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Introduction

Ischemic stroke is up to this day a leading cause of morbidity and 
mortality worldwide.1 The presence of penumbra (i.e., potentially 
salvageable brain tissue that is at risk of progressing to infarct) 
is at the center of the rationale for providing acute reperfusion 
therapies, namely intravenous thrombolysis and endovascular 
procedures. Classically, the “time is brain” paradigm has been 
used and, accordingly, time windows for these treatments have 
been established. This concept emphasizes the idea that the faster 
the reperfusion is achieved, the higher the chances of preserving 
viable brain tissue will be, which ultimately improves functional 
outcomes. On the other hand, a later treatment might be futile 
because there is no significant volume of tissue to salvage and 
the chance of treatment-associated complications progressively 
increases with time. These concepts have been proven by sub-
analyses of previous trials, which have shown a time-dependent 
benefit of acute reperfusion therapies even within the estab-

lished time windows for treatment.2-5

The widespread use of advanced neuroimaging has led to a 
better understanding of the dynamics of the progression of brain 
tissue from penumbra to infarct, to a better selection of patients 
for acute reperfusion therapies, and ultimately to the current on-
going expansion of the criteria to select patients for these treat-
ments. The paradigm has accordingly been shifting from a time-
oriented to a tissue-oriented approach. In this regard, the collateral 
circulation plays a critical role in sustaining viable brain tissue 
for longer periods and in allowing for reperfusion therapies to be 
given at later times. The “collateral clock” concept has accordingly 
been suggested.6 Moreover, the collateral circulation can play sev-
eral other roles in ischemic stroke and it has therefore emerged 
as a prognostic marker, a factor to consider when selecting pa-
tients for acute treatments, and a potential treatment target.

A deep understanding of the anatomy, physiology, pathophysi-
ology, evaluation methods, clinical applications, and potential 
enhancement methods of the brain collateral circulation allows 
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clinicians to provide better care for their patients with ischemic 
stroke and to contribute to the ever-growing knowledge in this 
field. In a previous review,7 these different aspects were analyzed; 
however, important advances in knowledge have been made dur-
ing the past decade and, thus, we believe that an updated re-
view is warranted.

Definition, anatomy, physiology, and 
factors that can affect the collateral 
circulation

The collateral circulation of the brain refers to alternative or in-
direct arterial pathways that can potentially provide blood flow 
when an artery that normally supplies an area of brain tissue is 
occluded (Table 1).

Anatomical classification of the collateral 
circulation
From a structural point of view, these pathways can be broadly 
divided into three anatomical categories (Figure 1).

Circle of Willis 
The circle of Willis (CoW) is a ring of interconnected medium-
sized arteries located at the base of the brain (Figure 1C). It con-
nects the anterior and posterior circulations and the left and 
right hemispheres. The CoW can provide immediate diversion of 
blood flow in the case of an acute occlusion of a parent vessel. 
An important caveat is that the CoW has many possible varia-
tions and less than 50% of patients have a complete, symmetri-
cal, and well-developed circle. These variations may significantly 
affect the capacity of the CoW to provide collateral pathways 
of blood flow and they have been shown to impact outcomes in 
ischemic stroke (Figure 2).7,8

Carotid terminus occlusions are illustrative of the collateral 
potential of the CoW. These occlusions can take several forms 
(i.e., I-type, L-type, and T-type) with each having different pat-
terns of collateralization.9 The Willisian collateral status can also 
help predict outcomes in these patients.10

Apart from the posterior communicating arteries, the persis-
tent carotid-vertebrobasilar anastomoses are other possible con-

nections between the anterior and posterior circulations. These 
arteries are present during the embryonic period and they usu-
ally involute, but they may rarely persist into adult life.8

Microvascular intracranial collaterals

Leptomeningeal (pial) collaterals
These are small arteriolar connections (approximately 50–400 
µm) at the distalmost branches of large cerebral and cerebellar 
vessels (Figure 1A and B). These connections display variable 
configurations including end-to-end and end-to-side anasto-
moses. Blood can flow in both directions through these anas-
tomoses as a function of the hemodynamic and metabolic 
needs of the territories they connect.7

If an occlusion of an intracranial vessel occurs, the leptomen-
ingeal anastomoses can provide retrograde flow from the distal 
cortical areas of the territory of the occluded vessel (Figure 3).

