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ABSTRACT

Unveiling the nucleic acid binding sites of a protein
helps reveal its regulatory functions in vivo. Cur-
rent methods encode protein sites from the hand-
crafted features of their local neighbors and recog-
nize them via a classification, which are limited in
expressive ability. Here, we present GeoBind, a ge-
ometric deep learning method for predicting nucleic
binding sites on protein surface in a segmentation
manner. GeoBind takes the whole point clouds of
protein surface as input and learns the high-level rep-
resentation based on the aggregation of their neigh-
bors in local reference frames. Testing GeoBind on
benchmark datasets, we demonstrate GeoBind is su-
perior to state-of-the-art predictors. Specific case
studies are performed to show the powerful ability
of GeoBind to explore molecular surfaces when de-
ciphering proteins with multimer formation. To show
the versatility of GeoBind, we further extend GeoBind
to five other types of ligand binding sites prediction
tasks and achieve competitive performances.

GRAPHICAL ABSTRACT

INTRODUCTION

Nucleic acid binding proteins (NBPs) play central roles
in gene regulation, including transcription and alterna-
tive splicing (1,2). Accurate annotation of binding sites on
NBPs remains one of the most challenging aspects of un-
derstanding nucleic acid interactions (3,4). It is still time-
consuming and costly to determine the detailed binding pat-
terns of nucleic acid-protein complexes experimentally. For-
tunately, the impressive results achieved by AlphaFold (5)
and RoseTTAFold (6) in protein folding prediction tasks
demonstrate the power of machine learning, especially deep
learning, in solving biological problems of structure deter-
mination. Thus, machine learning methods for predicting
the binding sites on protein surface are desired.

Based on machine learning and deep learning methods,
a number of NBP binding site predictors have been devel-
oped. In terms of the protein encoder paradigm, they can
be briefly divided into two categories: primary sequence-
based methods and tertiary structure-based methods. Most
available predictors used sequence-based protein encoding
strategies, ushering in a time when machine learning tech-
niques were employed to predict nucleic acid binding sites,
such as BindN (7), RNABindR (8), PRNA (9) and DR-
NAPred (10). Sequence-based descriptors encode binding
residues as vectors and categorize them using a traditional
classifier, such as random forest, support vector machine
and naive Bayes. Due to the lack of protein spatial infor-
mation, these predictors did not often perform effectively.
As the development of deep learning and the richness of 3D
protein structures, recent predictors integrated the structure
information of protein into their models, e.g., PST-PRNA
(11) based on 2D views, DeepRank on 3D grids (12), Nu-
cleicNet on space partitioning (13) and GraphBind (14) on
local graph pattern of residues. However, these structure-
based methods encode protein structures by simplifying the
protein structure modeling, which have limitations in their
ability to accurately represent the 3D structure of proteins
and capture all the relevant information.
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Geometric deep learning techniques have recently flour-
ished in computer vision and graphics (15), allowing for
the intrinsic modeling of non-Euclidean protein structures.
Benefiting from this, geometric deep learning seeks to de-
velop a non-Euclidean analogy of filtering and pooling op-
erations on protein structures directly rather than consider-
ing them firstly in a 3D Euclidean space and then applying
standard deep learning pipelines. Geometric deep learning
has been shown effective in tasks related to protein structure
modeling. For instance, AlphaFold and RoseTTAFold were
designed for protein folding, EquiDock (16) and EquiBind
(17) for protein–protein and protein-drug docking respec-
tively, MaSIF (18) and dMaSIF (19) for protein-protein
binding sites prediction, and ScanNet (20) for protein–
antibody binding sites prediction. However, the usage of ge-
ometric deep learning technique in elucidating binding pat-
terns between proteins and ligands, such as nucleic acids,
metal ions and biologically relevant molecules, has not been
well studied.

Here, we present GeoBind, a general framework for nu-
cleic acid binding site segmentation on protein surfaces us-
ing geometric deep learning. We hypothesize that molecu-
lar surfaces imply fingerprints of interaction patterns be-
tween proteins and nucleic acids (18). In GeoBind, based
on the 3D structure of a protein, we first compute the
molecular surface and describe it as the basic formation
of point clouds. The input features of point clouds are as-
signed with three kinds of feature descriptors (i.e., multiple
sequence alignment (MSA) information, chemical environ-
ment and local curvature). They are learned to be a numer-
ical task-specific vector by a series of quasi-geodesic con-
volutional layers. By constructing a local reference frame
(LRF) on each point, the spatial information of point
clouds is learned by a geometric neural network. Benefit
from the pipeline, GeoBind is invariant to 3D rotations
and translations. On two benchmark datasets, we show that
GeoBind is superior to state-of-the-art methods. Taking
full use of the concept of molecular surface, one advantage
of GeoBind over existing methods is that GeoBind is able
to analyze the surface of multimeric protein complex in-
stead of being limited by the input of protein monomers.
To demonstrate this advantage, we present two precise pre-
dictions in complexes, whereas the predictions are compar-
atively inaccurate in their corresponding individual compo-
nents. Furthermore, we apply GeoBind to five other ligand-
binding site prediction tasks. The results further demon-
strate the versatility and scalability of GeoBind in protein
representation learning.

MATERIALS AND METHODS

GeoBind overview

The overall framework of GeoBind is shown in Figure 1.
Different from existing methods, GeoBind particularly ap-
proaches the challenge of predicting nucleic acid binding
sites on protein surfaces in a segmentation manner (see Fig-
ure 1A). For GeoBind, two major processes are used se-
quentially, one focusing on preprocessing 3D protein struc-
tures, the other on model training and testing. In the follow-
ing, we give a brief description of each procedure.

