarium located at Case Western Reserve University. Mice
were raised on a dark/light cycle to maintain a circadian rhythm. The
dark-raised mice were transferred immediately after weaning in a dark
room for four weeks. At the end of the experimental period, mice were
anesthetized using a drug cocktail of ketamine (20 mg/mL) and
xylazine (1.7 mg/mL). Blood was drawn directly from the heart by
cardiac puncture under deep anesthesia. Immediately after, mice were
perfused with 20 mL of PBS and sacrificed by cervical dislocation for
further tissue collection. The duodenum, jejunum, ileum, liver, kidney,
eyes, and epididymal white adipose tissue (€WAT) were immediately
harvested for analysis or snap frozen in liquid nitrogen and stored
at —80 °C until further use.

2.3. Zeaxanthin dietary supplementation

After weaning (4 weeks old), male and female Bco2™~ and Isx~
~/Bco2~’~ mice were fed with a control diet without 3R,3'R-zeax-
anthin (0 mg/kg 3R,3'R-zeaxanthin), 50 mg/kg 3R,3'R-zeaxanthin, or
250 mg/kg 3R,3'R-zeaxanthin for 4 weeks. Enantiomerically pure
3R,3'R-zeaxanthin, confirmed by chiral HPLC analysis, was used for
dietary supplementation. Additionally, a cohort of WT mice was sup-
plemented with 250 mg/kg 3R,3'R-zeaxanthin for 4 weeks. Both
control and 3R,3’R-zeaxanthin diets were devoid of vitamin A. Diets
containing 3R, 3'R-zeaxanthin were prepared by Research Diets (New
Brunswick, NJ, USA) by incorporating a water-soluble formation of
3R,3’R-zeaxanthin beadlets (DSM, Sisseln, Switzerland). Fresh diets
were provided every week, and body weight was monitored at that
point. Average food consumption of WT, Bco2~/~ ,and Isx '~ /Bco2 '~
mice was estimated by measuring the leftover food from the cage
divided by the number of mice present in the cage. Fecal matter
collection for mice on either 50 mg/kg 3R,3'R-zeaxanthin, or 250 mg/
kg 3R,3’R-zeaxanthin occurred at several time points (0, 1, 2, 4, 7, 14,
21, and 28 days). At the end of the experimental period, mice were
anesthetized as described above. The tissues were immediately
dissected, weighed, and snap-frozen in liquid nitrogen, and stored
at —80 °C until further analysis.

/

2.4. Light exposure experiments

Albino /sx~"~/Bco2~’~ mice were used for the light experiment.
Immediately after weaning, albino Isx~/~/Bco2~’~ mice were placed
on either a 250 mg/kg 3R,3'R-zeaxanthin diet or a control diet for 4
weeks. Each dietary group was then separated into three experimental
cohorts. These included 1) dark-condition, 2) dark/light-condition, and
3) light-stressed experimental groups. Mice in the dark-condition
group were housed in a dark room for 24 h/day for 4 weeks. Those
in the dark/light-condition group were housed in the standard mouse
facility with a 12/12-hour light/dark cycle. Mice in the light-stress
group were housed under the same conditions as the dark/light-
condition group, however, they were exposed to light stress twice a
week starting at the second week of dietary supplementation and
ending after 4 weeks of supplementation. Mice were dark-adapted
overnight before light treatment. Immediately prior to light treatment,
mice pupils were dilated with 1% tropicamide (Falcon Pharmaceuti-
cals, Fort Wort, TX, USA). Light stress was induced in mice by white
light exposure at 85,000 lux (100 W LED Floodlight; MoS Lighting
Technology Co., Ltd, Shenzhen, China) for 2 min in a white bucket.
Mice were then returned to normal husbandry conditions with a 12/12-
hour light/dark cycle.
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2.5. Carotenoid extraction

Carotenoid extraction from tissues was performed under dim red light
(<600 nm). Carotenoids were extracted from ~25 mg of the liver,
duodenum, jejunum, ileum, white adipose tissue, fecal matter, 100 uL
of serum, and one whole eye as previously described [24,31]. Briefly,
tissues were dissolved and homogenized in 200 uL of PBS. This was
followed by the addition of 200 uL methanol, 400 uL acetone, 200 uL
diethyl ether, and 400 uL hexane to extract carotenoids. Phase sep-
aration was achieved by centrifugation at 4000x g for 30 s. The
organic phase was collected and the extraction was repeated. The
combined organic phases were collected and dried in a SpeedVac
(Eppendorf, Hauppauge, NY). Extracted carotenoids were dissolved in
150 uL of hexane: ethyl acetate (70:30, v/v) for normal phase HPLC
analysis or dissolved in 150 uL of hexane: isopropanol (95:5, v/v) for
chiral HPLC analysis.

2.6. HPLC and LC-MS analysis

Two HPLC methods were employed for the analysis of extracted ca-
rotenoids. Method 1 determined carotenoid content via HPLC analysis
performed on a 1200 Agilent HPLC series equipped with a diode array
detector and normal-phase Agilent Zorbax silica column (4.6 mm ID x
150 mm with 5 mm packing; Agilent, Santa Clara, CA). Chromato-
graphic separation was achieved with an isocratic flow of 30% ethyl
acetate in hexane at a flow rate of 1.4 mL/min. The system was scaled
with known amounts of authentic 3R, 3’R-zeaxanthin received from
DSM (Sisseln, Switzerland). Method 2 involved the separation of chiral
metabolites from tissues. A chiral column, ChiralPak AD (Daicel
Technologies, West Chester, PA USA), of 25 cm length x 4.6 mm
internal diameter was used. Chromatographic separation was ach-
ieved with an isocratic flow of 5% isopropanol in hexane at a flow rate
of 1 mL/min. The system was calibrated with known amounts of
authentic 3R,3'R-zeaxanthin, 3R,3’S-zeaxanthin, and 3S, 3’S-zeax-
anthin, which were received from DSM (Sisseln, Switzerland). Oxidized
zeaxanthin metabolites were identified based on their retention time,
spectra characteristics, and molecular masses. This was achieved by
first performing thin-layer chromatography (TLC) using liver tissue
samples to separate the different metabolites. Subsequently, individual
bands from the TLC plate were isolated and separated on a chiral
column as described above. Liquid chromatography-mass spectrom-
etry (LC/MS) analysis was performed using LTQ linear ion trap mass
spectrometer equipped with an atmospheric pressure chemical ioni-
zation probe (Thermo Fisher Scientific). Chromatographic conditions
were the same as described above. MS signal acquisition was per-
formed in positive ionization mode and the MS parameters were
optimized for zeaxanthin.