The current available information shows that collateral forma-
tion and maturation is a complex process which involves sev-
eral genes and pathways.

Collaterogenesis, or the formation of leptomeningeal collaterals, 
occurs during the embryonic period (Figure 4). Murine models 
have identified a locus on chromosome 7 whose allelic variants 
explain more than 80% of the variation in collateral extent. This 
locus has been called Determinant of collateral extent-1 (Dce1). 
The Rab GTPase-effector binding protein 2 (Rabep2) gene was 
subsequently identified as the causative allele at Dce1.11 Rabep2 
is ubiquitously expressed and is involved in vascular endothelial 
growth factor-A (VEGF-A)/vascular endothelial growth factor 
receptor 2 (VEGFR2) signaling through vesicular trafficking.12 Col-
lateral formation is impaired in Rabep2-/- embryos. Mutations of 
Rabep2 do not affect pre- or postnatal development and growth 
of the general arterial-venous vasculature, capillary density, nor-
mal or tumor angiogenesis, or any other apparent phenotype 
other than collateral abundance.13 Paracrine VEGF-A activates 
flk1 (VEGFR2) and initiates delta-like ligand 4 (Dll4) binding to 
Notch on adjacent endothelial cells. Dll4 is a transmembrane li-
gand of Notch receptors, selectively expressed in arterial and an-
giogenic tip cells during development. Its binding to Notch pro-
motes a “tip cell” phenotype in an endothelial cell of a distal-most 
arteriole of the cerebral artery tree. A disintegrin and metallopro-
tease (ADAM) 10 and gamma-secretase cleavage activity are 
required for Notch intracellular domain (NCID) signaling and pro-
motion of a “stalk cell” phenotype in the trailing endothelial cells. 
This endothelial sprouting process ultimately leads to the fusion 
of a terminal arteriole to an opposing arteriole, thus forming a 
new collateral.14,15 Dll4-Notch signaling restricts pial collateral 
artery formation during embryogenesis. Dll4 heterozygous mice 

Table 1. Overview of the collateral circulation of the brain

Structural classification Functional classification

• Circle of Willis • Primary

• Microvascular intracranial collaterals • Secondary

- Leptomeningeal (pial) collaterals • Tertiary

- Subcortical collaterals

• Extracranial sources of collateral circulation
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show an increased number of pial collaterals compared to litter-
mates, but with no variation in the volume of infarcted tissue 
in middle cerebral artery (MCA) occlusion models and with no 
variation in outcomes in hindlimb ischemia models. These results 
suggest that not only the number of collaterals is important but 
also their functionality.16 Apart from pathways involved in for-

mation of pial collaterals, other pathways involved in their matu-
ration have been studied. Chloride intracellular channel-4 (CLIC4) 
has a positive effect in collateral maturation while the endothe-
lial-specific ephrin type-A receptor 4 (EphA4) has a suppress-
ing effect on pial collateral remodeling.16,17 Findings from mu-
rine models require further confirmation in humans.