3D protein structure preprocessing. (1) Featurization.
Given a structure of NBP complex which contains the 3D
coordinates of atoms, we first compute its solvent excluded
surface. The point cloud with 3D coordinates on the sur-
face is the basic data frame used in GeoBind. Three kinds
of features are computed for characterizing the primary rep-
resentation of the molecular surfaces (i.e., MSA informa-
tion, chemical environment and local curvature). In order
to obtain the hierarchical representation of protein surface,
a series of geometric convolutional networks are applied to
aggregate the geodesic relationships of adjacent points. To
achieve this, we construct a local reference frame (LRF)
with respect to each point of cloud (see Figure 1D). (2)
Binding interface and binding site definition. An interface is
a point on the protein surface, and a binding interface is
a point that is <3.0 Å away from any atom in the nucleic
acid structure. Besides, we define protein surface interfaces
in terms of binding sites or binding atoms. We find that
defining the binding interface directly on the point cloud
of the protein surface is the most effective and accurate def-
inition (see Supplementary Figure S1). A binding site refers
to a protein residue. The binding sites are annotated by Bi-
oLip (21). The binding preference of a site is calculated by
max-pooling the interfaces generated by the site, as shown
in Figure 1B.

Model architecture. The overall neural network architec-
ture of GeoBind is shown in Figure 1E. GeoBind consists of
four blocks which contain the quasi-geodesic convolutional
layers. In each block, a Multi-Layer Perceptron (MLP) layer
is respectively set for pre- and post-encoding the point pre-
sentation before and after the convolutional layer. To deter-
mine the interface score, an MLP layer followed by a Soft-
max function is applied after the last convolutional layer.
The true interface labels and predicted interface scores pro-
vide the supervised information for optimizing the param-
eters of the proposed geometric deep learning model.

Datasets

The lists of nucleic acid-protein complexes (released up to
March 2022) were downloaded from BioLip (21). Complex
structures with a resolution higher than 8.0 Å were elimi-
nated. Note that it is not a strict threshold given that the
existing NBP structures are utilized as fully as possible. A
higher resolution quality control will be applied in the fol-
lowing sequence clustering process. BioLip annotates the
Chain ID of nucleic acid that interacts with protein, but
not the Chain type (DNA or RNA). We added the anno-
tation of nucleic acid chain type by searching the nucle-
obase types from PDB structures individually. Then, the
complexes were divided into DBP dataset and RBP dataset
according to their annotated nucleic acid chain type, result-
ing in redundant 13 864 DBPs and 22 908 RBPs, respec-
tively. The redundant DBPs and RBPs were clustered us-
ing psi-cd-hit (22) program at sequence identity cutoff of
0.3. The protein with the best resolution structure in each
cluster is chosen as the representative member. Sequence
clustering resulted in 898 DBPs and 820 RBPs. Finally, the
RBP and DBP sets were split into the training and test-
ing datasets according to TM-score clustering results for
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Figure 1. Overflow of GeoBind. (A) An illustration of the NBP surface segmentation. GeoBind takes the whole protein surface as input and outputs the
segmented surfaces with each point assigned a likelihood of being involved in nucleic acid binding events. (B) Definition of binding interface and site. Points
located on the protein surface with a distance to nucleic acids less than a cutoff are considered binding interfaces. Binding sites refer to residues that close
to nucleic acids according to a similar definition. The mapping from an interface score to a site score is achieved through a max pooling operator. (C) Left,
an introduction to quasi-geodesic convolution. We assign each point on cloud with a LRF. GeoBind makes use of quasi-geodesic distance and relative
position (computed by LRF) for geometric embedding. Middle, the geodesic distance between two points is estimated by their position and orientation.
Right, the relative position of a point in the LRF refers to the projection of the point on three axes. (D) Each point is initialized with three types of
descriptors, namely multiple sequence alignment (MSA), chemical environment and curvature information. (E) Basic architecture of GeoBind. GeoBind
consists of four blocks which contain the quasi-geodesic convolutional layers. In each block, a Multi-Layer Perceptron (MLP) is set up before and after
the quasi-geodesic convolutional layer for the pre- and post-encoder.

depressing the structure similarity between them. Specifi-
cally, pair-wise matrix of TM-score for DBP set and RBP set
were computed using TM-align algorithm (23). The train-
ing set and testing set were split by applying a hierarchi-
cal procedure using agglomerative clustering in Scikit-learn
(24). As a result, 195 DBPs (denoted as DNA-195 Test)
and 157 RBPs (denoted as RNA-157 Test) are selected for
the purpose of testing. To avoid overfitting to the testing
set, we have also set aside approximately 20% of the train-
ing set to construct a validation dataset, which will be used
for hyperparameter tuning. Supplementary Table S1 pro-

vides detailed statistics of the binding and non-binding sites.
We have included information on the distribution of pro-
tein length and protein structure resolution in our collected
datasets in Supplementary Figure S2.

Problem formulation

GeoBind works on protein tertiary structure which is a set
of atoms with 3D coordinates and atom types. Given a
nucleic acid binding protein, we first compute the protein
surface of protein based on the set of protein atoms. We
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collect residues that contribute to surface formation, while
residues that fold into the interior structure are not con-
sidered. These surface sites are labeled by BioLiP as either
binding or non-binding, denoted by: S = {si }M

i=1, where M
is the number of sites and si ∈ {0, 1} represents non-binding
and binding sites, respectively. The protein surface is repre-
sented as a set of points, each of which is associated with
a nucleic acid binding identity denoted by P = {xi , yi }N

i=1.
Here, N represents the number of points on the surface,
xi ∈ R

3 indicates the 3D coordinate of the point, and yi ∈
{0, 1} indicates whether the point is a binding interface.
Specifically, a point xi is labeled as a binding interface (yi
= 1) if there exists a ligand atom located within a distance
of 3 Å from the point.