2.7. B-galactosidase expression staining

WT and Bco2 ™/~ jejunum were harvested in cold PBS and were
immediately frozen individually in OCT compound (Sakura) on dry ice.
Frozen tissues were sectioned at 10 microns and cut slides were
stored at —80 °C until staining. Immediately prior to staining, slides
were fixed in slide fixative (0.2% glutaraldehyde in PBS) for 10 min on
ice. Slides were first washed in PBS for 10 min, followed by 10 min of
washing with detergent rinse (0.02% Igepal, 0.01% Sodium Deoxy-
cholate, and 2 mM MgCl, in 0.1 M phosphate buffer [pH 7.5]). Slides
were then covered with 1 mg/mL X-gal staining solution for 2 h at
37°C in the dark. Slides were post-fixed in 4% PFA (4% Para-
formaldehyde [PFA] in PBS) for 10 min. Following this, slides were
rinsed in PBS for 10 min and underwent two washes in distilled water
for 5 min each. Counter-stain with Nuclear Fast Red (Vector Labora-
tories) was done for 5 min and rinsed with distilled water twice and
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washed in distilled water for 2 min. Slides were dehydrated with
grades of ethanol in xylene (50, 70, 90, and 100%) and two changes of
xylene and mount with Permount and coverslip.

2.8. Western blotting

Total protein was extracted from mice. Recombinant 3-galactosidase
supernatant (0.15 g of protein) was used as a positive control in the
[-galactosidase Western blot. Following extraction, proteins (30 ug)
were separated on 10% SDS-PAGE gels using the Bio-Rad Mini gel
system and transferred onto polyvinylidene fluoride (PVDF) membranes
(Roche, Basel, Switzerland). After transfer, PVDF membranes were
blocked with 5% skim milk prepared in Tris-buffered saline (pH 7.4)
containing 0.1% Tween (TBS-T) for 1 h. Membranes were then probed
with an anti-3-galactosidase antibody (Proteintech Group, lllinois, USA,
catalog number 14323-1-AP) or SR-B1 antibody (Abcam, Cambridge,
UK) at a dilution of 1:1,000 overnight at 4°C. After washing with TBS-T,
membranes were incubated with the appropriate horseradish
peroxidase-conjugated secondary antibody at the dilution of 1:10,000.
Blots were washed and detected with CL chemiluminescence sub-
strate according to manufacturer instructions (Thermo Fisher Scienti-
fic, Waltham, MA).

2.9. Optical coherence tomography (OCT)

Albino Isx~’~/Bco2 ™/~ mice pupils were dilated with 1% tropicamide
(Falcon Pharmaceuticals, Fort Wort, TX, USA). Following this, mice
were anesthetized with an intraperitoneal injection of a cocktail of
20 mg/mL ketamine and 1.75 mg/mL xylazine. Mice whiskers were
trimmed to avoid image artifacts. Spectral-domain (SD)-optical
coherence tomography (SD-0CT) images were acquired in the linear B-
scan mode of an ultra-high-resolution SD-OCT instrument (Bioptigen,
Morrisville, NC, USA) as previously described [32].

2.10. Electroretinography (ERG)

Prior to performing ERG, supplemented albino Isx~"~/Bco2~"~ mice
were dark-adapted overnight. Mice pupils were dilated with 1% tro-
picamide (Falcon Pharmaceuticals, Fort Wort, TX, USA). Following this,
mice were anesthetized with an intraperitoneal injection of a cocktail of
20 mg/mL ketamine and 1.75 mg/mL xylazine. Mice were placed on a
temperature-regulated heating pad throughout each recording session.
Diagnosis Celeris rodent ERG device (Diagnosis, Lowell, MA,USA) with
an Ag-AgCL cornea electrode was used for recordings. Scotopic re-
sponses were obtained in the dark with 10 steps of white light and
flash stimulus, ranging from 0.001 to 20 cd s x m~2. The duration of
the inter-stimulus intervals increased from 4 s for low-luminance
flashes to 90 s for the highest stimuli. After 7min of light adaptation,
cone ERGs were recorded with strobe-flash stimuli (0.32—
63 cd s x m*2) superimposed on the adapting field [32].

2.11. Real-time quantitative PCR analyses

WT mice were sacrificed and tissues were harvested. Total RNA was
extracted from tissues by TRIZOL method (Invitrogen, Carlsbad, CA)
and quantified using Nanodrop ND-1000 spectrophotometer (Thermo
Fisher Scientific, Waltham, MA). cDNA was generated using the High
Capacity RNA to cDNA kit (Applied Biosystems, Thermo Fisher Sci-
entific, Waltham, MA, USA). Gene expression measurement was car-
ried out by real-time quantitative PCR using an Applied Biosystems
Real-Time PCR instrument with Taq Man probes (Applied Bio-
systems; Thermo Fisher Scientific, Waltham, MA, USA). Primers used
were $-actin (Mm02619580) and Bco2 (Mm00460048). Amplification
was carried out using TagMan polymerase. Fast Universal PCR Master
Mix (2 x ) No Amp Erase, UNG (Applied Biosystems; Thermo Fisher
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Scientific, Waltham, MA, USA) following the manufacturer’s protocol.
10 ng cDNA was used per 10 pL reaction. Gene expression levels were
normalized to the expression of housekeeping gene (-actin using the
AACt method as previously described [33].