Figure 1. Schematic representation of the collateral circulation of the brain. The anterior circulation is represented in dark red, the posterior circulation in 
light red, and the extracranial sources of blood flow in orange. (A) Antero-posterior and (B) lateral view of the main intracranial arteries. The persistent carot-
id-vertebrobasilar anastomoses are represented with a dashed dark red line. (C) Inferior view of the circle of Willis and a corresponding diagram showing each 
arterial component. (D) Lateral view of cranio-cervical arteries highlighting the main extra-intracranial anastomoses. Microvascular anastomoses between (1) 
the anterior cerebral artery (ACA) and the middle cerebral artery (MCA), (2) the ACA and the posterior cerebral artery (PCA), (3) the MCA and the PCA, and (4) 
the superior cerebellar artery and the posterior inferior cerebellar artery. (5) The postulated collateral pathways in the deep subcortical territory. Extra-intra-
cranial anastomoses between (6) branches of the facial artery and the ophthalmic artery, (7) the supraorbital and supratrochlear arteries and branches of the 
ophthalmic artery, (8) branches of the occipital artery and the PCA, (9) the middle meningeal artery and the ACA, and (10) branches from ascending and deep 
cervical arteries and the vertebral artery. AcommA, anterior communicating artery; R A1, A1 segment of the right ACA; L A1, A1 segment of the left ACA; R 
ICA, right internal carotid artery; L ICA, left internal carotid artery; R PcommA, right posterior communicating artery; L PcommA, left posterior communicating 
artery; R P1, P1 segment of the right PCA; L P1, P1 segment of the left PCA; BA, basilar artery. 
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Collateral circulation in small subcortical infarcts 
The prevailing notion that small subcortical infarcts, with their 
different possible mechanisms, are caused by the occlusion of 
terminal penetrating arteries which lack collateral pathways has 
been challenged. There is evidence from post-mortem human 
studies of the presence of anastomoses between major perfora-
tor arteries and precapillary arterioles. Also, more recent studies 
using computed tomography (CT) and magnetic resonance (MR) 
perfusion techniques have provided indirect evidence of the pres-
ence of both anterograde and retrograde collaterals in small sub-
cortical infarcts (Figure 1A and B). This suggests that the core-

penumbra model may also be applied to this type of infarcts.18,19 

Extracranial sources of collateral circulation 
There are several possible extra-intracranial anastomoses, which 
can provide blood flow in the case of a blood vessel occlusion. 
These extracranial sources originate from branches of the exter-
nal carotid artery or from ascending and deep cervical arteries 
(Figure 1D).7

One example is an occlusion of the internal carotid artery (ICA) 
before the emergence of the ophthalmic artery. If there is a com-
plete and functional CoW, the terminal ICA may receive retro-

Figure 2. Axial maximum intensity projection computed tomography angiography slices showing examples of circle of Willis (CoW) configurations. (A) A 
complete CoW. (B) A CoW with absence of the left posterior communicating artery (arrow).

A B

Figure 3. Sequential antero-posterior images in digital subtraction angiography after contrast injection in the right internal carotid artery in a patient with an 
occlusion of the M1 segment of the right middle cerebral artery (arrow). Notice the contrast filling of the left anterior circulation through the anterior com-
municating artery (dashed arrow) in the earliest image. The direction of the blood flow through the leptomeningeal collaterals from anterior cerebral artery to 
middle cerebral artery is shown with a curved arrow.
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grade flow through the circle and immediately restore the antero-
grade flow through the ophthalmic artery. If there is insufficient 
collateral circulation through the CoW, another possible source 
of blood flow are branches of the external carotid artery, which 
can anastomose with branches of the ophthalmic artery and 
provide retrograde flow, which will ultimately reach the termi-
nal ICA.20

Functional classification of the collateral 
circulation
From a functional point of view, the collateral circulation can be 
divided into primary, secondary, and tertiary types.

Primary
The primary collateral circulation corresponds to permanently 
functioning pathways that can immediately reroute blood flow 
when a blood vessel occlusion occurs. This term refers mainly 
to the CoW.

Secondary
The secondary collateral circulation refers to pre-existing arte-

rial conduits that can instantaneously be recruited to provide an 
alternative pathway for blood flow. This refers mainly to the lep-
tomeningeal collaterals. The recruitment of leptomeningeal col-
laterals is extremely fast. For example, in rat models of ICA oc-
clusion, it takes only 12 seconds for leptomeningeal collaterals to 
reach their maximal vasodilatation.21

There are several neurohumoral mechanisms involved in the 
process of leptomeningeal collateral recruitment. The main driver 
of the functionality of these pathways is pressure gradients.22 
It is important to keep in mind that in the context of an acute 
large vessel occlusion (LVO) the cerebral autoregulation is im-
paired and blood flow through collateral arteries becomes par-
ticularly dependent on the mean arterial pressure. In this sense, 
the resistance of the collateral network plays a determinant role. 
Shear stress through these vessels activates nitric oxide (NO)-
dependent mechanisms that lead to their dilation and improved 
blood flow. There is also a neural regulation of the cerebrovas-
cular tone through intrinsic (i.e., from the central nervous system) 
and extrinsic (i.e., from the peripheral nervous system) innerva-
tions. The intrinsic nerves originate mainly in the brainstem and 
are distributed predominantly in the parenchymal vessels, whereas 