A set of point cloud with features can be thought of as
a map f : R3 → R

n . It assigns each point on protein sur-
face with a n-dimensional vector. In GeoBind, we design
a SE(3)-equivariant operator T to produce a new function
T ( f ) = o f : R3 → [0, 1] that describes the point cloud with
interface score ŷ. We parametrize T using quasi-geodesic
convolutional neural networks as described in Ref. (19).

To map the binding interface score to the binding site
score in GeoBind, we utilize a max-pooling operator.
Specifically, we calculate the binding site score ŝi for residue
i by taking the maximum interface score ŷj among the sur-
face points generated by residue i, denoted as Ri. The set Ri
is determined by the generating solvent excluded surface,
which is computed using the msms program (25). Supple-
mentary Note S1 includes a comprehensive description of
this problem formulation.

Oriented point cloud of protein surface

All proteins are protonated using program reduce (26) to
add the missing hydrogen atoms. Then the classical sol-
vent excluded surfaces (27) are triangulated using msms
program with parameters of density of 3 and water probe
radius of 1.5 Å. Then all protein meshes are resampled
at a resolution of 1.2 Å using PyMESH (28) (available at
https://github.com/PyMesh). Supplementary Figure S2d
depicts how the number of data points relates to protein
length, generated under five different sampling ratios.

As described in Problem formulation, the surface of a pro-
tein is represented by P = {xi , yi }N

i=1. The normal n̂i of a
reference point xi on surface is computed by averaging the
normal vectors of faces whose vertices contain the reference
point xi. Then, the surface of protein can be represented by
P = {xi , n̂i , yi }N

i=1.

Descriptors

Multiple sequence alignment (MSA) feature. The MSA
information is of great significant in computational pro-
tein biotechnology. And it is a key intermediate step in pre-
dicting evolutionarily conserved properties such as tertiary
structures, functional sites and interactions. We assign the
MSA features to the point cloud according to the member-
ship of points and residues. Specifically, the evolutionary
score of a residue is assigned to the points of clouds gener-
ated by atoms in this residue. For a protein with the residue

number of L, a profile hidden Markov model (HMM) ma-
trix of shape L × 30 is computed by using the tool HH-
blits3 (29) searching against Uniclust30 (30) database. The
HMM matrix consists of three kinds of information, i.e. 20
columns of observed frequencies for twenty kinds of amino
acids in homologous sequences, 7 columns of transition fre-
quencies and 3 columns of local diversities.

Chemical feature. In GeoBind, we do not utilize hand-
crafted protein physicochemical descriptors like electrostat-
ics charge and hydropathy profile. Instead, we leverage a
lightweight neural network to regress the physicochemi-
cal environment of protein surfaces using an atomic point
cloud, as demonstrated in dMaSIF (19). In GeoBind, the
chemical feature is represented as a 1 × 6 vector of one-
hot encoding, with each element corresponding to one of
six types of atoms (C, H, O, N, S, and others).

Geometric feature. For characterizing the geometric shape
of a point cloud, the shape index around each point on the
surface is described by the local curvature. It is defined with
respect to the principal curvature �1, �2, �1 ≥ �2 as:

2
π

tan−1 κ1 + κ2

κ1 − κ2
. (1)

After assigning the above features to the point cloud, we
can represent the protein surface as: P = {xi , n̂i , fi , yi }N

i=1,
where fi ⊂ R

37.

Quasi-geodesic convolution

Quasi-geodesic distance. The computation of geodesic dis-
tance between each pair of points on a surface requires a
high time cost. An alternative approximation defines the
geodesic distance (Figure 1C, middle) between two points
on a curved surface as:

di j = ∥∥xi − x j
∥∥ · (

2 − 〈
n̂i , n̂ j

〉)
. (2)

To localize the filters in the convolutional layer, the
geodesic distance is transformed by a smooth Gaussian
window of � = 12 Å which is defined as:

w(di j ) = exp(−d2
i j/2σ 2). (3)

Local reference frame (LRF). For object recognition and
surface registration task in 3D computer vision, a remark-
able number of works introduced the LRF for designing
3D descriptors in order to reach model SE(3)-invariance
(31–34). Recent works in structural biology have used the
LRF for protein structure representation (16,17,19,35). The
LRFs indicate the local orientations of a 3D object. As
shown in Figure 1C, we build LRFs for all points on the
protein surface. For any point xi, a LRF is represented
as Ci = {n̂i , ûi , v̂i } to encode the relative positions between
point xi and its neighbors. The relative position Pij between
point xi and xj is a 3D vector and defined as:

Pi j = [(x j − xi )�] · [
n̂i ûi v̂i

]
. (4)

Here, we give the details of generating the LRF of a point
xi: Ci = {n̂i , ûi , v̂i }. At first, n̂i is the normal vector of point
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xi as described in oriented point cloud of surface. The nor-
mal vectors exhibit equivariance with respect to the SE(3)
transformation of the protein. Then, we initialize the tan-
gent vector û′

i , v̂′
i using the orthonormal basis (36): û′

i =
[1 + sax2, sb,−sx], v̂′

i = [b, s + ay2,−y], where s = sign(z),
a = −1/(s + z) and b = axy. Next, we orient (û′

i , v̂′
i ) along

the geometric gradient ∇u′,v′
Q(xi ):

∇ û′,v̂′
Q(xi ) = 1

N

N∑

j=1

w(di j )[pû′
i j , pv̂′

i j ]Q(x j ), (5)

ûi = (∇ û′
Q(xi ) · û′

i + ∇ v̂′
Q(xi ) · v̂′

i )

/((∇ û′
Q(xi ))2 + (∇ v̂′

Q(xi ))2), (6)

v̂i = (−∇ v̂′
Q(xi ) · û′

i + ∇ û′
Q(xi ) · v̂′

i )

/((∇ û′
Q(xi ))2 + (∇ v̂′

Q(xi ))2), (7)

where Q is a scalar field function on protein surface Q :
xi → R, pu′

i j , pv′
i j are the relative positions of point xj with re-

spect to the orientation û′
i and v̂′

i within the initial LRF of
point xi. After building the LRF for each point, we can up-
date the representation of protein as P = {xi , Ci , fi , yi }N

i=1.