2.12. Statistical analysis

Statistical analyses were performed using unpaired Student’s t-test
and one-way ANOVA using GraphPad Prism 8.0 software (GraphPad).
An alpha level of P < 0.05 was considered significant. Data are
expressed as mean values = standard deviation.

3. RESULTS

3.1. BCO2 is expressed in high levels in enterocytes of the mouse
intestine

The exact physiological role of BCO2 in mammals is not fully eluci-
dated. Therefore, to characterize BCO2 in murine carotenoid meta-
bolism, we first examined its mRNA expression within multiple tissues
from wild-type (WT) mice maintained on a normal chow diet. RT-gPCR
was performed and normalized to the housekeeping gene $-actin. To
identify tissues with the highest expression, fold change values were
plotted in decreasing order based on the tissue with the highest fold
change (Figure 1A). The highest Bco2 expression within WT mice was
observed in the duodenum of the small intestine. Other tissues that
exhibited high mRNA levels of Bco2 were the liver, kidney, testis, and
jejunum. In contrast, the adrenal gland, spleen, and lymph node
exhibited low Bco2 mRNA levels.

The lack of a BCO2-specific antibody prevents the analysis of BCO2
expression on the protein level [31]. To circumvent this problem, we
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utilized a previously established Bco2 =/~ mouse model [29]. In this
transgenic mouse line, exons 1 to 4 of the murine Bco2 gene were
deleted and replaced with a /acZ reporter gene that is expressed under
the control of the native murine Bco2 promoter (Figure. S1A). The lacZ
gene contains a nuclear target sequence that results in the nuclear
transport of the encoded [-galactosidase. We first confirmed p-
galactosidase expression by Western blotting using total protein iso-
lated from the liver, duodenum, jejunum, and ileum of Bco2~~ mice
(Figure. S1B). The B-galactosidase antibody detected a band that co-
migrated with a bacterial B-galactosidase on the SDS-PAGE (Figure.
S1B). To examine which small intestine cell types BCO2 is
expressed, we performed a [3-galactosidase staining assay with cross
sections of the jejunum isolated from either Bco2 ™ /= or WT mice. This
assay revealed strong blue staining of the nuclei of enterocytes along
the microvilli of the intestinal lining of Bco2 ™/~ mice (Figure. 1B). This
blue staining was absent in WT control mice, indicating that the
staining was specific for recombinant $-galactosidase expression and
activity.

The high expression of BCO2 in the intestine suggested that the
enzyme converts carotenoids upon absorption into apocarotenoids. To
test this hypothesis, we supplemented WT mice with a high dose of
zeaxanthin (250 mg/kg diet). After a four-week dietary intervention, we
sacrificed the mice and determined via high-pressure liquid chroma-
tography (HPLC) analysis the zeaxanthin concentrations in different
tissues. As previously reported, we detected parent zeaxanthin as well
as oxidized metabolites [29]. In the intestine, the lowest concentration
of zeaxanthin existed in the duodenum with the highest Bco2
expression (Figure 1A &C). The jejunum contained the highest amount
of zeaxanthin, in which the major metabolite again was the parent
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Figure 1: Bco2 gene expression profile and zeaxanthin metabolites in WT mice. A) Mouse Bco2 mRNA expression in various tissue from WT mice (n = 4) maintained on a
normal chow diet. Total RNA was extracted from various tissues and RT-qPCR was performed to determine the tissue transcript expression pattern of Bco2. B) Staining for [3-
galactosidase in WT and Bco2~/~ small intestine. In Bco2~~ mice, B-galactosidase is expressed and serves as a BCO2 reporter. B-galactosidase staining was performed on
cross-sections of the jejunum from the small intestine of Bco2 "~ and WT mice (negative control). Blue staining is observed in enterocytes of the villi of Bco2~~ mice. C-D)
Quantification of oxidized zeaxanthin (yellow) and parent zeaxanthin (orange), from WT mice tissues. WT mice (n = 5) were supplemented with 250 mg/kg zeaxanthin for 4 weeks.
Zeaxanthin metabolites were isolated from harvested tissues and quantified via HPLC analysis. C) Oxidized zeaxanthin (yellow) and zeaxanthin (orange) from the duodenum,
jejunum, lleum, and liver in WT mice. D) Oxidized zeaxanthin (yellow) and zeaxanthin (orange) from serum, kidney, epididymal white adipose tissue (€WAT), and eye of WT mice.
Values indicate means + SD. Statistical analyses were performed by comparing tissues using unpaired two-tailed Student’s -test. P < 0.05; **P < 0.01. Statistical significance

was determined using Prism 8 software, with a significance threshold set at P < 0.05.
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compound (Figure. 1C). In contrast to the jejunum, the liver contained
mostly oxidized zeaxanthin. The concentration of zeaxanthin metabo-
lites was about 40-fold lower in the serum, eyes, and kidney of WT
mice (Figure. 1D). In epididymal white adipose tissue (eWAT), that
serves as a reservoir for lipids, a slightly higher concentration of
zeaxanthin existed in comparison to the kidney and the eye (Figure.
1D). Thus, we observed that zeaxanthin was absorbed as shown by
its high intestinal concentration but high BCO2 expression in the in-
testine and liver (Figure. 1A) led to its rapid metabolic turnover and
prevented accumulation in the body.

3.2. The transcription factor ISX determines zeaxanthin
bioavailability in mice

SR-B1 facilitates the uptake of carotenoids and other fat-soluble vi-
tamins in the enterocytes of the intestine [34]. Mice deficient for the
transcription factor ISX display increased SR-B1 expression in distal
parts of the intestine [35—37]. We used BcoZ~ = and Isx "~ /Bco2 "~
mice to test the effects of ISX deficiency for zeaxanthin absorption in
mice [35]. To determine the effects of BCO2 and ISX on carotenoid
metabolism, 4-week-old BcoZ~ /= and Isx "~ /Bco2~’~ mice were
placed on diets containing increasing concentrations of zeaxanthin
(0 mg/kg, 50 mg/kg, and 250 mg/kg) (Figure 2A). We chose the supra-
physiological supplementation (250 mg/kg) to test whether we can
saturate zeaxanthin uptake in the mouse gut.

