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ABSTRACT

Although splicing occurs largely co-
transcriptionally, the order by which introns are
removed does not necessarily follow the order
in which they are transcribed. Whereas several
genomic features are known to influence whether or
not an intron is spliced before its downstream neigh-
bor, multiple questions related to adjacent introns’
splicing order (AISO) remain unanswered. Here, we
present Insplico, the first standalone software for
quantifying AISO that works with both short and long
read sequencing technologies. We first demonstrate
its applicability and effectiveness using simulated
reads and by recapitulating previously reported
AISO patterns, which unveiled overlooked biases
associated with long read sequencing. We next show
that AISO around individual exons is remarkably
constant across cell and tissue types and even upon
major spliceosomal disruption, and it is evolutionar-
ily conserved between human and mouse brains. We
also establish a set of universal features associated
with AISO patterns across various animal and plant
species. Finally, we used Insplico to investigate AISO
in the context of tissue-specific exons, particularly
focusing on SRRM4-dependent microexons. We
found that the majority of such microexons have
non-canonical AISO, in which the downstream intron
is spliced first, and we suggest two potential modes
of SRRM4 regulation of microexons related to their
AISO and various splicing-related features. Insplico
is available on gitlab.com/aghr/insplico.

INTRODUCTION

Precursor mRNA (pre-mRNA) splicing is the processing
step in the gene expression pathway that involves the re-
moval of intronic sequences and ligation of exonic se-
quences to form mature RNAs (mRNAs). This process is
carried out by the spliceosome, a complex molecular ma-
chinery that needs to be re-assembled de novo for every splic-
ing reaction. By differentially selecting competing splice
sites in each pre-mRNA molecule, the spliceosome can give
rise to multiple mRNA isoforms per gene, a process re-
ferred to as alternative splicing. These alternative choices of
splice sites are determined by intronic and exonic cis-acting
elements and auxiliary proteins known as RNA binding
proteins (RBPs). Some trans-acting factors have a tissue-
specific expression and, therefore, contribute to the estab-
lishment of splicing regulatory networks responsible for cell
specialization, particularly in the nervous system (1). The
different steps of the gene expression pathway, including
transcription itself, are interconnected and can form addi-
tional layers of (alternative) splicing regulation (2–4).

It is now well established in different species that the
vast majority of genes undergo co-transcriptional splicing,
i.e. splicing takes place as transcription is still occurring or
shortly after (5–8). However, this does not necessarily im-
ply that splicing always follows the order in which introns
are transcribed, as initially thought (9). Single-gene stud-
ies as well as more recent genome-wide analyses have con-
firmed that intron splicing order does not always occur lin-
early following the order of transcription (10–16). In fact,
when considering the average internal exon as reference, the
downstream intron is spliced before the upstream one nearly
as often as the opposite (15). In this study, we refer to the
relative order of splicing of the two introns around an in-
ternal exon of interest as Adjacent Introns’ Splicing Order
(AISO).

Considering that early spliceosomal components are re-
cruited at the time of transcription, multiple variables may
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influence AISO. As in alternative splicing regulation, both
cis-acting elements – including strength of the splice sites
and polypyrimidine tract, distance from branch point to the
3′ splice site (3′ ss), and other genomic features such as the
size of the introns/exons and GC content (15)––and trans-
acting factors (15), as well transcription kinetics (17–19)
have been reported to affect AISO. Importantly, it is known
that AISO can impact splicing decisions. For instance, mu-
tations in an acceptor splice site in the COL5A1 gene leads
to changes in AISO, which affect the inclusion rate of the
neighboring exons (20). Moreover, the exon junction com-
plex (EJC), deposited upon splicing completion, has been
shown to impact the splice site selection in subsequent splic-
ing events (21,22), providing one possible mechanism by
which AISO can modulate splicing decisions. However, the
converse, i.e. whether (alternative) splicing regulation across
tissues or conditions affects AISO, remains unknown. Sim-
ilarly, how alternative splicing regulation through specific
trans-acting factors relates to AISO is poorly understood.

To investigate AISO across different cell and tissue types
as well as regulatory conditions, and to facilitate further re-
search on this topic, we developed Insplico, the first stan-
dalone software to investigate AISO applicable to both
short and long RNA sequencing reads. We demonstrated its
robustness and effectiveness using simulated RNA-seq data
and by comparing it to previous studies on AISO (15,16),
which recapitulated previous findings and revealed unap-
preciated biases introduced by long read sequencing. Next,
we compared AISO in different cell and tissue types from
multiple species (mammals, non-vertebrate model organ-
isms and plants), identifying universal genomic features as-
sociated with different modes of AISO and showing that
AISO is highly constant across cell and tissue types within a
given species. Finally, we explored AISO for introns flank-
ing microexons whose inclusion is dependent on SRRM4
expression, and found two subsets of microexons with op-
posite AISO patterns and seemingly distinct features, sug-
gesting two distinct modes of regulation.

MATERIALS AND METHODS

Insplico: input data generation and exon definition

Insplico takes as input mapped RNA-seq reads in BAM
format. These must have been aligned with a splice-aware
mapper, e.g. STAR or HISAT2 for short reads, or with
Minimap2 for ONT/PacBio long reads. Furthermore, In-
splico needs a tab-separated table defining the exons for
which read statistics are desired. Exons are defined by their
start and end coordinates, strand, and the end/start co-
ordinate(s) of their upstream/downstream neighbor exons,
respectively. More details on this exon-defining table can
be found on gitlab.com/aghr/insplico. In addition, a script
(extract exons from gtf.pl) that allows users to create such
a suitable table from a gene annotation file in GTF format
is provided. This script clusters overlapping exons from sev-
eral transcripts of the same gene into complex exon entities
with potentially several start and end coordinates (following
the logic of vast-tools (23)) and it implements a heuristic to
identify intron-retention events that are not considered true
exons. In addition, it identifies and assigns an exon type to
each exon (Figure 3), e.g. sfrst (second first), if the exon is the

second-first exon in all transcripts where it appears, slst (sec-
ond last), if it is always the second-last exon, or diverse if it
appears in different positions in different transcripts. From
the exon table, Insplico extracts for each exon the set of start
coordinates, the set of end coordinates, the strand, and the
upstream and downstream intron regions. These regions are
defined by the intronic region between the exon and its di-
rect upstream and downstream neighbor exons while con-
sidering the maximal extent of these exons. Importantly, to
reduce potential biases stemming from upstream and down-
stream introns of different lengths, Insplico utilizes as effec-
tive length of both introns the length of the shorter intron.
For instance, if the upstream intron is 500 nts and the down-
stream one is 3000 nts, only the neighboring 500 nts for both
introns are considered by Insplico. This approach effectively
results in no biases associated with Fupfi quantifications for
different intron lengths, as shown by simulated RNA-seq
data (Figure 2F, G).

Insplico: algorithmic details

Insplico is implemented in Perl, uses exclusively Perl li-
braries shipped with the standard installation of Perl and
depends on Samtools (24) and Bedtools. As such, it can be
readily run after download on Unix-like systems where Perl,
Samtools, and Bedtools are available. Considering all exon
starts and ends and the upstream and downstream intronic
regions of same length, Insplico inspects the mapped reads
to identify those in upfi, dofi, bos and bus configurations
(Figure 1), as well as the counts for exon skipping, inclu-
sion upstream and inclusion downstream. These read count
statistics, together with estimates of Fupfi (fraction of upfi
reads over the total number of upfi + dofi reads), proportion
of exon inclusion (using the standard proportion-spliced-
in metric, PSI) and proportion of intron retention (PIR) of
the upstream and downstream introns, are output as a tab-
separated table where rows (exons) are ordered correspond-
ingly to the rows of the input table. Unavailable estimates
are indicated by NA.

Three features of Insplico’s implementation facilitate its
usability: (i) Insplico works out-of-the-box with mapped
short and long reads. Algorithmically, long reads are treated
identically to single-end short reads as there are no con-
ceptual differences between these two for AISO analysis;
(ii) users do not need to define the strandedness of the
RNA-seq reads, which is often a cumbersome matter for
incompletely documented RNA-seq data and (iii) users
can use 0- or 1-based genetic coordinate systems without
the need to change the reference system because Insplico
uses a fuzzy matching of coordinates. When comparing the
splice site coordinates of reads to exon start and end co-
ordinates, Insplico can apply a user-definable fuzziness to
detect matching coordinates; by default, coordinates are
matched within ±3 nt. Fuzzy matching of coordinates is
useful when ambiguities in splice site mapping occur where
Insplico is capable of exploiting such reads for its count
statistics.