A B

Tip cell

Tip cell

ACA

VEGF

Stalk cell

NICD

Rabep2

Rab4

DII4

VEGFR2 Notch1 MCA

Stalk cells

Sprouting
1

2

3

4

5

Figure 4. Collaterogenesis occurs during the embryonic period. (A) The differentiation of endothelial cells into tip and stalk phenotypes is dependent on vas-
cular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling. (1) Rabep2, whose genetic variations largely deter-
mine the differences on collateral extent in murine models, promotes the Rab4 recycling of VEGFR2 to the cell surface, increasing its availability. (2) VEGF 
binding to VEGFR2 induces endocytosis and signaling which (3) induces delta-like ligand 4 (Dll4). (4) Dll4 activates the transmembrane receptor Notch1, of 
which the Notch intracellular domain (NICD) is liberated and (5) induces several effects in the adjacent stalk cells, such as cell division. (B) Tip cells are guided 
by the VEGF gradient and direct the growing sprout while stalk cells follow behind and form the vascular lumen. This process leads to the fusion of two termi-
nal arterioles, forming a new collateral. In the example, a new collateral is forming between terminal branches of the anterior cerebral artery (ACA) to middle 
cerebral artery (MCA). Rabep2, Rab GTPase-effector binding protein 2; Rab4, Rab GTPase 4.
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the extrinsic nerves supply the vessels on the surface of the 
brain.23 The extrinsic parasympathetic nerves, which arise from 
the superior salivatory nucleus and pass along cranial nerve VII 
to the sphenopalatine and otic ganglia, are involved in vasodi-
lation and their stimulation has been studied as a therapeutic 
target. Several neurotransmitters are involved in these pathways, 
such as acetylcholine, vasoactive intestinal polypeptide, peptide 
histidine isoleucine and nitrous oxide.7

Even though the extent and functionality of the collateral cir-
culation in adulthood is largely determined by collaterogenesis 
and its implicated genes and pathways, it can also be modified 
throughout the patient’s life by several factors.

Age
Aging causes a decrease in number and diameter and an increase 
in tortuosity of leptomeningeal collaterals, which lead to increased 
vascular resistance. These changes are associated with impaired 
endothelial NO synthase (eNOS) signaling and increased oxida-
tive stress. In a retrospective analysis of 70 patients with proxi-
mal MCA occlusion, every 10-year increment in age increased 
the odds of having poor collaterals by a factor of 1.87 (95% con-
fidence interval [CI] 1.18–2.97).24

Vascular risk factors
These are frequent comorbidities in stroke patients and they may 
have negative effects on the collateral circulation. In animal mod-
els of chronic hypertension, induction of collateral flow during 
acute ischemic stroke is impaired. This is associated with highly 
vasoconstricted pial collaterals that respond to pressure myo-
genically.25 Clinical studies have suggested that chronic hyper-
tension has a detrimental effect on collateral flow in patients 
with LVO. This detrimental effect is highest in those with untreat-
ed hypertension and lowest in those without hypertension, while 
hypertensive patients treated with antihypertensive medications 
are in between.26 Similarly, murine models of common carotid 
artery occlusion have shown impaired collateral flow in diabetic 
mice.27 Previous reports from patients with coronary artery dis-
ease have suggested that smoking may be associated with better 
collaterals. The proposed mechanism is ischemic preconditioning; 
however, a 2021 meta-analysis of 18 studies and more than 4,000 
patients did not demonstrate a positive association.28 In the case 
of ischemic stroke, a retrospective analysis of embolic LVO in more 
than 600 patients found a positive correlation between smoking 
(current or previous) and good collaterals (odds ratio [OR] 1.74, 
CI 1.17–2.61, P=0.006).29 In a retrospective analysis of 206 con-
secutive patients with an M1 segment occlusion, multivariate 
analysis found the metabolic syndrome, hyperuricemia, and older 
age to be independent predictors of poor collaterals at baseline.30