The dietary intervention with zeaxanthin did not affect food intake in
Bco2z ™~ and Isx /" /Bco2~’~ mice (Figure. S2A). During the inter-
vention, we collected the fecal matter to compare zeaxanthin
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absorption in BcoZ/~ and Isx"~/Bco2 "~ mice. Fecal matter
collection occurred over 28 days of the dietary intervention at several
time points (0, 1, 2, 4, 7, 14, 21, and 28 days). We performed HPLC
analysis to determine zeaxanthin content within the fecal matter. At
50 mg/kg zeaxanthin supplementation, Isx~~/Bco2 '~ mice excreted
less zeaxanthin than Bco2 ~/~ mice, indicative of enhanced absorption
(Figure. S2C). The difference between the genotypes was more pro-
nounced at the beginning of the dietary intervention. During the four
weeks of intervention, the amount of excreted zeaxanthin decreased in
Bco2~’~ mice and converged to the levels of /sx/~/Bco2 '~ mice
(Figure. S2C). In the cohort of mice supplemented with 250 mg/kg of
zeaxanthin, Isx~"~/BcoZ~’~ mice also excreted less zeaxanthin than
Bco2™’~ mice though the difference between the genotypes was less
pronounced than on the 50 mg/kg zeaxanthin diet (Figure. S2E).
Interestingly, we observed under all dietary conditions the excretion of
some oxidized zeaxanthin (Figure 2B and D) though its levels in the
feces were far lower than parent zeaxanthin.

After 4 weeks of dietary intervention, we sacrificed mice and collected
tissues. The modulation of carotenoid absorption by the /sx genotype
was visibly observable by the color of adipose tissues. Isolated eWAT
from mice on either 50 mg/kg or 250 mg/kg zeaxanthin was yellow in
Bco2~’~ mice and orange in Isx /~/Bco2~’~ mice (Figure. 2B). This
yellow coloration was more pronounced in the adipose tissue of Isx™
~/BcoZ™’~ in comparison to BcoZ ™ ’~ mice (Figure. 2B). Quantification
of the total carotenoid content of WAT confirmed that /sx "~ /Bco2 ™/~
mice accumulated significantly higher amounts of zeaxanthin than
Bco2~"~ mice under either dietary condition (Figure. 2C). Thus,
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Figure 2: Yellow fat phenotype of Bco2~ and Isx '~ /Bco2~’~ mice. A) Scheme of dietary zeaxanthin supplementation of Bco2 ™'~ and /sx~/Bco2 '~ mice. Immediately
after weaning, mice were placed on either a control diet of 0 mg/kg zeaxanthin, 50 mg/kg zeaxanthin, or 250 mg/kg zeaxanthin diet for 4 weeks followed by tissue analysis. B)
Photographs of eWAT harvested from BcoZ™ = and Isx~/~/Bco2~’~ mice under different supplementation conditions. C) HPLC quantification analysis of total zeaxanthin (pmol/mg)
from eWAT of Bco2 ™'~ and Isx/~/Bco2 "~ mice under different supplementation conditions. Values indicate means =+ SD from five mice (3 females and 2 males) per tissue.
Statistical analyses were performed by comparing tissues using two-way ANOVA. P < 0.05; **P < 0.005, “*P < 0.0001. Statistical significance for oxidized and parent
zeaxanthin between different dietary groups was analyzed using an unpaired two-tailed Student’s t-test. “P < 0.05, **P < 0.01, P < 0.001, ***P < 0.001. Statistical
significance was determined using Prism 8 software, with a significance threshold set at P < 0.05.
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zeaxanthin was absorbed in a concentration-dependent manner and
this absorption increased when the suppressive regulatory effect of ISX
was removed by genetic dissection.

3.3. Zeaxanthin absorption in mice occurs in the jejunum

We next compared the protein levels of SR-B1 in the intestine (du-
odenum, jejunum, and ileum) of mice of different genotypes sup-
plemented with 250 mg/kg zeaxanthin (Figure. S3). SR-Bf1
expression was high in the duodenum and jejunum of
Isx"~/Bco2~~ mice when compared to Bco2 '~ and WT mice. To
compare the effect of the /sx genotype on zeaxanthin absorption and
body distribution, we determined zeaxanthin levels in BcoZ™ = and
Isx"~/Bco2~/~ mice maintained under different dietary conditions.
HPLC analysis was performed to identify and quantify zeaxanthin and
its metabolites. Again, HPLC traces displayed oxidized zeaxanthin
and parent zeaxanthin (Figure. S4A). The presence of oxidized
zeaxanthin metabolite was observed in the duodenum, jejunum, and
ileum of both genotypes at both the low (50 mg/kg) and high
(250 mg/kg) concentrations of zeaxanthin supplementation
(Figure 3). The overall zeaxanthin concentration was increased in all
parts of the intestine of Isx~/~/Bco2~’~ mice when compared to
Bco2~~ mice (Figure 3A—C & 3E-G). In Isx/~/Bco2~’~ mice, the
duodenum, jejunum, and ileum displayed higher concentrations of
the oxidized zeaxanthin when compared to the parent zeaxanthin at
50 mg/kg of zeaxanthin (Figure 3E—G). The same distribution was
observed in the duodenum and the ileum but not the jejunum of
Bco2~’~ mice at 50 mg/kg zeaxanthin (Figure 3A—C). At 250 mg/kg

zeaxanthin supplementation, there was no significant differences
between oxidized and parent zeaxanthin in the duodenum and ileum
of the Isx/~/Bco2™’~ mice (Figure 3E,G). However, the jejunum
exhibited a far higher amount of parent zeaxanthin than oxidized
zeaxanthin under this supply condition (Figure. 3F). The same pat-
terns were observed in the Bco2 /™ mice though the overall con-
centration of zeaxanthin and oxidized zeaxanthin were lower than in
the double mutant (Figure 3A—H).