Choice of the scalar field function. Generating a local ref-
erence frame (LRF) on a protein surface requires a scalar
field function Q that is differentiable and equivariant to
SE(3) transformation. In this study, we test five types of
scalar field functions which have been acknowledged, i.e.,
BOARD (31), local curvature (37), STED, FLARE (32) and
MLP (19). After comparing their performance in predicting
DNA- and RNA-binding sites, we selected BOARD as our
scalar function. For a point on the surface, BOARD com-
putes the signed distances to the tangent plane of a point,
based on a subset of points within a cutoff radius distance,
and then averages them. The cutoff radius is the same as the
size of the Gaussian window � = 12 Å. The tangent plane
of a point is determined by its normal vector. Supplemen-
tary Note S2 provides detailed descriptions of the other four
scalar field functions.

Q(xi ) =
∑

j∈{ j :‖xi −x j‖< σ }
(xi − x j ) · n̂i . (8)

Trainable convolution. Finally, we use quasi-geodesic con-
volution as the aggregation strategy for high-level represen-
tations of point clouds, which is defined as:

ft
i =

N∑

j=1

w(di j )MLP(Pi j )ft−1
j , (9)

where w(dij) is the smoothed distance between point xi and
xj, ft

i is the feature of point xi at the tth quasi-geodesic con-
volutional layer. The dimension of fi is fixed at 64 for all
quasi-geodesic convolutional layers. The MLP is a train-
able multilayer perception for encoding the relative relations
vector between point xi and xj. Specifically, the MLP layer
consists of an input layer with 3 units (the dimension of the
relative position vector Pij), a hidden layer with 8 units, a

ReLU non-linearity, and an output layer with 64 units. The
output dimension of MLP(Pij) is consistent with the dimen-
sion of ft−1

j , and the quasi-geodesic convolution operation
involves element-wise multiplication of MLP(Pij) and ft−1

j
using the Hadamard product.

Neural network architecture and training optimization

Neural network architecture. Details of the GeoBind ar-
chitecture are shown in Supplementary Figure S3. The net-
work of GeoBind consists of 4 blocks with one quasi-
geodesic convolutional layer per block. For each block, an
MLP (consists of two fully connected (FC) layers) layer is
respectively set for pre- and post-encoding the point pre-
sentation before and after the quasi-geodesic convolutional
layer. The number of feature channels increases to 64 in the
first block and remains at that number throughout the se-
ries. A Leaky ReLU activation layer is followed after each
FC layer. A batch normalization (38) layer is set after the
pre- and post-encoding layers to accelerate the training
of GeoBind. Following the fourth convolutional block, an
MLP classifier, consisting of two FC layers followed by a
Softmax layer, is set up to predict the likelihood ŷi that
point xi is a binding interface point or not. Finally, the max-
pooling operator is used to aggregate the interface scores in
order to determine the likelihood of a residue si to be a bind-
ing site:

si = max
j∈Ri

{ŷj }, (10)

where Ri denotes those surface points generated by
residue i.

Optimization. For model optimization, a binary cross-
entropy loss function is minimized via a back propaga-
tion algorithm using the ADAM (39) optimizer. For macro-
molecule ligands, i.e., DNA, RNA, ATP and HEM (ATP,
HEM and the following metal ion ligands are extended
tasks introduced in results), the loss function is defined on
the interface (point cloud) as:

Loss = − 1
N

N∑

i=1

yi · log(ŷi ) + (1 − yi ) · log(1 − ŷi ), (11)

where N is the number of points on surface, and yi, ŷi stand
for the true label and the probability of a point being a bind-
ing interface point. For metal ion ligands, i.e., Ca2 +, Mn2 +

and Mg2 +, the binding interfaces on surface are extremely
few. Therefore, we first convert the interface score to site
score according to Equation 10. Then the loss is defined on
the sites (residues) as:

Loss = − 1
M

M∑

i=1

si · log(ŝi ) + (1 − si ) · log(1 − ŝi ), (12)

where M is the number of residues forming the protein sur-
face, and si, ŝi stand for the true label and the probability of
a site being a binding site.

Initially, the learning rate is set to 10−3. If the AU-
ROC value does not improve in 5 epochs on the valida-
tion dataset, the learning rate decays by 10. We set an early
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stopping strategy for fast reaching the optimal model. Early
stopping criterion is met if the AUROC value does not im-
prove within 10 epochs. The batch size is set to 1 and we find
that increasing the batch size does not significantly improve
the performance.

Implementation and runtime

GeoBind is implemented by Python v3.7.12. Biopython
v1.78 (40) is used to parse the PDB files. The quasi-
geodesic neural network is achieved by PyTorch Geomet-
ric (PyG) v1.7.1 (41) based on the architecture of PyTorch
v1.10.1 (42). The pair-wise distance of all points involved
in quasi-geodesic distance and quasi-geodesic convolution
is computed efficiently using KeOps v2.1 library (43,44).
Other scientific computing and machine learning pack-
ages include NumPy v1.21.6 (45) and Scikit-learn v1.0.2
(24).