Physical exercise
Regular exercise has been shown to improve collateral circula-
tion in patients with coronary artery disease and in animal mod-
els of stroke. Physical exercise increases blood flow and the shear 
stress stimulates different mechanisms in the endothelium, which 
lead to maintenance, defense, and repair of the vasculature. It 
also enhances the capacity of the vessels to vasodilate. Another 
more indirect effect of physical exercise is the reduction of vas-
cular risk factors.31

Statin use
Multiple observational studies have shown an association be-
tween previous statin use and better collaterals in ischemic stroke 
patients. Proposed mechanisms for this effect are enhancement 
of arteriogenesis and eNOS-mediated vasodilation. However, a 
2019 meta-analysis of previous studies only showed a positive 
trend towards better collaterals. No differences between stroke 
subtypes were demonstrated.32

Extracranial carotid stenosis
In an observational study of 385 patients who underwent me-
chanical thrombectomy for LVO, patients with an ipsilateral ste-
nosis of the extracranial ICA of more than 75% had an OR of 
4.01 for having good collaterals (95% CI 1.78–9.00; P=0.001).33

Tertiary
The term tertiary collaterals is sometimes used to refer to the 
formation of new blood vessels or the maturation of pre-existent 
vessels in ischemic areas.34 Two main processes are involved. An-
giogenesis is the physiologic process in which new blood vessels 
arise from pre-existent ones. The main stimuli for angiogenesis 
are ischemia and hypoxia. In contrast, arteriogenesis refers to 
the maturation of pre-existent arterioles into arteries. It is an im-
portant process of adaptation of blood vessels to new demands 
from tissue at risk after an arterial occlusion. The main stimulus 
for arteriogenesis is the shear stress on the endothelium, which 
is generated by pressure gradients.35 These processes take a longer 
time to develop, and thus their role is mainly in the context of 
chronic vascular occlusions. An illustrative example of tertiary 
collaterals is the moyamoya vessels that develop in patients with 
moyamoya disease and syndrome.

The role of the collateral circulation in 
ischemic stroke

The main role of the collateral circulation is to maintain blood 
flow to the tissue that is normally supplied by an occluded ves-
sel. This slows down the progression of tissue from penumbra to 
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infarct, thus increasing the therapeutic time window, decreas-
ing the final stroke volume, and decreasing the risk of hemor-
rhagic transformation.36 The rate of progression from penumbra 
to infarct greatly depends on the extent of the collateral circula-
tion and ultimately determines whether the patient will be a fast 
or a slow progressor. The persistence of blood flow to the blood 
clot also enhances the delivery of endogenous or exogenous tis-
sue plasminogen activator, which increases the recanalization 
rate and decreases the re-occlusion rate. Likewise, in the case 
that potential neuroprotective agents are used, the collateral cir-
culation can also enhance their delivery to brain tissue.

A functional venous drainage system is also important in isch-
emic stroke and it can enhance the function of the arterial col-
laterals. The possible roles of the venous system in this context 
can be broadly divided into the maintenance of sufficient col-
lateral perfusion via adequate drainage of blood and clearance 
of microemboli, and the reduction of reperfusion injury.37

Evaluation of the collateral circulation

The methods to assess the collateral circulation can be broadly 
divided into structural and functional types; however, there may 
be overlap in the type of information that they can provide.

Structural studies
These are imaging studies that visualize blood vessels and give 
an insight of the status of the collateral circulation either by 
static or dynamic acquisitions, but the actual anatomical con-
nections are not necessarily seen.

Digital subtraction angiography
Digital subtraction angiography (DSA) is considered the gold 
standard for structural assessment of the collateral circulation. 
This technique allows for the dynamic evaluation of blood flow 
with an excellent spatial and temporal resolution. It allows the 
assessment of the three main anatomical collateral pathways: 
the CoW, the extra-intracranial anastomoses, and the leptomen-
ingeal collaterals. Its main disadvantages are its invasive nature, 
its associated procedural risks, the need for contrast agent ad-
ministration, and its limited availability.