In intestinal enterocytes, carotenoids are packaged in lipoproteins,
secreted in the circulation, and eventually taken up by the liver [34].
Therefore, we next determined concentrations of hepatic zeaxanthin in
the different mouse strains. Again, we observed a dose-dependent
increase of zeaxanthin in both genotypes (Figure 3D &H). At 50 mg
zeaxanthin, only the oxidized form of zeaxanthin became detectable. At
250 mg zeaxanthin, the oxidized form was the prevalent form but also
significant amounts of parent zeaxanthin were detectable. The hepatic
concentration of zeaxanthin metabolites was 3-fold higher in Isx™”
~/Bco2~’~ than in Bco2 ~/~ mice (Figure 3D &H). However, there was
no significant difference in liver weight between the different dietary
groups in BcoZ2™ /= and Isx /= /Bco2~’~ mice (Figure. S5). Moreover,
the hepatic concentration exceeded the intestinal concentrations.
Taken together, we observed a dose-dependent increase in zeaxanthin
concentrations in all parts of the intestine of the two mouse mutants.
The highest concentration of zeaxanthin and its oxidized metabolite
was found in the jejunum in both mouse genotypes. However, the data
also highlighted significant differences between Bco2 /= and Isx”’/
~/Bco2 "~ mice. The Isx’~/Bco2~’~ mice displayed far higher levels
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of zeaxanthin metabolites than Bco2~/~ mice in all parts of the in-
testine and the liver. Additionally, the ratio of oxidized to parent
zeaxanthin was influenced by the amount of zeaxanthin supplemen-
tation, indicating that the oxidation process is saturable when
increased amounts of zeaxanthin are provided via the diet.

3.4. Concentration and ratio of oxidized to non-oxidized zeaxanthin
metabolites in serum and selected peripheral tissues

To determine the zeaxanthin metabolite profile of the serum, eWAT,
kidney, and eye, tissues were harvested from Bco2~ ~ and Isx”/
~/Bco2~’~ mice. HPLC analysis was performed to identify and quantify
zeaxanthin metabolites (Figures. 4 & S4B). A pattern that emerged in
serum and the selected peripheral tissues was that at 50 mg/kg
zeaxanthin, the concentration of oxidized zeaxanthin was significantly
higher than that of the parent compound (Figure 4). The concentration
of carotenoids was similar in kidney and serum, whereas the con-
centration was two-fold higher in eWAT and the eyes of Bco2™ ~ and
Isx~"~/Bco2~’~ mice.

At 250 mg/kg zeaxanthin, oxidized zeaxanthin was still the prevalent
metabolite (approx.10: 1 ratio) in the serum of Isx "~ /Bco2~’~ and
BcoZ™’~ mice (Figure 4A & E). The same result was found in eWAT
though the carotenoid concentration was higher than in serum
(Figure 4A,C & 4E, G). In contrast, the kidney and eyes of Isx™/
~/Bco2~’~ mice exhibited ratios of respectively ~3:1 and 1.5:1 of
oxidized to parent zeaxanthin at 250 mg/kg zeaxanthin (Figure 4F & H).
The same trend was observed in Bco2 /~ mice though the carotenoid
concentration was lower than in the double mutant (Figure 4B & D).
Thus, the ratio of oxidized to parent zeaxanthin within peripheral tis-
sues was dose-dependent and variable between tissues.

I

MOLECULAR
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3.5. Characterization of zeaxanthin metabolites

The liver contained mostly oxidized zeaxanthin and we utilized liver
samples of Isx~/~/Bco2~’~ mice to determine its exact chemical
nature. We first performed preparative thin-layer chromatography
(TLC) with hepatic lipid extracts based on polarity using silica plates.
After the development of the plate, three distinct yellow bands were
observed (Figure 5A inset). Band 1 was the most prominent, indicating
that it contains the prevalent metabolite. The bands were scraped from
the silica plate and the carotenoids were extracted. The extracts were
analyzed by HPLC on a chiral column because zeaxanthin and its
oxidized metabolites exist in various enantiomers. Additionally, we
subjected the carotenoids to mass spectrometry analysis. With this
approach, different zeaxanthin metabolites were identified and char-
acterized based on retention time, spectral characteristics, and mo-
lecular mass. Before the analysis, the chiral column was gauged by a
mixture of zeaxanthin enantiomer standards, including 3R,3'R, 3R,3'S,
and 3S, 3’/S-zeaxanthin (Figure. S6). Chiral HPLC analysis revealed that
band 1 contained three major peaks (peaks 1, 2, and 3) (Figure. 5A).
Peak 1 had a retention time of 18.8 min, peak 2 had a retention time of
20.4 min, and peak 3 had a retention time of 22.5 min. Two metab-
olites (peaks 8 and 9) were present in band 3. Peak 8 had a retention
time of 23.9 min and peak 9 had a retention time of 26.0 min. The
faintness of band 2 on the TLC plate suggested that it is a minor
metabolite and its low absorbance value on the HPLC trace confirmed
this assumption (Figure. 5A). Band 2 contained four metabolites (peaks
4,5,6,&7).Peaks 4, 5, 6, and 7 had retention times of 18, 19.9, 22.4,
and 28 min, respectively. Spectroscopic analyses revealed that peaks
1, 2, and 3 shared identical characteristics (Figure. 5B). Additionally,
monoisotopic molecular ions for peaks 1, 2, and 3 were 565.5 [MH] ",
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Prism 8 software, with a significance threshold set at P < 0.05.