Experiments were conducted using a workstation with
two Intel Xeon Gold 6226R processors @ 2.90 GHz and
one NVIDIA RTX6000 GPU running on Ubuntu Linux
18.04. The pre-computation time for generating the fea-
tured point cloud from the PDB file depends on the length
of the protein. The computation of the MSA feature (from
HHM files by program HHblits3) is time-consuming. Thus,
we accelerate the preprocessing of proteins in parallel using
Slurm (46) system. The HHM files of all proteins for seven
kinds of ligands are available for download at https://doi.
org/10.5281/zenodo.7045931. Supplementary Figure S2c
plots the running time of the precomputing time (exclud-
ing the time of generating the MSA feature) for proteins in
RBP datasets. Training a model using a dataset consisting
of 800 proteins typically requires approximately 10GB of
memory and takes around 5 hours to complete for roughly
40 epochs.

Comparison methods

The comparing methods in this study are GraphBind (14),
DRNApred (10), 3D Zernike descriptors (3DZD) (47),
MaSIF-site (18), and dMaSIF-site (19). Supplementary
Note S3 provides comprehensive descriptions of the imple-
mentation details of these methods.

RESULTS AND DISCUSSION

We respectively used the two NBP datasets (i.e., DNA-
binding proteins (DBPs) and RNA-binding proteins
(RBPs)) to train and test GeoBind and state-of-the-art
methods. On account of the unbalanced data number
between binding sites and non-binding sites, we use the
area under the receiver operating characteristics curve
(AUROC), the area under the precision-recall curve
(AUPRC) and Matthew’s correlation coefficient (MCC) as
the primary evaluation criteria (48). In addition, the results
of the other criteria (i.e., recall, precision and F1-score) are
tabulated in the Supplementary Tables.

GeoBind outperforms existing methods

To benchmark the effectiveness of GeoBind, we evalu-
ate GeoBind and the other existing methods on the two

compiled datasets. We compare GeoBind with five state-
of-the-art methods, DRNApred (10), GraphBind (14), 3D
Zernike descriptors (3DZD) (47), MaSIF-site (18) and
dMaSIF-site (19). DRNApred and GraphBind are two
predictors for identifying nucleic acid binding sites, with
DRNApred being a sequence-based approach and Graph-
Bind using structure-based methods. 3DZD, MaSIF-site,
and dMaSIF-site are state-of-the-art surfaced-based ap-
proaches, but were originally developed to identify protein-
protein binding sites. In this work, we have extended these
surface-based methods to predict nucleic acid binding sites
and demonstrate the effectiveness of our approach.

Overall evaluation. According to the results presented in
Figure 2, GeoBind achieves impressive performance met-
rics on two different test datasets. Specifically, for DNA-
195 Test, GeoBind achieves an AUPRC of 0.572 and
an AUROC of 0.941, while for RNA-157 Test, GeoBind
achieves an AUPRC of 0.563 and an AUROC of 0.912.
These metrics demonstrate that GeoBind outperforms ex-
isting methods with substantial improvement. Notably,
compared to the second best method, GeoBind achieves a
3.2% increase in AUROC and an 8.3% increase in AUPRC
for DNA-195 Test, and a 3.2% increase in AUROC and
a 12.2% increase in AUPRC for RNA-157 Test. Supple-
mentary Table S2 provides more details of performances by
comparison methods. In addition, GraphBind also achieves
competitive performances caused by considering of the
MSA information descriptor and structural context infor-
mation. DRNApred also makes use of the MSA features for
residue representation. However, due to the lack of struc-
ture information, the performance of DRNApred is over-
shadowed.

Comparing with surface-based models. GeoBind was de-
veloped based on the prior knowledge that protein surfaces
imply fingerprints of interaction patterns between proteins
and nucleic acids. In order to demonstrate the advantage
of GeoBind, we compared it with existing surface-based
protein structure representation methods, such as 3DZD,
MaSIF-site and dMaSIF-site, which were originally de-
signed for predicting protein-protein binding sites. Since the
core of these methods is to encode protein surfaces, they are
extensible to predicting nucleic acid binding sites. The com-
parison results are shown in Figure 2. It is clearly shown that
GeoBind outperforms these existing surface-based methods
by a significant margin.

Furthermore, we observed that dMaSIF-site produces in-
ferior results compared with GeoBind, e.g., with AUPRC
values of 0.337 and 0.329 for DNA- and RNA-binding
site predictions, respectively. These values are significantly
lower than those achieved by GeoBind even without using
the MSA feature. GeoBind without MSA achieves AUPRC
values of 0.455 and 0.452 for DNA- and RNA-binding
site predictions, as introduced in Section Ablation study.
Since GeoBind and dMaSIF-site both embrace the quasi-
geodesic convolutional framework, we investigated the de-
tails to understand the reason for the gap.

In addition to the carefully crafted designs in GeoBind,
which includes accurate protein surface, features and LRF,
we discovered that the difference in performance between

https://doi.org/10.5281/zenodo.7045931
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Figure 2. Model performance of GeoBind and baseline methods. PR and ROC curves achieved by GeoBind and baseline methods on DNA-195 Test
dataset (A), and on RNA-157 Test dataset (B).