Another capability that sets Insplico apart from previ-
ous approaches is the bias correction for processing long
reads such as those from ONT or PacBio. When these reads
do not cover the entire transcript, from transcription start
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Figure 1. Summary of AISO and splicing related statistics provided by Insplico. (A) Schematic representation of mapped short reads that are informative
for each type of processing state for a specific exon (Ex i). These include counts for exons in which either the upstream or downstream intron has been
spliced first (upfi and dofi, respectively), and for which none or both of the adjacent introns have been spliced (bus and bos, respectively). It also includes
exon-exon junction counts, for skipping or inclusion, used to derive exon inclusion levels (skip, inup and indo). Thin lines in mapped reads represent the
non-sequenced fragment of paired-end reads. (B) Main statistics used in this study, as provided by Insplico. (C) Histogram showing the distribution of a
representative set of exons based on their Fupfi values. Throughout the study, exons with Fupfi ≥0.8 (red) and ≤0.2 (blue) are considered upfi and dofi
exons, respectively.

site to termination site, they might cause a bias in the upfi
and dofi count statistics of the first and last internal ex-
ons covered by the reads. To reduce this bias, Insplico im-
plements a simple but effective heuristic which can be ac-
tivated by the user (see ‘Long read bias correction by In-
splico’ for more details). Further details on Insplico, avail-
able command arguments and applications can be found on
gitlab.com/aghr/insplico.

Simulation of RNA-seq data and assessment of detection and
quantification biases

To generate the mRNA fasta file (i.e. transcriptome) used
as input for each iteration of simulation of RNA-seq reads,
1000 random internal exons were selected from the En-
sembl hg38 assembly (version 85), using only transcripts
with support level 1 and limiting the number of selected ex-
ons to one per isoform and only one isoform per gene. The
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isoform selected per gene was chosen randomly weighting
it by the number of exons; this means that isoforms with
more exons were more likely to be selected per gene. Addi-
tionally, genes with an elevated number of exons had higher
chances of being selected. For each gene we generated be-
tween 10 to 20 mRNA molecules with either the upstream
intron or the downstream intron of the selected exon be-
ing ‘retained’ (i.e. not yet spliced out), whereas the rest of
introns from the selected transcript were spliced out. The
proportion of molecules with the upstream versus down-
stream retained intron (simulated Fupfi value) was gener-
ated randomly using 0.1 intervals from 0 to 1 at equal prob-
ability (uniformly distributed). For each of these exons, we
then extracted the internal exon length, upstream intron
length and downstream intron length, as well as simulated
Fupfi value. We used the generated mRNA fasta file to sim-
ulate RNA-seq reads of different lengths (75 and 150 nts)
that were either single-end or paired-end with different av-
erage insert sizes (250 or 500 nts, from the beginning of the
forward read to the end of the reverse read) were gener-
ated employing the simulate experiment countmat function
from the bioconductor R package polyester v.1.34.0 with
the error model of ‘illumina5’ for 75 bp reads and ‘uni-
form’ for 150 bp and the options: strand specific = F, er-
ror rate = 0.005, bias = ‘none’. This process was repeated
20 times (i = 1...20 iterations) to generate data for a to-
tal of 20 000 internal exons, using seed = 20221107 + i
to ensure reproducibility. Next, each generated RNA-seq
file was mapped with STAR and processed with Insplico.
For the different analyses of Figure 2, simulated exons were
grouped according to their length or the length of their up-
stream or downstream introns. For detection assessment,
we plotted the percent of simulated exons for which Insplico
could extract at least one upfi or dofi read (i.e. N(upfi + dofi)
≥ 1). For quantification assessments, we restricted the anal-
yses to exons with N(upfi + dofi) ≥ 10. Scripts for repro-
ducing simulated data can be found at https://github.com/
liniguez/Insplico simulations.

Comparative re-analysis of published data (Kim et al., 2017)

GEO IDs of all 57 RNA-seq data sets used by Kim et al. (15)
from total or nuclear RNA without poly-selection are listed
in Supplementary Table S1. After download, we removed
the Illumina universal adapter AGATCGGAAGAGC with
cutadapt v2.4 from the 3′ ends of read1 and read2, keep-
ing only reads with a minimum length of 15 nts. As per
the original study, these reads were mapped to the hu-
man hg19 genome assembly with the splice-aware mapper
STAR v2.7.1a, requiring a minimal overlap of 5 nts on both
sides of splice junctions and keeping only uniquely map-
ping reads. The resulting BAM files with mapped reads
were analyzed with Insplico. To create the exon defini-
tion table, we applied the script extract exons from gtf.pl
to the Ensembl v75 hg19 gene annotation GTF, which
gave 266950 exons together with their exon types across all
transcripts where they appear. The most prominent exon
types were diverse/mixed (39.2%), internal (30.1%), first
(10.7%) and last (8.9%), as shown in Figure 3E. We dis-
carded exons of the ‘diverse’ type as they may introduce
noise, and focused on second-first, internal and second-

last exons. Only exons with a minimum of ten upfi + dofi
reads (N(upfi + dofi) ≥ 10) were included in the analy-
sis. To directly compare these results with those published
by Kim et al., we downloaded the tables with their re-
sults as provided on http://fairbrother.biomed.brown.edu/
data/Order. The table first introns splicing pair counts.txt
contained a list of 43 547 second-first exons as identi-
fied by Kim et al. with Fupfi values, of which 17 273 had
N(upfi + dofi) ≥ 10. The tables middle intron scores.txt and
last intron scores.txt contained 73941 internal and 12313
second-last exons, respectively, all of which were plotted
since N(upfi + dofi) was not provided. Finally, to investi-
gate the cause of the difference in AISO profiles obtained
by our and Kim et al.’s analysis for second-first exons, we
matched the 17 273 second-first exons identified by Kim et
al. to the exons types we extracted from the Ensembl hg19
gene annotation, which revealed that most of these exons
were of the ‘diverse’ type.

Comparative re-analysis of published ONT long read data
(Drexler et al., 2020)

Drexler et al. (16) sequenced chromatin, 4sU enriched RNA
from K562 cells using ONT. We downloaded this dataset
and mapped it to the human genome hg38 assembly with
the Minimap2 v2.17-r974-dirty (25) in splice mode with
seeds of length 14 nts. To create the exon input table, we
applied the script extract exons from gtf.pl to the gene an-
notation GTF from Ensembl v88, together with all exons
from VastDB (23), obtaining a total of 233 306 unique ex-
ons. The BAM file from Minimap2 and the exon table were
used to run Insplico in standard mode to extract raw read
count statistics. A histogram of Fupfi values was plotted for
all exons with N(upfi + dofi) ≥ 4. In addition, we down-
loaded Illumina paired-end short reads for chromatin, 4sU-
enriched RNA also generated by Drexler et al. (Supplemen-
tary Table S1). We removed the Illumina universal adapter
AGATCGGAAGAGC with cutadapt v2.4 from the 3′ ends
of read1 and read2, and kept reads with a minimum length
of 15 nts. These reads were mapped to the same human hg38
assembly with STAR v2.7.1a, requiring a minimal overlap
of 5 nts on both sides of splice junctions and keeping only
uniquely mapping reads. We then ran Insplico on the result-
ing BAM files with the same exon input table used for the
analysis of ONT long reads and generated Fupfi histograms
for all exons with N(upfi + dofi) ≥ 10.