MOLECULAR METABOLISM 73 (2023) 101742 © 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 7

www.molecularmetabolism.com


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com

565.6 [MH]™, and 565.60 [MH]™ respectively (Figure. S7TA—C). A
molecular mass of 564.8 corresponds to e,e-carotene 3, 3’'-dione due
to the oxidation of the hydroxyl group and the loss of hydrogen at C3
and C3’ positions of the parent compound, 3R, 3'R-zeaxanthin (Figure.
S7F). The identical masses and spectra characteristics but different
chiral HPLC retention times of peaks 1, 2, and 3 indicated that these
compounds are stereoisomers with chiral centers at the C6 and C6’
positions. Peaks 8 and 9 showed different spectral characteristics and
chiral HPLC retention time but had identical masses (Figure 5F—G &
S7D-E). Peak 8 had a monoisotopic mass of 569.6 [MH] ™ and peak 9
had a mass of 569.6 [MH] ™. The molecular mass of 3R,3’R-zeaxanthin
is 568.9. Chiral HPLC analysis of pure 3R,3'R-zeaxantin as a standard
had a retention time of ~ 23 min, which is similar to peak 8’s retention
time of 23.9 min. Thus, peak 8 corresponded to 3R,3’R-zeaxanthin.
The slight difference in spectral characteristics and the later retention
time of peak 9 indicated that it may be a cis-isomer of 3R,3’'R-zeax-
anthin (Figure 5A,G & S7E). We were not able to determine the masses
of peaks 4, 5, 6, and 7 because of low abundance but we speculate
based on their spectral characteristics that they are zeaxanthin me-
tabolites in which only one ring site underwent oxidation. The pro-
duction of these compounds has been previously reported in WT mice
upon xanthophyll supplementation [38]. We also subjected other tis-
sues to chiral HPLC analysis and determined the presence of zeax-
anthin stereoisomers in other tissues, including the eye (Figure 6). All
tissues showed similar patterns with e,e-carotene 3, 3’-dione (peaks
1, 2, and 3) and 3R, 3'R-zeaxanthin as major zeaxanthin metabolites
(Figure. 6). Notably, no peak with a retention time of 3R, 3’S-zeax-
anthin was detected in the eyes of the mice (Figures. 6 & S6).
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3.6. Albino /sx~/~/Bco2~’~ mice serve as a versatile mouse model
to study carotenoid biology

We generated an albino /sx/~/Bco2 "~ mice that lack melanin
pigmentation to study the light-absorbing properties of carotenoid me-
tabolites. The mice were supplemented with either no zeaxanthin as a
control or with 250 mg/kg zeaxanthin for 4 weeks. A striking charac-
teristic of supplemented albino Isx~/~/Bco2~"~ mice was the yellow
skin color phenotype observed in their ears, eyelids, and nostrils
(Figure 7A). This phenotype was not observed in albino Isx~/Bco2 ™"~
mice on a control diet. This finding demonstrated that supplementation
with high amounts of zeaxanthin can induce hypercarotenemia within
these mice. This condition has previously been described in humans
with overexposure to carotenoid supplementation [39].

We next performed optical coherence tomography (OCT) and electro-
retinography (ERG) to determine the effects of carotenoid accumulation
in the eyes of these animals. OCT analyses of supplemented and non-
supplemented mice revealed no differences in the stratification of the
retinal layers (Figure. S8A). There also was no obvious deposition of
lipids in the RPE or other retinal layers. ERG analysis revealed normal
responses of supplemented and non-supplemented animals under
photopic and scotopic conditions (Figure. S8B). Thus, we observed no
detrimental effects of zeaxanthin accumulation in the eyes of these mice.
To determine the effects of light absorption on ocular zeaxanthin
metabolite concentration and composition, we established an
experimental system that exposed albino Isx"~/Bco2~~ mice to
different light conditions. While cohorts of mice were subjected to
three distinct light conditions, they were supplemented with either
0 mg/kg or 250 mg/kg zeaxanthin for 4 weeks. One cohort of mice
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Figure 5: Determination of the chemical nature of zeaxanthin metabolites from Isx~’~/Bco2 /" liver. A) Thin-layer chromatography (TLC) was used to separate hepatic
zeaxanthin metabolites extracted from fsx~/~/Bco2~’~ mice supplemented with 250 mg/kg zeaxanthin. A photograph of the TLC silica plate showed three distinct bands. Black
asterisks indicate the positions of the bands (band 1 = top, band 2 = middle, and band 3 = bottom). Bands were individually scraped from the TLC silica plates, carotenoids were
extracted and separated on a chiral HPLC column. Representative chiral HPLC traces at 460 nm of band 1 (burgundy), band 2 (orange), and band 3 (red). Band 1 contains three
peaks (peaks 1 (18.8min), 2 (20.4min), and 3 (22.5min)). Band 2 contains four peaks (peaks 4 (18min), 5 (19.9min), 6 (22.4min), and 7 (28min)). Band 3 contains two peaks
(peaks 8 (23.9min) and 9 (26.0min)). B) Spectral characteristics of peaks 1.2, and 3 from band 1 (burgundy). C) Spectral characteristics of peak 4 from band 2 (orange). D)
Spectral characteristics of peak 5 from band 2 (orange). E) Spectral characteristics of peaks 6 and 7 from band 2 (orange). F) Spectral characteristics of peak 8 from band 3 (red).