GeoBind and dMaSIF-site can also be attributed to the op-
timization of model parameters. Specifically, dMaSIF em-
ploys a negative down-sampling strategy at the optimizing
stage to address the issue of imbalanced numbers of bind-
ing and non-binding sites. Although this strategy helps the
model focus on positive samples, it results in a large num-
ber of false positive recognitions, as reflected in the relative
high recall and extremely low precision metrics achieved by
dMaSIF-site (Supplementary Table S2). After replacing the
loss function of dMaSIF-site with the one (Eq. 11) we used
in GeoBind, dMaSIF-site achieves AUPRCs of 0.410 and
0.420 for DNA- and RNA-binding site predictions, respec-
tively. Comparing the results with GeoBind without MSA
features, we conclude that a problem-specific, manually de-
signed approach performs better than general end-to-end
learning in the segmentation of nucleic acid binding sites
on the protein surface.

Extending to external benchmark dataset. In addition, we
tested GeoBind on the benchmark datasets collected by
GraphBind (14). The datasets in GraphBind were split
based on the released time of PDB structures. More details
about the data collection are listed in Supplementary Ta-
ble S3. This experiment compared GeoBind with 8 exist-
ing DBP binding sites predictors and 7 DBP binding sites
predictors. On the DBP dataset, GeoBind achieves MCC

of 0.526 and AUROC of 0.940, outperforming the exist-
ing DBP predictors ranging from 5.1% to 50.2% of MCC,
and from 1.4% to 19.0% of AUROC. On the RBP dataset,
GeoBind achieves MCC of 0.373 and AUROC of 0.874,
outperforming the existing RBP predictors ranging from
13.7% to 49.3% of MCC and from 2.3% to 24.1% of AU-
ROC. Supplementary Table S4 provides more details about
the comparison experiments.

Assessment of GeoBind on homologous unbound proteins

Proteins often undergo changes in their structures when
transitioning from an unbound individual state to a bound
state with nucleic acid (49). To assess this influence on our
prediction, we tested GeoBind and three other comparing
methods using an independent unbound testing dataset. We
screened the Protein Data Bank (50) to retrieve the un-
bound formations of proteins without nucleic acids corre-
sponding to the bound formations in the RNA-157 Test
and DNA-179 Test datasets. We found 27 unbound RBP
structures and 50 DBP structures compared to their bound
counterparts. The rules for selecting the unbound bench-
mark are presented in Supplementary Note S4. Figure 3A
shows the boxplot of TM-align scores for the bound and ho-
mologous unbound structures. Overall, GeoBind achieves
an AUROC of 0.912 and 0.871 for predicting nucleic acid
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Figure 3. Evaluation on homologous unbound proteins. (A) Box-plots are
used to display the TM-align scores between the bound and unbound
forms in the collected datasets. (B) A comparison of the AUROCs pre-
dicted on unbound proteins versus those predicted on bound proteins us-
ing GeoBind. (C) The performance of GeoBind is compared with that of
other state-of-the-art structure-based predictors.

binding sites in the unbound DBPs and RBPs, respectively.
Compared to the corresponding scores of 0.936 and 0.9,
the prediction performance of GeoBind becomes slightly
weaker when predicting nucleic acid binding sites in the un-
bound NBPs. We regard it is reasonable since the NBPs
used to train GeoBind are all in nucleic acid-binding states.
Although all the predictors demonstrate some difficulty in
the prediction task for unbound proteins, GeoBind still
achieves the best prediction performance.

Ablation study

A series of ablation studies are set up in this section to
show how GeoBind is affected by each component in the
proposed model. Ablation studies help to tune the model
for optimal performance under the basic given architecture.
For simplicity, an ablation study is conducted by changing
only one criterion at one time. These experiments include
feature contribution, scalar function choice, the depth of the
network and the size of the Gaussian window.

Feature contribution to GeoBind. To investigate the contri-
bution of features in GeoBind, we train and test the model
successively by numerous subset feature space. As shown
in Figure 4A (detailed results in Supplementary Table S5),
the feature of MSA contributes the most to GeoBind, fol-
lowed by chemical and curvature features sequentially. The
results demonstrate that the shape of protein surface is frag-
ile for protein functional pattern learning, which is consis-
tent with the conclusion in MaSIF (18) and dMaSIF (19).
Prior designed features, especially MSA features, still play
a major role in understanding nucleic acid binding function
for proteins. The MSA features are based on residues and
are calculated by searching the primary sequences. The im-

portance of MSA features is also identified with the evolu-
tionary conservation property of NBP binding sites (51,52),
which is known as the theory of nucleic acid binding motifs
in the light of evolution (53,54).

Using LLM embeddings to replace MSA. Recently, some
large language models (LLMs) at the scale of evolution are
built up toward predictive and generative biological struc-
ture and function from protein sequences (55–57). They are
pre-trained on large scale protein sequences, and then im-
plemented as a protein embedding model for downstream
tasks. This endeavor presents an alternative opportunity to
investigate the LLM embedding features used for nucleic
acid binding site prediction by replacing the handcrafted
MSA features. In our study, we used the large pre-trained
language model ESM-2 (55) to encode NBPs from our col-
lected data into embedding features. We tried to vary the
parameters of the ESM-2 model to create embedding fea-
tures with different dimensions ranging from 320 to 5120.
Then, we trained GeoBind on these embedding features,
as well as the chemical and geometric features. The results
are shown in Table 1. We found that GeoBind trained with
the ESM-2 embedding features of 5120 dimensions obtains
similar performance with the one trained with MSA fea-
tures for predicting DNA-binding sites, but obtains lower
performance for predicting RNA-binding sites. Moreover,
the performance of the language-based GeoBind model
improves gradually as we increase the scale of the ESM-
2 model. Compared with MSA features with only 30 di-
mensions, the high-dimensional features of EMS-2 may not
be well-suited to lightweight models such as the proposed
GeoBind. Nevertheless, the experiments confirm that large
pre-trained models have the great potentials in nucleic acid
binding sites prediction tasks. This will be a valuable re-
search direction to build up an LLM model with more com-
plicated architectures and parameters.