Long read bias correction by Insplico

Given the different profiles obtained for short and long
reads in the re-analysis of Drexler et al. (2020), we hypoth-
esized that these differences could be caused by specific
biases introduced by ONT. Specifically, we reasoned that
there could be two types of biases: those resulting from 5′
truncations of the RNA molecule or sequence (Figure 4C)
and those from 3′ truncations (Figure 4D). Each of these
can come from different sources. For instance, since ONT
sequencing proceeds from 3′ to 5′, 5′ truncations can be
caused by broken RNA molecules or by molecule stalling
at the nanopore, leaving the sequencing incomplete. In the
case of 3′ truncations, these can occur when transcription of

https://github.com/liniguez/Insplico_simulations
http://fairbrother.biomed.brown.edu/data/Order
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Figure 2. Assessment of potential Insplico biases using simulated reads. (A–C) Right: Dot plots showing the percent of exons for which at least one upfi
or dofi count could be extracted using Insplico for different ranges of exon length (A), upstream intron length (B) or downstream intron length (C), using
simulated RNA-seq reads of different lengths (75 or 150 nts) that are either single-end (SE), or paired-end (PE) with two possible average insert sizes (250
or 500 nts). For example, 150PE-500 corresponds to 150-nt PE reads with an average insert size of 500 nts. Dot size and heatmap are relative to the percent
of detected exons. Left: proportion of internal exons for each feature range in human. (D) Boxplots of Fupfi values as quantified by Insplico (Y axes) for
exons with N(upfi + dofi) ≥ 10 for each simulated median Fupfi group (X axes) for 75PE-250 and 150SE reads. (E–G) Difference between the Fupfi values
calculated by Insplico and those expected from the simulations (Y axes) for each range of exon length (E), upstream intron length (F) or downstream
intron length (G), for simulated 150PE-500 reads. Median values around the red line (Y = 0) imply no bias in Insplico’s quantifications. Different types of
simulated reads yielded similar results.
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Figure 3. Reproduction of major AISO patterns from Kim et al. (2017) using Insplico. (A) Schematic representation of the different groups of exons
investigated for a representative gene. (B) Distribution of exons according to Fupfi values generated by Insplico for second-first (left), truly internal (middle)
and second-last (right) exons as defined by extract exons from gtf.pl. (C) Distribution of exons according to Fupfi values for second-first (left), truly
internal (middle) and second-last (right) exons as provided by Kim et al. N(upfi + dofi) for internal and second-last exons was not provided in the original
publication. (D) Distribution of second-first exons as annotated by Kim et al. according to exon types extracted by extract exons from gtf.pl. ‘Diverse’
correspond to exons with more than one type of annotation across transcripts. (E) Distribution of exon types as extracted by extract exons from gtf.pl for
all exons in the Ensembl hg19 annotation. (F) Distribution of strictly defined second-first exons from Kim et al.’s original set according to Fupfi values as
provided by Kim et al. (15).
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Figure 4. Re-analysis of AISO patterns using Drexler et al. (2020) ONT data. (A) Distribution of internal exons according to Fupfi values generated
by Insplico using ONT reads from Drexler et al. (16) without correction reproduces the excess of dofi exons (blue) reported by the original study. (B)
Distribution of internal exons according to Fupfi values generated by Insplico using Illumina short reads for the same cell type as in (A). (C, D) Left:
Schemes depicting how ONT reads can be truncated at their 5′ (C) or 3′ (D) ends, which is predicted to bias the total read count against upfi and dofi
RNA molecules, respectively. Schemes depict the focus internal exon (dark grey) and the upstream (black) and downstream (light grey) exons, which are
separated by equally long neighboring introns in this example. Wavy lines correspond to other parts of the RNA molecule. ONT read examples are shown
smaller and with transparent coloring. The table indicates, for each depicted ONT read, the real AISO pattern (‘AISO’) and the count obtained by Insplico
(‘Count’). Right: impact of corrections done by Insplico for each these biases in the AISO profiles from (A). (E) Distribution of internal exons according
to Fupfi values generated by Insplico using ONT reads from Drexler et al. (16) with full correction more closely reproduces the AISO profile obtained by
short reads.
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the RNA has not finished, as it often occurs in datasets of
nascent RNA. Since the probability of these biases to occur
generally depend on the length of the RNA molecule, and
Insplico needs both ends of the target exon to be present
in the sequence to provide a valid count, this can lead to a
relative depletion of upfi and dofi counts for 5′ and 3′ trun-
cations, respectively, as exemplified in Figure 4C, D for an
exon with two neighboring introns of equal length.

To mitigate each of these types of bias, we implemented
a simple heuristic in Insplico that users can activate with
the option –biascorr. With this option activated, for each
ONT read processed, Insplico identifies the first and last ex-
ons covered by the read and discards them for further pro-
cessing as well as the sequence upstream or downstream to
them, respectively. In other words, each ONT read will be
cut at the first and last detected exons, which will account
for 5′ and 3′ truncations, respectively. This implies that no
upfi or dofi counts will be extracted for these discarded ex-
ons but, also, that in most cases no upfi or dofi counts will
be extracted for the neighboring second-first and second-
last exons from that read either. Therefore, with this heuris-
tic activated, Insplico extracts upfi and dofi counts only for
the subsequent internal exons covered by the read. It should
be mentioned that, while this heuristic reduces global biases
on AISO, it comes at the price of considerably reducing the
number of extracted upfi and dofi counts. Moreover, as long
read technologies and protocols improve, we expect fewer
biases associated with AISO. Therefore, we opted for not
having this correction active by default, but to leave its use
to the user’s discretion.

Consistency of AISO across different replicates, tissues, ex-
perimental conditions and species

For studying AISO across different replicates, cell types, tis-
sues and experimental conditions, we first obtained exon
input tables for human hg38 and mouse mm10 Ensembl
v88 annotations enriched with VastDB exons, as described
above. We then downloaded RNA-seq datasets from var-
ious sources (Supplementary Table S1), removed the Il-
lumina universal adapter AGATCGGAAGAGC with cu-
tadapt v2.4 from the 3′ ends of read1 and read2, kept the
reads with length ≥15 nts, and mapped them to the re-
spective genomes using STAR v2.7.1a requiring a minimal
overlap of 5 nts on both sides of splice junctions and keep-
ing only uniquely mapping reads. These BAM files were
used to run Insplico. In addition, for all datasets we also
mapped and analyzed with Insplico the associated polyA-
selected and/or cytoplasmic RNA samples, and utilized the
estimated PIR values to filter out exons associated with re-
tained introns (PIR ≤ 0.15 for the upstream or downstream
intron), and only truly internal exons (as defined above)
were used for these comparisons. Then, to compare AISO
patterns between two conditions (biological replicates, dif-
ferent cell types, different species), we first selected exons
with N(upfi + dofi) ≥ 10 in both conditions. Next, we de-
fined upfi, dofi and intermediate exons in the query condi-
tion (first stack plot) as those with Fupfi ≥ 0.8, Fupfi ≤ 0.2
and 0.2 > Fupfi > 0.8, respectively, and investigated what
fraction of each of them was upfi, dofi or had intermediate
Fupfi values in the target condition (second to fourth stack

plots). As explained in Supplementary Figure S2A, if AISO
is similar in both conditions (‘Consistent’), most upfi exons
of the query condition will also be upfi in the target con-
dition (and the same for dofi exons). On the other hand,
if AISO patterns are not maintained between conditions
(‘Random’), the upfi and dofi exon sets in the query con-
dition should have an AISO pattern similar to the genome-
wide pattern in the target condition.

Universal features associated with AISO patterns

To investigate which intron-exon related features affected
AISO genome-wide across multiple species, we first selected
13 RNA-seq datasets from different species (Supplemen-
tary Table S1) and processed them with Insplico. As a stan-
dard procedure, we removed the Illumina universal adapter
AGATCGGAAGAGC with cutadapt v2.4 from the 3′ ends
of read1 and read2, keeping only reads with length ≥15 nts.
These reads were mapped to the corresponding genomes of
each species with the splice-aware mapper STAR v2.7.1a re-
quiring a minimal overlap of 5 nts on both sides of splice
junctions and keeping only uniquely mapping reads. The
STAR index was built considering the gene annotations for
each species and we obtained the exon-definition table ap-
plying extract exons from gtf.pl to each GTF file together
with exons annotated in vast-tools (23), except for rice (not
available). Specifically, we used the following species and
genome versions: Homo sapiens (hg38, Ensembl v88), M.
musculus (mm10, Ensembl v88), D. melanogaster (dm6,
Ensembl Metazoa v26), C. elegans (ce11, Ensembl v87),
A. thaliana (araTha10, Ensembl Plants v31) and O. sativa
(IRGSP1, Ensembl Plants v48).