G) Spectral characteristics of peak 9 from band 3 (red).
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Figure 6: HPLC analysis of zeaxanthin metabolites in mouse tissues. Chiral HPLC analysis was performed with lipid extracts of tissues harvested from /sx~/~/Bco2~/~ mice
on a 250 mg/kg zeaxanthin diet. A) Representative chiral HPLC traces at 460 nm of the liver (black), eWAT (navy), jejunum (blue), duodenum (burgundy), ileum (red), and eye
(orange). Peaks 1 (20.5 min), 2 (22.2 min), and 3 (24.2 min) correspond to the three enantiomers of the oxidized zeaxanthin metabolite (,e-carotene-3.3'-dione). Peaks 4
(28.2 min) and 5 (30.2 min) correspond to geometric isomers of 3R,3'R-zeaxanthin. B) Spectral characteristics of peak 1. C) Spectral characteristics of peak 2. D) Spectral
characteristics of peak 3. E) Spectral characteristics of peak 4. F) Spectral characteristics of peak 5.

was housed in darkness (DC group), another cohort was subjected to
a light/dark cycle (L/DC group), and a third cohort was subjected to
light stress (LS group), at 85,000 lux for 2 min biweekly, while being
housed under light/dark cycle condition (Figure. 7B). After four weeks
of intervention, we performed HPLC analysis to identify and quantify
zeaxanthin metabolites in the eyes. HPLC analysis revealed an in-
crease in the concentration of zeaxanthin metabolites with increasing
light exposure (Figure. 7C). Notably, the concentration of oxidized
zeaxanthin was increased in the eyes of the L/DC and LS groups
when compared to the DC group. While oxidized zeaxanthin increased
in a light-dependent manner, the levels of the parent zeaxanthin
remained relatively constant between the different groups (Figure.
7D). This light-dependent phenomenon was not observed in the
liver of these mice. There was no light-dependent increase of total
zeaxanthin or its oxidized form between the different light treatment
condition groups (Figure 7E & F). Additionally, the total zeaxanthin
amount and the ratio of oxidized to non-oxidized zeaxanthin within
the livers were not altered in the groups. There was no significant
difference in dietary intake of /sx~/~/Bco2~’~ mice subjected to
different light conditions (Figure. S9B). Furthermore, OCT and ERG
analysis showed no differences in ocular morphology or function
between these mice (Figs. S9A and S10).

4. DISCUSSION

Low blood levels of carotenoids are associated with an increased risk
of chronic disease states and vitamin A deficiency [8]. Surprisingly,
plasma responses to dietary supplementation with these pigments are
quite variable between mammalian species [40]. While humans absorb
carotenoids efficiently, mice, the most common model in biomedical

research, are poor absorbers of the compounds. Genetic studies
identified BCO2 and SR-B1 as major determinants of carotenoid tissue
levels in animals [34]. We here studied the role of these proteins in
murine carotenoid metabolism and used the gained knowledge to
establish a humanized mouse model to study the pigments’ beneficial
and detrimental roles in physiological processes.

Initially, we observed that the intestine, testis, kidneys, and liver dis-
played the highest Bco2 mRNA levels from the investigated mice tis-
sues. Within the intestine, we observed a proximal to distal gradient of
BCO2 on the protein level. Similar observations were previously made
in rats in which the duodenum also showed the highest levels of BCO2
[41,42]. To receive information about which cell types express BCO2 in
the intestine, we took advantage of the /acZ reporter gene of the
Bco2 ™/~ mouse strain [29]. Strong PB-galactosidase staining was
observed in enterocytes of the intestinal villi that was absent in WT
mice. Supplementation of WT mice with 250 mg/kg zeaxanthin for 4
weeks resulted in a relatively high accumulation of zeaxanthin in the
small intestine with the highest concentration in the jejunum. Some
zeaxanthin was detected as oxidized metabolite in the liver of WT mice.
By contrast, serum and peripheral tissues displayed far lower con-
centrations of zeaxanthin and its oxidized metabolites. This observation
indicated that intestinal and hepatic expression of BCO2 in mice serves
as a gatekeeper of zeaxanthin accumulation in the periphery. Genetic
deletion of BCO2 readily diminished the massive first-pass effect in
zeaxanthin metabolism and increased its bioavailability. Notably, BCO2
is expressed at very low levels in the human intestine [43,44] and this
species-specific expression pattern likely explains its variable
bioavailability in rodents and humans. Future studies should focus on
the identification of regulatory mechanisms that contribute to this
regulation in different mammalian species.
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Figure 7: Light affects ocular zeaxanthin metabolism of albino Isx *~/Bco2 ’~ mice. Isx/~/Bco2 /~ mice with a C57/BL6 genetic background were crossed with B6(Cg)-
Tyrc—2J/J mice to produce mice displaying an albino phenotype. Mice were raised on either 0 mg/kg zeaxanthin as the non-supplemental control diet or 250 mg/kg zeaxanthin
diet for 4 weeks. A) Photograph of albino /sx~/~/Bco2~’~ mice on 0 mg/kg zeaxanthin (left) or 250 mg/kg zeaxanthin (right) diet. The yellow skin phenotype was observed in the
ears, eyelids, and nostrils of /sx~~/Bco2~’~ mice on a 250 mg/kg zeaxanthin diet. B) Schematic of the experimental design of the light stress study. 4-week-old albino /s~
~/BcoZ~’~ mice were supplemented with a 250 mg/kg 3R,3'R-zeaxanthin diet or control diet for 4 weeks. During the 4 weeks of dietary intervention, mice were separated into one
of the three experimental groups. These included 24 h dark cycle group (DC), a normal 12hr light—dark cycle group (L/DC), and a light stress group (LC) that received a light insult
biweekly for 2 min at 85,000 lux. C) Total zeaxanthin from the whole eye from /sx"~/Bco2~/~ mice under different light conditions. D) Ocular concentration of oxidized and parent
zeaxanthin isolated from eyes of /sx/~/Bco2~’~ mice under different light conditions. E) Total hepatic zeaxanthin concentration from the liver of /sx/~/Bco2~/~ mice under
different light conditions. F) Oxidized and parent zeaxanthin isolated from the liver of isx~/Bco2~/~ mice in different light conditions. Values indicate means + SD from four (2
females and 2 males) mice. Statistical analyses were performed by comparing tissues using two-way ANOVA. “P < 0.05; **P < 0.005, ***P < 0.0001. Statistical significance for
oxidized and parent zeaxanthin between different dietary groups was analyzed using an unpaired two-tailed Student’s t-test. “P < 0.05, **P < 0.01, P < 0.001, P < 0.001.

Statistical significance was determined using Prism 8 software, with a significance threshold set at P < 0.05.