Choice of scalar function for LRF. The LRF is the key
module for achieving model SE(3)-equivariance. The tan-
gent vectors in LRF require a scalar field function that
determines the most descending orientations of points in
the protein surface cloud. In this section, we explore five
widely-used scalar field functions for choosing a better
3D representation, i.e. local curvature, STED (sum of to-
tal Euclidean distances), BOARD (31), FLARE (32) and
MLP (19). The definitions of the five functions are given
in Methods and Supplementary Note S2. Figure 4B shows
the scaled AUROCs of GeoBind respectively based on
the five scalar functions (the original results are listed
in Supplementary Table S6). The top two functions for
DBP’s binding site prediction are BOARD and STED. The
top two functions for RBP’s binding site prediction are
BOARD and FLARE. Based on the overall assessment,
we choose BOARD as the baseline scalar field function in
GeoBind.

Number of blocks and size of Gaussian window. As shown
in Figure 4C (detailed results in Supplementary Table S7),
GeoBind reaches the best performance when the number
of blocks is set as 4. When the model depth is lower or
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Figure 4. Ablation study of GeoBind. (A) GeoBind performance with different sub-sets of features. (B) GeoBind performance with different choice of
scalar function that determines the LRF. The AUROC value is normalized to highlight their differences. (C) GeoBind performance effected by the neural
network depths (number of blocks, NB) and radius size of the Gaussian window (GW).

Table 1. Performance of GeoBind with LLM embeddings

DBP RBP

Feature source Dim AUROC AUPRC AUROC AUPRC

esm2 t6 8M 320 0.914 0.483 0.874 0.455
esm2 t12 35M 480 0.915 0.513 0.867 0.477
esm2 t30 150M 640 0.931 0.557 0.886 0.506
esm2 t33 650M 1280 0.937 0.571 0.893 0.492
esm2 t48 15B 5120 0.940 0.582 0.897 0.472
MSA (HHblits) 30 0.941 0.572 0.912 0.563

Dim means the dimension of features.

higher than 4, the model is in a state of underfitting or
overfitting. The best size of Gaussian window for both
DNA- and RNA-binding site predictions is 12.0 Å.

GeoBind for segmentation of multimer surface

GeoBind is designed to make full use of the molecular sur-
face concept, by taking both monomers and multimers as
input. The AUROC distribution of 157 predicted RBPs in
the testing set is shown in Figure 5A, while the distribu-
tion for DBPs can be found in Supplementary Figure S5.
Although most proteins are well predicted, some proteins
have an AUROC close to 0.5, indicating poor predictions.
To understand the reasons behind these poor predictions,
we present two examples and propose solutions.

Figure 5B shows the structure of MazFs in complex with
an uncleavable RNA substrate (PDB ID: 4mdx) (58). In this
complex, there are two proteins forming into a homologous
dimer binding to a RNA with sequence ‘UUdUACAUAA’.
In order to avoid the biased assessment of models caused
by sequence redundancy, Chain A is conserved when col-
lecting datasets, while Chain B is abandoned. The binding
interface of the monomer (Chain A) and dimer (Chains A
and B) are shown in Figure 5C. The two MazFs jointly form
an extensive dimeric interface. When GeoBind takes Chain
A as input, namely monomer, only a portion of the dimeric
interface is predicted with relative high probability on the
segmented surface, resulting in an AUROC of 0.514. While
we take the molecular surface of the dimer of MazFs as an

input to GeoBind, the extensive dimeric interface binding to
RNA is well segmented, resulting in an AUROC of 0.853.
Besides, benefiting from the SE(3)-equivariant property of
GeoBind, the symmetric pocket is predicted with high pref-
erence for binding to RNA. The ITC and filter-binding ex-
periments suggest that this RNA can bind to any one of
the two potential pockets without exhibiting any preference
(58).

Another protein we showcase is the TniQ monomer in
the V. cholerae TniQ-Cascade complex (PDB ID: 6pif:J:1)
with a predicted AUROC of 0.52. The TniQ-Cascade com-
plex is formed by one Cas8 monomer, six Cas7 monomers,
one Cas6 monomer, one TniQ monomer (TniQ.2) and one
CRISSPR RNA (crRNA), as shown in Figure 5D. Among
these proteins, only TniQ.2 is in RNA-157 Test dataset.
TniQ.1 monomer (Chain ID: I) in 6pif is dropped as it
has no binding sites to crRNA according to the annota-
tion by BioLip. The affiliation or homologous informa-
tion of each monomer with the training or testing dataset
is listed in Supplementary Table S10. when predicting the
TniQ monomer using GeoBind, the segmented surface pro-
duces numerous false positive interfaces while failing to ac-
curately identify the true positive interface around residues
N47 and D45, as illustrated in the left panel of Figure 5E.
GeoBind achieved an AUROC of 0.984 for TniQ.2 (Chain
ID: J) when the entire surface of the complex was used as in-
put. The two binding sites (N47, D45) were well-segmented,
as shown in Figure 5E (right). Furthermore, for the com-
plete complex containing Cas8, six Cas7s, Cas6, and TniQ
(6pif:A B C D E F G H J:1), the predicted AUROC was
0.98. Note that some chains are in or homologous to the
proteins in training dataset. The PSE files (open with Py-
MOL (59)) for generating the figures can be downloaded
from https://github.com/zpliulab/GeoBind/tree/main/PSE/.
The above cases suggest that protein interactions appear
to influence the prediction of nucleic acid binding sites.
The surface shapes and descriptors are changed along
with conformation changes. Therefore, we suggest predict-
ing the multimeric conformation of a protein rather than
the monomer, whenever the multimeric conformation is
available.