Next, we plotted the distribution of Fupfi values for sub-
sets of exons according to multiple intron-exon related fea-
tures extracted using Matt (26). Specifically, we used the
Matt command cmpr features, and, for each studied fea-
ture, we split the exons into five subsets of equal size with
increasing feature value. These plots allow us to study how
Fupfi distributions change for subsets of exons with differ-
ent feature values. A summary of these plots for those fea-
tures consistently and significantly associated with AISO
across species is shown in Figure 6C for all datasets. All the
results, together with further details (violin plots with Fupfi
distributions, axis values, sample sizes, etc.) can be found in
Supplementary File 1. It should be noted that, although we
summarize the results in Figure 6C as median values, the
distributions of Fupfi values are bimodal, as it can be ob-
served in the violin plots of Supplementary File 1. For all
datasets, we only considered exons with N(upfi + dofi) ≥ 10
and for exons with multiple start and/or end coordinates,
we chose the version with the longest length. In addition,
for those datasets with matched polyA/cytoplasmic RNA-
seq (Supplementary Table S1 and Supplementary File 1), we
used the Insplico information to discard those exons whose
upstream and/or downstream introns had PIR > 0.1.

Comparisons of AISO and genomic features for exons based
on their tissue-specific regulation

We generated a barplot of Fupfi values for mouse exons de-
pending on their splicing pattern (Figure 7A) as determined
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from the cytoplasmic polyA-selected brain and liver data
that we generated for this study (Supplementary Table S1).
In particular, we defined the following groups: (i) constitu-
tively spliced (CS): exons with PSI > 0.99 in both tissues;
(ii) tissue-regulated (TR): exons with an absolute difference
in PSI between brain and liver higher than 0.25; and (iii) al-
ternatively spliced (AS): exons with 0.1 < PSI < 0.9 in liver
and/or brain and that are not TR. Only exons with at least
20 reads contributing to the PSI estimates both in brain and
in liver polyA-selected samples and at least N(upfi + dofi)
≥ 10 in the brain chromatin-associated RNA-seq sample
were used for the analysis. Exons with multiple start and/or
end coordinates were discarded. Exon-intron related fea-
tures were retrieved using Matt cmpr exons (26) and plot-
ted as Z-score values (Figure 7A). P-values corresponded to
Bonferroni-corrected P-values from Wilcoxon Rank-Sum
tests with respect to the distribution of the CS exons. Full
details of the comparisons and all statistical tests are re-
ported in Supplementary File 2.

Analysis of SRRM4-dependent microexons

To define SRRM4-dependent microexons, we processed
with Insplico as described above two replicates of total (gen-
erated for this study, see below) and matched polyA-selected
(from (27) and (28)) RNA-seq data from human HEK293
cells ectopically expressing GFP (control) or 3xFlag-tagged
human SRRM4. The two replicates were pooled together to
increase read depth. To obtain the exon-definition table, we
clustered Ensembl v88 annotations for hg38 and VastDB
exons with extract exons from gtf.pl. We then defined two
sets of microexons, defined here as exons of length ≤51
nts: (i) SRRM4-dependent microexons: exons with a �PSI
(SRRM4 - control) > 0.15 and a PSI in control cells ≤0.2
in the polyA-selected samples; and (ii) control microexons:
with |�PSI| <0.02 and 0.05 ≤ PSI ≤ 0.95 in at least one
of the samples. For exons with multiple start and/or end
coordinates, we chose the version with the shortest length.
Only exons with N(upfi + dofi) ≥ 5 in the SRRM4 OE to-
tal RNA sample were used for AISO analyses. Exons with
upfi and dofi patterns were defined as those with Fupfi ≥0.8
and ≤0.2, respectively. Intron-exon related features were ex-
tracted using Matt cmpr exons (26) and the full report is
shown in Supplementary File 3. The RNA map showing
the distribution of UGC motifs was generated using Matt
rna maps (26), using a sliding window of 25 nts and lim-
its of 20 and 150 nts for the exonic and intronic regions,
respectively.

Validation of AISO patterns through RT-PCR assays

Flp-in-T-REx 293 cells expressing either GFP or 3xFlag-
tagged human SRRM4 were induced with 1 ug/ml for
24 h (27). Total RNA was extracted using the Illustra
RNAspin Mini Isolation kit (GE Healthcare). Reverse
transcription was performed using oligo-dT and random
hexamer primers with an in-house enzyme produced by the
Protein Technologies Unit at CRG. PCRs were performed
using GoTag DNA polymerase (Promega) and primers an-
nealing either of the flanking exons to look at the pattern of
splicing or exon-junction (EJ) overlapping and intronic (I)

primers to investigate the order of intron splicing. Primers
(5′ to 3′, Sense (S) and AntiSense (AS)) used: ERC1 EJ1 S:
AGCTGAGTTGGAAAGTCTCACCTC;ERC1 I2 AS:
TCCCCTCCTCTTTCCTCGTA;ERC1 I1 S:TGTGAC
TCCTTCCCTTCTCT;ERC1 EJ2 AS:TATTCTGGTC
TTTCACTTGCCTTGAGGTG;GRAMD1A EJ1 S:
TCATCAGCATTGTGATCTGT;GRAMD1A I2 AS:
CCCATTGCAGAGGAGGAGAA;GRAMD1A I1 S:
CGTCCTGAGAGAGTGGAGAC;GRAMD1A EJ2 AS:
GAGGATGATAAGGCTCACAC;KIF1B EJ1 S:
CTTGGCCGAGGTGGATAACT;KIF1B I2 AS:
ACCCACAGACACACAATCCA;KIF1B I1 S:
ATGCTGTTGATTTGAGGGCC;KIF1B EJ2 AS:
TCTTCTTTTTACTCTTGCTA;UGGT2 EJ1 S:TTTC
TCTTTGGGAAACTAAAACAAGGAA;UGGT2 I2 A
S:GAGAACCACCCTGAGAGTCC;UGGT2 I1 S:GC
CCCAAAGAAAAGAAAACGT;UGGT2 EJ2 AS:TC
TAAGATCTGAATATATTTCTCATGCTATTCCTTG.
Events were selected among those having �PSI (SRRM4-
GFP) > 40 and N(upfi + dofi) ≥ 3 in both SRRM4 total
and SRRM4 polyA-selected RNA-seq.

Tissue dissociation and cellular fractionation

Female mice (6–7 weeks old, B6CBAF1) were injected in-
traperitoneally with 5 IU of pregnant mare serum go-
nadotropin (PMSG), followed by intraperitoneal injection
of 5 IU of human chorionic gonadotropin (hCG) 47 h af-
ter. Females were mated after hCG injection and tissues col-
lected 20 h post hCG injection. Mouse euthanasia was per-
formed by cervical dislocation. All animal related protocols
were carried out in accordance to the European Commu-
nity Council Directive 2010/63/EU and approved by the
local Ethics Committee for Animal Experiments (Comitè
Ètic d’Experimentació Animal-Parc de Recerca Biomèdica
de Barcelona, CEEA-PRBB, CEEA number 9086).

The tissues (liver, cerebellum and cortex) were collected
post-mortem in cold PBS and rinsed to remove the excess of
blood. The tissues were sliced into small pieces using a blade
and resuspended in 40 ml of dissociation buffer (trypsin
0.05% (ThermoFisher); 0.02 units/ml dispase (Life Tech-
nologies); 0.025 mg/ml collagenase (Life Technologies); 18
units/ml DNAse I (Sigma)). Samples were incubated at 4◦C
head-over-tail overnight before being filtered through a 100
micron strainer (BD Biosciences) to remove the undissoci-
ated tissues. Cells pellets were obtained by centrifugation at
1000 rpm for 5 min at 4◦C and washed once in 1 ml PBS.
Pellets were resuspended in pre-chilled HMKE buffer (20
mM HEPES pH 7.2; 5 mM MgCl2; 10 mM KCl; 1 mM
EDTA; 250 mM sucrose; 1× protease inhibitors cocktail
(Roche); 200 ug/ml digitonin (Sigma)) described in (29);
supplemented with 0.1% NP40. Samples were incubated for
10 min on ice and centrifuged at 500 g for 10 min at 4◦C.
The supernatant for each tissue was kept and saved as cy-
toplasmic fraction. The pellet, containing the nuclei, was
washed in PBS supplemented with 1 mM DTT, centrifuged
again and treated following the protocol described by (30).
Briefly, pellets were resuspended in pre-chilled buffer 1 (20
mM Tris–HCl pH 7.9; 75 mM NaCl; 0.5 mM EDTA; 0.85
mM DTT; 1× protease inhibitors cocktail (Roche); 50%
glycerol). An equal volume of pre-chilled buffer 2 (10 mM
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HEPES pH 7.6; 1 mM DTT; 7.5 mM MgCl2; 0.2 mM
EDTA; 0.3 M NaCl; 1 M Urea; 1% NP40) was added and
the samples were vortexed twice for 2 s before being incu-
bated for 10 min on ice.