Studies from our and other laboratories revealed that SR-B1 plays a
critical role in the uptake of carotenoids and fat-soluble vitamins in
enterocytes [34,45]. For instance, we previously showed that knockout
of the SR-B1 gene impedes xanthophyll absorption in the mouse in-
testine [35]. Other studies demonstrated that the vitamin A status of
the host influences the absorption of carotenoids. The molecular
equivalent for this regulation is the transcription factor ISX that controls
intestinal expression of BCO1 and SR-B1 in enterocytes of the intestine
[30,37,46]. Therefore, we established an Isx/~/Bco2~"~ double
mutant mouse and compared it with the respective single BcoZ™ ~
mutant mice. The double-knockout mice displayed significantly higher
concentrations of zeaxanthin metabolites than the single-knockout
mice in different parts of the small intestine, liver, and peripheral
tissues. In the small intestine, the highest concentration of carotenoids
was detected in the jejunum. The enhanced accumulation of carot-
enoids in double mutant mice was observed on diets that provided
physiological and supra-physiological concentrations of zeaxanthin.
We found the following evidence that the differences between geno-
types were mainly caused by alterations in intestinal absorption of the
pigments. First, intestinal SR-B1 expression was higher in the double
than in the single knockout mice and WT mice in all parts of the in-
testine. Second, we demonstrated by comparing the carotenoid con-
tent in feces that the double knockout excreted less carotenoids than
the single knockout under low and high supplementation conditions,
indicating that they absorbed more zeaxanthin. Notably, zeaxanthin
diets were prepared without vitamin A supplement and we expected
that the absence of vitamin A should affect the ISX-SR-B1 axis and

increase the intestinal activity of SR-B1. In fact, zeaxanthin concen-
tration in the fecal matter of Bco2 ™/~ mice slowly decreased during the
intervention and approached the levels of Isx~"~/Bco2~"~ mice. This
finding suggested that the effect of dietary vitamin A deprivation on
intestinal ISX expression was established slowly over time. However,
the enhanced accumulation of zeaxanthin and its metabolites in /sx
~/Bco2~’~ mice suggested that the /sx genotype affected additional
components of intestinal lipid absorption. Indeed, we recently observed
that ISX affects lipoprotein metabolism and chylomicron kinetics in
mice supplemented with B-carotene [47]. Future studies are needed to
fully elucidate the role of ISX in lipid metabolism.

We also observed that zeaxanthin is rapidly oxidized to a less polar
metabolite in mouse tissues. We established chiral chromatography in
combination with mass spectrometry to identify the oxidized metab-
olites as e,e-carotene-3.3'-diones. This keto-carotenoid displayed
chiral centers at C6 and C6’ and we detected all three enantiomers
though they existed in different concentrations. Additionally, we
detected parent zeaxanthin (3R, 3'R-[3,-carotene-diol) in tissues and
putative cis-derivatives. Recently, an enzyme, BDH1L catalyzing such
oxidation of dietary xanthophyll was identified in birds and fish [48].
Mammalian genomes encode related dehydrogenases but not a
BDH1L homolog. The existence of different stereoisomers indicated
that the oxidation of the 3-hydroxy-group to the corresponding 3-oxo-
group and the rearrangement of the double bonds is not catalyzed in a
stereospecific manner in mice. For birds and fish the isomeric
composition of ,e-carotene-3,3'-diones has not been determined to
our best knowledge. It will be worthwhile to study in the future whether
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the production of ,e-carotene-3,3’-dione in mammals, birds, and fish
is catalyzed by similar or different mechanisms.

Another interesting finding was that the ratio between zeaxanthin and
¢,e-carotene-3,3’-diones differed between tissues and was seemingly
affected by the supplementation regimen. This variation indicates that
tissues display specific metabolic profiles for dietary zeaxanthin. For
instance, the subcellular distribution of the pigments and compart-
mentalized enzyme activities may contribute to these tissue profiles.
Recently, members of the ASTER protein family have been demon-
strated to mediate non-vesicular transport of carotenoids between
cellular membranes and expose them to metabolizing enzymes
[15,49,50].

The advanced understating of factors that determine carotenoid ab-
sorption and tissue levels as presented here, allowed us to generate an
albino /sx~~/Bco2~’~ mouse model. These knockout mice display a
C57/b6 genetic background. This novel mouse strain is a resourceful
animal model to characterize the physiological roles and benefits of
various carotenoids. The lack of melanin pigmentation will allow for the
studying of the photo-protective role of carotenoid pigments in the skin
and eyes. Notably, these mice rapidly accumulated carotenoids in the
skin and displayed hypercarotenemia. This characteristic may allow
studying the role of carotenoids in dermal protection from UV irradi-
ation and other skin irritants in future studies. We have already begun
studying ocular carotenoid metabolism in this mouse model. A stan-
dard repertoire of morphometric and functional measures, including
OCT and ERG, revealed that zeaxanthin accumulation did not affect the
retina of these mice in a negative fashion. This is consistent with
studies in pigmented BcoZ™ ”~ mice [51,52]. We here added an
additional mechanism that may contribute to the eye-protective effects
of zeaxanthin. For this purpose, we subjected the albino mouse line to
different light regimens. Interestingly, we observed that carotenoid
concentration increased light-dependently in the eyes. More impor-
tantly, there was a significant effect of light on the composition of
zeaxanthin metabolites. Dark-raised mice displayed the lowest ratio
between parent and oxidized zeaxanthin. In light-reared mice, the ratio
increased in favor of the oxidized form that existed in different ste-
reoisomers. In mice subjected to light stress, the ratio further
increased in favor of e,e-carotene-3,3’-dione stereoisomers. Zeax-

I
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chemical modifications of its ionone rings take place and this modi-
fication is influenced by tissue factors and light. In the future, the albino
Isx/~/Bco2~’~ mouse model will be a resourceful model to study
carotenoid functions in health and disease. A better understanding of
the pigments’ beneficial and putative detrimental effects will allow
science-based recommendations for the intake of these essential
nutrients.
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