https://github.com/zpliulab/GeoBind/tree/main/PSE/
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Figure 5. Case studies of RNA-binding proteins. (A) Distribution of AUROC values on 157 RBPs in the test dataset. Two cases are predicted with AUROC
under 0.5. (B) MazF in a complex with an uncleavable RNA substrate (4mdx). Left is the MazF monomer (Chain A, in blue) binding to RNA. Right is
two MazF subunits (Chain A in blue, Chain B in gray) that form a symmetrical dimer. The binding interface on the surface is colored in red. (C) The
segmented surface of MazF monomer and dimer. The RNA in the crystal is colored in yellow. A modelled RNA is placed in the symmetric position in
silver color. (D) The binding interface of v. cholerae TniQ-CasCade complex (PDB ID: 6pif). The TniQ.2 monomer (Chain: J, in RNA-157 Test dataset)
is in blue. The other eight chains are colored in gray. The area of binding sites (N47 and D45) of TniQ.2 is amplified. (E) Left shows the segmented surface
of TniQ.2 when GeoBind takes the surface of monomer as input. Right shows the segmented surface of TniQ.2 when GeoBind takes the surface of the
multimer as input. The broken gap on the surface is where TniQ.2 attaches to other protein chains.

Extending GeoBind to the prediction of other types of ligands

GeoBind embeds a general framework for 3D protein struc-
ture encoding. It is therefore easy to extend GeoBind to
predict other ligand binding sites. In this section, we ap-
ply GeoBind to other five ligands including two biologically
relevant molecules (i.e., ATP and HEM) and three metal
ions (i.e. Ca2+, Mn2+ and Mg2+). The dataset of ATP is col-

lected by ATPBind (60) and the other four ligand datasets
are collected by DELIA (61). The binding sites for the five
ligands are annotated by BioLip (21). A description of the
five datasets is listed in Supplementary Table S8. The hyper-
parameters and details of GeoBind for training the ATP
and HEM ligands are the same as GeoBind designed for
nucleic acid binding prediction. For the three metal ion
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Figure 6. Comparison of GeoBind with state-of-the-art methods on five types of ligands binding sites prediction tasks.

ligands, we fine-tune the model in two aspects for metal ion
task-oriented learning. First, we set the probe radius to 0.5
Å instead of 1.5 Å (for macro-molecules) when computing
the solvent excluded surface. We find some true sites bind-
ing to metal ion are buried into the surface of probe radius
of 1.5 Å (See Supplementary Figure S4). Second, the loss
function for GeoBind optimizing is computed on sites in-
stead of interfaces due to the scarce of metal ion binding
interface on protein surface.

We also compare GeoBind with state-of-the-art pro-
grams, i.e. TargetS (62), S-SITE (63), COACH (63), Ion-
Com (64), ATPBind (60) and DELIA (61). Figure 6 shows
the comparison of AUROC values achieved by GeoBind
with those achieved by the other existing methods. GeoBind
ranks first in four of the five ligand-binding site predictions,
outperforming the suboptimal method by 1.7% of ATP,
0.8% of HEM, 4.2% of Ca2+ and 5.1% of Mg2+, respectively.
The detailed results of these experiments are listed in Sup-
plementary Table S9. The results demonstrate the powerful
representation learning ability of protein 3D structures and
the advantage of our proposed method.

CONCLUSION

Here we described GeoBind, a geometric deep learning
model for predicting nucleic acid binding sites on pro-
tein surface in the segmentation manner. On benchmark
datasets, GeoBind outperformed state-of-the-art methods
by a substantial margin. GeoBind discards the most hand-
crafted features representing protein surfaces, such as hy-
dropathy and electrostatic charge. These features can be
easily regressed by even a lightweight network through in-
trinsic atoms and their spatial arrangement (19). The only
handcrafted feature GeoBind utilized is the MSA feature. A
study of ablation showed that it improved the performance
of models by around 4% of AUROC and 25% of AUPRC
in GeoBind. It indicates the importance of the conservation
property of nucleic binding motifs in the biological evolu-
tion process.

GeoBind uses the point cloud on the molecular surface
as the basic frame to represent proteins, enabling it to pre-
dict proteins with multimeric formation. Our case studies
demonstrate that the multimeric conformation alters the
feature environment, leading to more precise binding in-

terface segmentation on the molecular surface of multi-
mers compared to monomers. Traditional protein encoding
methods rely on the primary sequence or spatial arrange-
ment of C� skeleton, making it difficult to predict the func-
tional sites of multimers. GeoBind offers a new alternative
for analyzing the binding function of protein complexes. It
is now available on our webserver http://www.zpliulab.cn/
GeoBind for predicting nucleic and ligand binding sites.

DATA AVAILABILITY

The lists of seven kinds of ligand-binding proteins are avail-
able for download at https://github.com/zpliulab/GeoBind/
Dataset. The pretrained models for seven kinds of lig-
ands and available at https://github.com/zpliulab/GeoBind/
Pretrained Model. The PSE files (open with PyMOL) for
molecular surface visualization in Fig. 4 are available at
https://github.com/zpliulab/GeoBind/PSE/. The PDB files
of NBP complexes are available for download at https://doi.
org/10.5281/zenodo.7045931. GeoBind is open source and
available at GitHub (https://github.com/zpliulab/GeoBind).
For easy access, GeoBind is freely available online at our
webserver http://www.zpliulab.cn/GeoBind. Source code
and data are also in Zenodo: https://doi.org/10.5281/
zenodo.7801930.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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