The samples were centrifuged at 15 000 g for 2 min at 4◦C.
The pellet (chromatin fraction) was resuspended in PBS.
All fractions were treated with proteinase K for one hour
at 65◦C (an equal volume of Proteinase 2x buffer (200 mM
Tris 7.5, 25 mM EDTA, 300 mM NaCl, 2% SDS) was added
to each fraction supplemented with 2 mg/ml proteinase
K (Roche Diagnostics). A phenol/chloroform extraction
was performed followed by a chloroform extraction and
ethanol precipitation. The nucleic acid pellets were resus-
pended in water and treated with DNAse (RQ1, Promega)
for one hour at 37◦C according to the manufacturer’s in-
structions. Phenol/chloroform and chloroform extractions
and ethanol precipitation were performed and the pellets
were resuspended in water.

Preparation of RNA-seq libraries and short read sequencing

Total RNA libraries were prepared using the TruSeq
Stranded Total RNA Library Prep Kit with Ribo-Zero
Human/Mouse/Rat Kit (Ref: RS-122-2201/2202, Illu-
mina) according to the manufacturer’s protocol. Briefly,
from 11.7 to 100 ng of total RNA were used for riboso-
mal RNA depletion. Then, ribosomal depleted RNA was
fragmented for 4.5 min at 94◦C. The remaining steps of the
library preparation were followed according to the manu-
facturer’s instructions. Final libraries were analysed on an
Agilent Technologies 2100 Bioanalyzer system using the
Agilent DNA 1000 chip to estimate the quantity and val-
idate the size distribution, and were then quantified by
qPCR using the KAPA Library Quantification Kit KK4835
(Ref: 07960204001, Roche) prior to amplification with Illu-
mina’s cBot. PolyA-selected libraries were prepared using
the TruSeq stranded mRNA Library Prep according to the
manufacturer’s protocol using from 25 to 200 ng of total
RNA as starting material.

Both total (cerebellum, cortex, liver and HEK293) and
polyA-selected (cerebellum, cortex and liver) RNA libraries
were sequenced on an Illumina HiSeq 2500 machine to
generate 125 nt paired-end reads. Read numbers and map-
ping statistics are provided in Supplementary Table S1, and
all samples were submitted to Gene Expression Omnibus
(GEO), under the ID GSE207459. For all analyses, cere-
bellum and cortex RNA-seq reads were pooled together to
generate a single ‘brain’ sample.

RESULTS

Algorithm overview and definitions

Insplico works with both short single-end or paired-end
reads (Illumina or Ion Torrent) and long reads (Oxford
Nanopore Technology [ONT] or PacBio), using as input
BAM files of mapped reads together with a set of user-
specified exons with flanking introns. Since splicing takes
place in the nucleus during or shortly after transcription,
chromatin-associated or nuclear RNA, or at least total
ribo-depleted RNA, should preferably be used for studying

AISO. Insplico automatically detects the read type (single-
end or paired-end and their strandedness), and extracts
counts of fragments mapping locally to each exonic region
in different configurations (Figure 1A). Specifically, for a
given exon, fragments mapping to the junction of that exon
with any other upstream exon and to the unspliced down-
stream intron are labelled as upstream-first (upfi). Con-
versely, downstream-first (dofi) counts represent fragments
that map to the unspliced upstream intron and the junc-
tion joining the exon with any other downstream exon. Be-
sides these two types, Insplico quantifies fragments that map
to both-unspliced (bus) flanking introns, as well as frag-
ments supporting fully processed mRNA, i.e. mapping to
both the upstream and downstream splice junctions with
any upstream or downstream exon (both-spliced, bos). Ad-
ditionally, it extracts counts of fragments supporting exon
inclusion (from upstream or downstream exon-exon junc-
tions) or exon exclusion, containing a splice junction that
skips the exon (Figure 1A). With these counts, Insplico es-
timates different measures for each input exon (Figure 1B).
The most relevant for AISO analysis of a given exon is Fupfi,
the fraction of upfi fragments in relation to the sum of upfi
and dofi fragments. A Fupfi close to 1 implies that the AISO
of this exon is predominantly upfi, while Fupfi close to 0
means it is predominantly dofi. In this study, we summa-
rize the distributions of Fupfi values for sets of exons of in-
terest by empirical histograms (Figure 1C), which can be
complemented with violin or density plots of Fupfi values.
In addition, for each input exon, Insplico provides: propor-
tion of exon inclusion (PSI) and proportion of intron reten-
tion (PIR) for both flanking introns. These measures can be
used to identify alternative versus constitutive exons, or ex-
ons that are specifically (mis-)regulated in a given condition
(see below). Moreover, by additionally utilizing matched cy-
toplasmic and/or polyA-selected RNA-seq, PIR values of
flanking introns can be estimated and used to remove stably
retained introns, which may bias the analysis of AISO.

Assessment of potential biases in AISO quantification using
simulated reads

To evaluate Insplico’s performance in terms of quantifica-
tion precision and assess possible biases coming from exon
and intron lengths both in terms of detection ability and
Fupfi quantification, we first performed a controlled study
using simulated short RNA-seq reads. We simulated RNA-
seq reads of different lengths (75 and 150 nts) that were ei-
ther single-end or paired-end with different insert sizes (250
and 500 nts) for a total of 20 000 random internal human
exons (see Methods). With regard to detection, as expected
by design (Figure 1A), the capability of Insplico to extract
count statistics for exons above a certain length is limited by
the read length and the insert size, in the case of paired-end
reads (Figure 2A). For instance, with 75-nt single-end reads
Insplico could extract counts only for exons of length ≤ 75
nts, while exons > 300 nts were only partially detected by
150-nt paired-end reads with insert sizes of 500 nts (Fig-
ure 2A, left panel). It should be noted, however, that ex-
ons > 300 nts account for < 5% of all internal exons in hu-
man (Figure 2A, right panel). In the case of the neighboring
introns, neither the length of the upstream intron nor of the
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downstream intron had a major impact on the capability of
Insplico to extract counts (Figure 2B, C). With regard to the
quantification, we found no major differences in Fupfi accu-
racy or precision related to the type of RNA-seq used (Fig-
ure 2D). More importantly, we found that the lengths of nei-
ther the exon, the upstream intron nor the downstream in-
tron introduced any biases in the distributions of Fupfi val-
ues measured by Insplico when compared to the simulated
ones (Figure 2E–G), strongly supporting the validity of In-
splico to quantify and compare AISO across the genome.

Insplico analyses of published datasets reproduce previous
results

Next, we tested the effectiveness of Insplico by applying it to
the publicly available RNA-seq datasets used in Kim et al.
(15) (Figures 3 and Supplementary Figure S1A). We down-
loaded and mapped the same 57 human RNA-seq samples
from GEO, summing up to 7.3 billion 72–76 nt paired-
end reads for non-polyA-selected total or nuclear RNA
fractions from 16 different human cell lines (Supplemen-
tary Table S1). We then extracted all exons that were con-
sistently second-first (i.e. always the second exon in every
transcript in which it is present), truly internal, or second-
last (i.e. always the second to last exon in every transcript
in which it is present) from the complete Ensembl hg19
gene annotation (Figure 3A; see Materials and Methods),
and applied Insplico to the mapped reads to extract AISO
count statistics for exons with at least 10 (upfi + dofi) counts
(N(upfi + dofi) ≥ 10). In agreement with Kim et al., we found
that, genome-wide, the majority of truly internal exons had
either a clear upfi or dofi AISO pattern (Fupfi ≥ 0.8 or ≤ 0.2,
respectively) (Figure 3B,C; center plots), with a slight excess
of upfi exons (Figure 3D; ratio upfi/dofi = 1.11; P = 6e-
14, one-sided Binomial test). Second-last exons showed a
stronger enrichment of upfi splicing patterns (Figure 3D; ra-
tio upfi/dofi = 1.65; P = 2e–34, one-sided Binomial test),
again in agreement with Kim et al. (Figure 3B, C; right
plots). However, for second-first exons, we found a simi-
lar excess of upfi AISO (Figure 3D; ratio upfi/dofi = 1.47;
P = 3e–22, one-sided Binomial test), similar to the trend
observed for second-last exons, while Kim et al. reported
an excess of dofi AISO (Figure 3B, C; left plots). To clarify
this discrepancy, we further investigated the set of second-
first exons as defined by Kim et al. using our exon-type clas-
sification. Remarkably, only a minority of these exons were
truly second-first in all the transcripts in which they appear;
the majority fell in the ‘diverse’ exon category (Figure 3E),
which was the most common one in the annotation (Figure
3E). Restricting the analysis to the subset of exons used by
Kim et al. that were strictly annotated as second-first by our
annotation in combination with the Fupfi values estimated
by Kim et al. gave a pattern of AISO more similar to that
obtained with Insplico, with an excess of upfi AISO (Figure
3D, F; ratio upfi/dofi = 1.21; P = 3e–7, one-sided Binomial
test).

Correction of long read biases recovers short read splicing
patterns

We next used RNA-seq data of nascent chromatin-
associated RNA from human K562 cells published by

Drexler et al. (16) (Figures 4 and Supplementary Figure
S1B). These data consist of ∼2 million long ONT reads,
which we mapped to the human genome with Minimap2.
Applying Insplico to these mapped reads showed an excess
of dofi AISO (Figure 4A; ratio upfi/dofi = 0.41; P = 7e–
69, one-sided Binomial test), in agreement with Drexler et
al. (16). However, this pattern disagrees with the slight ex-
cess of upfi AISO described above obtained using short
reads (Figure 3; (15)). To investigate potential causes of this
discrepancy, we processed with Insplico ∼160 million 80-
nt paired-end Illumina reads from 4sU-labelled RNA also
from K562 cells generated by Drexler et al. We observed the
same excess of upfi AISO (Figure 4B; ratio upfi/dofi = 1.41;
P = 7e–26, one-sided Binomial test), suggesting that the
nature of the sequencing data (long versus short read se-
quencing) may have a considerable impact on the results.
We reasoned that this discrepancy could be explained by
biases introduced by long reads. On the one hand, since
ONT sequences the RNA molecule from 3′ to 5′, for bro-
ken molecules or those eventually stalled at the nanopore,
the 5′-most exon identified in the read could have a bias to-
wards dofi counts, since its upstream exon will often not
be present and thus cannot produce upfi counts by defini-
tion (5′ truncations; Figure 4C). On the other hand, par-
tially transcribed pre-mRNAs could generate a bias to-
wards upfi splicing for the 3′-most exon identified in the se-
quenced molecule, since the upstream exon will already be
transcribed (and thus potentially spliced to the focus exon)
but not the downstream one (3′ truncations; Figure 4D).
To reduce these potential biases, we added to Insplico an
optional correction module for long reads. Effectively, the
implemented strategy discards both the first and last ex-
ons identified in each long read from count extraction (see
Methods). Correcting for each of these biases separately
strongly shifted the Fupfi distributions in the expected di-
rection (Figure 4C, D, right panels). Importantly, correc-
tion of both biases at the same time retrieved a similar dis-
tribution to the one obtained by short reads, i.e. with an ex-
cess of upfi splicing (Figure 4C; ratio upfi/dofi = 1.25 versus
1.41; P = 0.48, two-sided Fisher’s Exact test). This suggests
that the observed discrepancies may be due to differences
in the sequencing technology (i.e. long versus short read se-
quencing) and that Insplico can correctly account for such
differences through its long read bias-correction module
(option –biascorr).

AISO is highly stable across different biological conditions

Despite these consistent genome-wide patterns, the AISO
of a given exon may vary across different cell/tissue types
or conditions, a possibility that has not been investigated
yet. To address this, we compared exons with strong upfi
and dofi splicing (Fupfi ≥ 0.8 or ≤ 0.2, respectively), in
various pairs of deep chromatin-associated RNA-seq sam-
ples. We reasoned that if AISO is widely maintained be-
tween the two samples, the sets of upfi (red) and dofi (blue)
exons in the first sample will tend to be upfi and dofi, re-
spectively, in the second sample (‘consistent’, Supplemen-
tary Figure S2A). Otherwise, in the opposite scenario (‘ran-
dom’ AISO), the background distribution will be observed
in the second sample for each AISO type in the first sample
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(Supplementary Figure S2A, B). First, we investigated the
overall consistency of AISO patterns between replicates of
the same studies for exons with sufficient informative reads
(N(upfi + dofi) ≥ 10) in the two compared samples. Biolog-
ical replicates of human K562 cells (8) showed extremely
consistent AISO patterns (Figures 5A and Supplementary
Figure S2C), which can be statistically assessed using a Bi-
nomial test for upfi or dofi exons independently (e.g. 95%
of upfi exons in replicate 1 are also upfi in replicate 2, com-
pared to the 46% expected by chance; P = 0, one-sided Bi-
nomial test; Figure 5A). This consistency can also be ob-
served by the profile of Fupfi values in both replicates, in
which the same exons in both samples have been colored
based on the type of AISO in the first replicate (Figure 5A,
density plots). Moreover, AISO values in both samples can
be compared using scatter plots, and the global consistency
assessed through Pearson and Spearman correlations (Sup-
plementary Figure S3A). For instance, for the two replicates
of K562 cells, Pearson’s r = 0.97 (P = 0) and Spearman’s
rho = 0.924 (P = 0). Using these complementary metrics,
we also found a similarly high consistency of AISO pat-
terns between two RNA-seq replicates of human HeLa cells
(31) (Figures 5B, Supplementary Figure S2D and Supple-
mentary Figure S3B). Second, we compared the patterns
in K562 and HeLa cells, which also exhibited very consis-
tent AISO distributions (Figures 5C, Supplementary Figure
S2E and Supplementary Figure S3C). Third, we aimed at
comparing cells of very different origin and function. For
this purpose, we generated deep chromatin-bound RNA-
seq data from mouse brain (cortex and cerebellum) and liver
(Supplementary Table S1), as well as paired cytoplasmic
polyA-selected RNA-seq to identify and discard potential
intron retention events. Remarkably, upfi and dofi exons in
the brain showed nearly identical patterns in the liver (Fig-
ures 5D, Supplementary Figure S2F and Supplementary
Figure S3D), suggesting that AISO patterns are highly con-
sistent even across very divergent cell types. Moreover, we
assessed if these patterns were conserved between species by
comparing AISO between human and mouse brains (Fig-
ures 5E, Supplementary Figure S2G and Supplementary
Figure S3E). Although the consistency was not as strong
as within each species, we found significant conservation
of AISO patterns: of 443 upfi exons in mouse, 283 were
also upfi in human (64% versus 41% expected; P = 3e–22,
one-sided Binomial test), and of 461 dofi mouse exons, 347
had their AISO conserved in human (75% versus 43% ex-
pected; P = 5e–45, one-sided Binomial test). Finally, we
investigated whether AISO consistency may be disrupted
upon major spliceosomal interference. We used RNA-seq
of 5-Bromouridine (BrU)-labelled RNA from HeLa cells
treated with two SF3B1-targeting drugs, spliceostatin (SSA)
and sudemycin C1 (SudC1), which cause widespread intron
retention and exon skipping (32). Even under these condi-
tions, AISO was largely maintained with respect to DMSO-
treated control cells (Figures 5F,G, Supplementary Figure
S2H, I and Supplementary Figure S3F,G), including the
AISO patterns around exons whose immediately upstream
and downstream introns were both substantially affected by
the treatments (�PIR (Treatment – DMSO) ≥ 0.25; Fig-
ures 5H, Supplementary Figure S2J and Supplementary
Figure S3H).

Universal genome-wide features of AISO

Given the stability of AISO across different biological con-
ditions, it is likely that its main determinants are to a large
extent hardcoded in the genome. Consistently, different se-
quence features have been previously shown to influence
this process (see Introduction). To further identify universal
features across conditions and species, we separately pro-
cessed with Insplico 13 short read RNA-seq datasets from
nuclear or chromatin-associated RNA fractions from four
animals (human, mouse, fruitfly and round worm) and two
plants (Arabidopsis and rice) (Supplementary Table S1),
which have very different intron densities, genome architec-
tures and alternative splicing patterns (33,34). From each
dataset, we considered all truly internal exons with suffi-
cient informative reads, computed their AISO pattern, and
extracted 55 splicing-related genomic features using Matt
(26) (see Methods). To assess the possible contribution of
each of these features on AISO, we partitioned for each
feature the exons into five equal-sized subsets according
to increasing feature values, and plotted the average Fupfi
value per bin (Figure 6A; note that, although we use average
Fupfi values for simplicity, Fupfi distributions are largely bi-
modal, as shown in Supplementary File 1 for all features).
We identified several genomic features that systematically,
linearly or nonlinearly, correlated with AISO with the same
functional relationship across all datasets from all species
(Figure 6B,C). Specifically, exons whose upstream flanking
intron is removed first (upfi exons) have well-defined up-
stream introns with: (i) strong 5′ ss, (ii) strong 3′ ss, and (iii)
branch points (BPs) close to their 3′ ss (AG). On the other
hand, their downstream introns are (iv) long, (v) particu-
larly with respect to the upstream intron, and (vi) their BP
is far from their 3′ ss. Altogether, these results highlight the
importance of a strongly defined upstream intron as well as
the length and the BP-AG distance of both flanking introns
relative to other sequence features.

Splicing of SRRM4-dependent neural microexons is predom-
inantly dofi

Given these consistent genomic features correlating with
AISO and the global consistency in the patterns across cell
types, we asked how tissue-specific regulation of alterna-
tive splicing relates to AISO. Previous studies have shown
that alternatively spliced exons are more often dofi, com-
pared to constitutive exons (15). Interestingly, by separat-
ing mouse alternatively spliced exons (0.1 < PSI < 0.9 in
liver and/or brain) into those that are or that are not regu-
lated in a tissue-dependent manner (|�PSI liver versus neu-
ral| ≥ 0.25), we found that the excess of dofi AISO was only
substantial and statistically significant for tissue-regulated
(TR) exons and not for all alternatively spliced exons (Fig-
ure 7A; TR versus constitutive exons [CS], P = 0.002,
Fisher’s Exact test). However, when looking at the key ge-
nomic features identified above for TR exons we found a
mix of patterns, indicating that their genomic features can-
not solely explain the excess of dofi AISO (Figure 7B and
Supplementary File 2).

Therefore, we hypothesized that their tissue-specific splic-
ing regulators may impose unique regulatory architectures
with non-canonical AISO patterns. To begin assessing this
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Figure 5. AISO patterns are largely consistent across cell and tissue types and experimental conditions. For each panel (A-H), for a given sample (e.g.
‘K562 (rep 1)’), its AISO profile is derived showing the exons that are strongly upfi (red), dofi (blue) or intermediate (white), either through Fupfi density
plots (left) or displaying the proportion of each category using stack plots (right). Then, density plots for Fupfi values for the same exons are shown below
for the other sample (e.g. ‘K562 (rep 2)’), but each exon is colored according to the AISO pattern in the first sample. Moreover, upfi, intermediate, and
dofi exons in the first sample are separately interrogated in the second sample, as indicated by the arrows (columns ‘U’, ‘I’ and ‘D’, respectively), and their
proportion of AISO profiles displayed (further explanations can be found in Supplementary Figure S2A). In addition, results from various statistical tests
are provided for each comparison. (A, B) Consistent AISO patterns across biological replicates in K562 cells (A, data from (8)) and in HeLa cells (B,
data from (31)). (C, D) Consistent AISO patterns between human HeLa and K562 cells (C) and mouse brain and liver tissues (D, data from this study).
(E) Significant evolutionary conservation of AISO patterns among orthologous exons in human and mouse brain (data from (49) and this study). (F–H)
Consistent AISO patterns in HeLa cells treated with DMSO (control) or spliceostatin (SSA) (F) or sudemycin C1 (SudC1) (G). AISO patterns were largely
consistent even for exons for which both neighboring introns were highly affected by drug treatment (�PIR > 0.25) (H). Data from (32).
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Figure 6. Genomic features universally associated with AISO. (A) Schematic representation of the plots obtained in this analysis. For a given feature, the
average of Fupfi values (Y axis) is shown for five equal-sized groups of exons binned by increasing values of that feature (X axis). Consistently increasing
or decreasing associations are considered. (B) Summary representation of the features consistently associated with exons whose upstream intron is spliced
first. BP, branch point; ss, splice site. (C) Summary plots for the main features universally associated with AISO patterns across samples and species. Further
details for all features as well as violin plots showing the full Fupfi distributions are provided in Supplementary File 1.

possibility, we focused on a particular case of extreme
tissue-specific regulation: neural-specific microexons that
are dependent on the splicing factor SRRM4 for their in-
clusion. The mode of action of the splicing factor SRRM4
is not fully understood, but interactions between its ma-
jor functional protein domain, the eMIC domain, and
early spliceosomal components have been demonstrated
(27,35). To shed more light into the mechanism of SRRM4-
dependent microexon inclusion, we generated total ribo-
depleted RNA-seq data from human HEK293 cells ectopi-
cally expressing either GFP or SRRM4 and applied In-
splico for PSI and Fupfi estimations. We identified 677 ex-
ons that were more included upon SRRM4 overexpression
(OE) compared to the control (�PSI ≥ 0.15) and that were
lowly included in control cells (PSI < 0.2). As expected,
most of these (511/677, 76%) were microexons (defined here
as length ≤ 51 nts). We then compared these SRRM4-
dependent microexons with a control exon set of length ≤ 51
nts, high inclusion in the control (PSI > 0.8) and not af-
fected by SRRM4 OE (|�PSI| < 0.1). As expected, by look-

ing at all Insplico counts for unprocessed transcripts (i.e.
upfi, dofi, bus; Figure 1), we found that SRRM4-dependent
microexons need SRRM4 even for partial processing (Fig-
ure 7C). Remarkably, in SRRM4 OE cells, we found that
58% of SRRM4-dependent microexons had strongly dofi
splicing patterns (Fupfi ≤ 0.2), while only 26% of them seem
to be spliced in an upfi manner (Fupfi ≥ 0.8; Figure 7D),
in contrast to roughly equal percentages in the control set
(P = 0.013, Fisher’s Exact test). Importantly, RNA-seq-
based AISO patterns were validated experimentally using
upfi and dofi specific primers for four SRRM4-dependent
microexons (Figure 7E, F).

We next asked whether upfi and dofi SRRM4-dependent
microexons showed distinct characteristics. First, being upfi
or dofi was not significantly associated with a different
magnitude of the response to SRRM4 OE (Figure 7G;
P = 0.761, Wilcoxon Sum-Rank test). Second, despite all
being microexons by definition, dofi microexons tended to
be shorter than upfi microexons (medians 17 versus 24 nts,
respectively), although this difference did not reach statis-
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Figure 7. AISO patterns differentiate two subsets of SRRM4-dependent microexons. (A) Distribution of constitutive (CS), alternative (AS) and tissue-
regulated (TR) exons according to Fupfi values. P-value corresponds to the comparison between upfi (red) and dofi (blue) TR vs. CS exons using a two-sided
Fisher’s Exact test. (B) Z-scored median values for each feature for each exon type as well as CS exons that are strongly upfi (‘CS upfi’) and dofi (‘CS dofi’).
IntLe, intron length; BPd, distance from branch point to 3′ ss; ExLe, exon length. P-values correspond to Bonferroni-corrected Wilcoxon Rank-Sum tests
against the CS distributions for each feature. * 0.05 < P ≤ 0.01, ** 0.01 < P ≤ 0.001, *** P < 0.001. All details for all features are provided in Supplementary
File 2. (C) Distribution of unprocessed reads (upfi, dofi and bus) for control and SRRM4-dependent (SRRM4-dep.) microexons in each condition. (D)
Distribution of exons according to Fupfi values for control (left) and SRRM4-dependent (right) microexons in HEK293 cells ectopically expressing human
SRRM4. P-value corresponds to the comparison between upfi (red) and dofi (blue) control and SRRM4-dependent exons using a two-sided Fisher’s Exact
test. (E, F) Validation of AISO for four SRRM4-dependent microexons with upfi or dofi patterns in SRRM4-expressing HEK293 cells. Primers in upstream
and downstream introns (i1 and i2) in combination with exon junction primers between the exon C1 upstream and the microexon (upfi, red) and between
the microexon and the exon C2 downstream (dofi, blue) were used for specific detection of partially processed transcripts, as depicted in (E). Unidentified
amplification products in F are indicated with an asterisk. (G–I) Distributions of �PSI (SRRM4 OE vs control; G), exon length (H) and 3′ ss strength
of the upstream intron (using the MaxEntScr metric; I) for control and SRRM4-dependent exons with strong dofi (blue) and upfi (red) patterns. P-values
correspond to Wilcoxon Rank-Sum tests. (J) RNA map showing the percent sequence covered by UGC motifs using a sliding window of 25 nts for each
microexon type. For C-J, only microexons with N(upfi + dofi) ≥ 5 in the SRRM4 OE sample were considered for all the analyses.
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tical significance (Figure 7H; P = 0.139). Third, a major
feature previously associated with SRRM4-dependent mi-
croexons, namely weaker 3′ ss contexts in the upstream in-
tron (27,35,36), was significantly more prominent for dofi
microexons (Figure 7I; P = 0.010, Wilcoxon Sum-Rank
test; Supplementary File 3), consistent with the general pat-
tern of all dofi exons (Figures 6 and 7B). Finally, the pres-
ence of the UGC motif near the 3′ ss, also characteristic
of eMIC-dependent regulation by SRRM4 (27,35–37), was
more prevalent in dofi SRRM4-dependent microexons (Fig-
ure 7J). In summary, these results suggest that the previ-
ously reported features associated with SRRM4 regulation
are more associated with dofi splicing and raise the possi-
bility that two modes of regulation by SRRM4 may exist
in connection with opposite AISO patterns. However, fur-
ther studies are required to increase the robustness of these
conclusions and evaluate their mechanistic relevance.

DISCUSSION

We developed Insplico, the first publicly available stan-
dalone software dedicated to the study of the splicing or-
der of adjacent introns applicable to both short and long
read sequencing technologies, and demonstrated its effec-
tiveness using simulated reads and by comparing it with two
published studies of AISO (15,16). Some previous studies
had reported methods and code for the analysis of AISO
with either short or long reads (13,15,16). However, Insplico
facilitates the analysis of AISO by providing a single user-
friendly and standalone tool that can process both types of
sequencing technologies and that includes additional func-
tionality. Importantly, despite specifically studying intron
splicing, Insplico is an exon-centric, not intron-centric tool.
It obtains key measurements to investigate pre-mRNA pro-
cessing around user-specified exons of interest (upfi, dofi,
bus and bos counts) and estimates the fraction of transcripts
in which the upstream intron is spliced before the down-
stream one (Fupfi). Moreover, another unique feature of
Insplico is that it also quantifies the level of inclusion of
exons (PSI) and the level of intron retention (PIR) of the
two neighboring introns, allowing more complex integrated
analyses as well as further filtering and stratification strate-
gies within a single software.

Contrary to short reads, which only give local informa-
tion, long reads have the potential to provide a snapshot of
all introns of a transcript at once, thus being particularly
promising to study intron splicing order. Intriguingly, a pi-
oneer study (16) obtained AISO patterns in human using
long reads that did not match those previously reported for
short reads. Here, we showed that such discrepancies could
be due to 5′ and 3′ biases in long read sequencing and li-
brary preparation that, when corrected for, harmonize the
patterns obtained by both types of sequencing technolo-
gies. The optional module to perform these corrections is
a unique feature of Insplico. On the other hand, short read
sequencing has its own limitations. For example, given that
upfi and dofi fragments require mapping across the entire
exon to cover both splice sites (Figure 1A), the length of
the reads (and the fragment size of paired-end reads) limits
the maximum length of the exons that are quantifiable by
Insplico using short reads, as we illustrated using simulated
reads. Moreover, although we have explicitly focused on the

relative splicing order of the pairs of introns directly flank-
ing the input exons (AISO), short reads can barely provide
splicing order information beyond them as long reads can
do (38).

After demonstrating its effectiveness, we applied In-
splico to multiple public and newly generated RNA-seq
datasets to gain insights into AISO across cell types, con-
ditions and species. Splicing is known to mainly occur co-
transcriptionally and be influenced by transcriptional re-
lated features, RNA cis-acting elements and binding pro-
teins. How these factors determine AISO and how it varies
across different conditions is largely unknown. Remarkably,
through our analyses, we not only observed a strong consis-
tency of AISO across cell and tissue types from the same
species, but also even under disruptive spliceosomal con-
ditions such as those induced by SF3B1-targeting drugs.
Thus, these findings suggest that, even though experimen-
tally induced changes in AISO have been shown to af-
fect splicing outcomes (20,22), AISO is largely indepen-
dent of the splicing outcome under physiological and non-
physiological conditions. Moreover, these results argue that,
for most exons, the main contributors to this predefined
AISO are likely hardcoded in the genome. In line with this
idea, our cross-species analysis revealed several universal
genomic features that are strongly associated with exons
whose upstream intron is spliced before the downstream
one across various animal and plant species. In particular,
such exons are typically flanked by a short upstream intron
with strong 5′ ss and 3′ ss (including a long polypyrimidine
tract and short BP-AG distance) and a long downstream
intron with large BP-AG distance, but otherwise regular
splice sites. Those features are generally in line with and ex-
pand previous studies (15,16,39), and are consistent with
the model known as ‘first come, first spliced’, whereby a co-
transcriptional recruitment of the spliceosome occurs and
triggers the splicing of well-defined introns as soon as they
are fully transcribed (10–14). However, consistent with pre-
vious studies (13,15,16), we also found that there are nearly
as many exons whose downstream introns are spliced prior
to the upstream one as there are of the converse ‘canoni-
cal’ case, overall resulting in a strong bimodal distribution
of Fupfi values genome-wide for all studied species. This
large number of dofi exons, which are particularly associ-
ated with tissue-regulated alternative exons, is consistent
with previous studies indicating large fractions of delayed
or post-transcriptional splicing (40) and the exceptional de-
pendence of these introns on specific trans-acting factors
for their splicing (1,41). Therefore, to fully comprehend the
universal AISO code, it will be necessary to not only dis-
sect the role of spliceosomal components and RBPs in in-
tron splicing order (15,16,38), but also to expand and in-
tegrate recently developed mathematical modelling of co-
transcriptional splicing (42) and splicing decisions based on
RBP binding rate and position on the pre-mRNA (43) with
chromatin features (44,45), spliceosomal recruitment and
splicing kinetics (46,47).

As an example of trans-acting dependent splicing regula-
tion, we focused here on a unique case of tissue-regulated
exons, neural microexons, which are characterized by their
short length (defined here as smaller than 51 nts) and depen-
dence on SRRM4 for inclusion (36). An appealing hypoth-
esis, which we investigated here, is that these microexons are
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highly dependent on a particular AISO for inclusion. Along
this line, and consistent with the pattern of AISO for TR ex-
ons, we observed that the majority of SRRM4-dependent
microexons are preferentially spliced in a dofi manner. Such
dofi microexons tend to be shorter, have significantly weaker
3′ ss, and much more marked UGC peak at a shorter dis-
tance to the 5′ ss than upfi ones. This suggests that the si-
multaneous assembly of U1 and U2 snRNPs is not possible
on the surrounding 5′ and 3′ splice sites of these microex-
ons due to steric hindrance. Therefore, it could be possible
that they are mainly recognized at the level of their 5′ ss,
which are known to be particularly strong (27,36), by the
U1 snRNP whose recruitment could then favor splicing of
the downstream intron. After splicing of the downstream
intron and, possibly, recruitment of RNPS1 (a component
of the Exon Junction Complex) (48), SRRM4 binding could
favor 3′ ss recognition by promoting the recruitment of early
spliceosomal components (27) and subsequent splicing of
the upstream intron. Intriguingly, however, a non-negligible
fraction of SRRM4-dependent microexons are spliced in an
upfi manner. Those tend to be longer, with stronger 3′ ss and
a less marked UGC peak, suggesting that they may be rec-
ognized and spliced in a way more similar to constitutive
exons. Although those hypotheses remain to be formally
tested, our AISO analysis thus suggests two possible mecha-
nisms of splicing of SRRM4-dependent neural microexons.
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