Methods based on CT
These are the most frequently used studies in the assessment of 
the collateral circulation because of their widespread availabil-
ity and the brief additional time needed to perform them.

Single-phase CT angiography (sCTA), which is performed at a 
single time point in relation to the contrast bolus injection, has 
the limitation of being a static evaluation and can therefore pro-

vide an inexact measurement of the state of collaterals if the 
acquisition is not performed at the optimal time point. For ex-
ample, in patients with a diminished cardiac ejection fraction or 
an extracranial carotid stenosis, the collaterals may be underes-
timated because the image acquisition will tend to be performed 
before the contrast agent can reach the leptomeningeal vessels. 
Previous studies have suggested that collateral assessment in 
sCTA in the early arterial and late venous phases underestimate 
and overestimate the collateral status, respectively. Probably the 
optimal timing for collateral grading on sCTA is in the peak ar-
terial to equilibrium phase.38 The collateral filling distal to a vas-
cular occlusion may be better visualized on post-processed max-
imum intensity projection images.39

Multiphase CTA (mCTA) is performed in different time points 
and provides a better characterization of the collateral circula-
tion than sCTA because it allows the assessment of the delay in 
contrast arrival and washout. This technique also has a better 
interrater reliability for the detection of LVO, it allows for a more 
precise assessment of the thrombus length, and it has a better 
association with final infarct volume and clinical outcomes. mCTA 
requires brief extra time to be performed and it does not require 
additional contrast injection when compared to sCTA. At our in-
stitution, we routinely perform mCTA in three time points and 
rate the collaterals as described by Menon et al.40 (Figure 5).

Methods based on MR
These techniques have well-known advantages over CT-based 
methods but they are not as readily available and they are usu-
ally slower to perform. However, advances in hardware and the 
development of novel imaging techniques have decreased ac-
quisition times and thus MR-based protocols for acute imaging 
of stroke are becoming more commonly used.41

Time-of-flight MR angiography (TOF-MRA) is a T1-based se-
quence that does not require gadolinium injection and is used to 
assess the proximal intracranial vasculature. It is based on blood 
flow which generates a visible signal. Its disadvantages are the 
acquisition time (approximately 5 minutes) and poor resolution 
of distal vessels. Also, slow flow distal to the occlusion can gen-
erate a complete loss of signal, which leads to an overestima-
tion of the areas of occlusion. A significant advantage of TOF-
MRA is that it can easily be reformatted into three-dimensional 
images because of its volumetric acquisition method.39

Contrast-enhanced MR angiography (CE-MRA) is also a T1-
based sequence and it requires the injection of a bolus of gad-
olinium. Its advantages are a high signal-to-noise ratio and a 
relative insensitivity to slow flow.42

The fluid-attenuated inversion recovery (FLAIR) sequence can 
also provide information about collateral circulation. Vascular 



https://doi.org/10.5853/jos.2022.02936

Maguida and Shuaib   Collateral Circulation in Ischemic Stroke

186  http://j-stroke.org

hyperintensities represent a more indirect marker of leptomen-
ingeal collaterals, but they are non-specific and their usefulness 
is limited. The location of these hyperintensities in relation to the 
ischemic area is probably associated with the cerebral hemody-
namic status. It has been observed that patients who have vas-
cular hyperintensities only inside the ischemic area have worse 
collaterals when compared to patients who have vascular hyper-
intensities outside the ischemic area.43 In a systematic review and 
meta-analysis of patients with ischemic strokes, FLAIR vascular 
hyperintensities as a whole were not associated with functional 
outcomes but an association was demonstrated for the subgroups 
of patients who underwent endovascular treatment and for those 
who had hyperintensities outside the ischemic territory.44

Transcranial Doppler
This non-invasive method provides real-time information about 
intracranial blood flow. It only allows the assessment of proxi-
mal blood vessels at the level of the CoW, and it is an operator-
dependent method. One possible finding is the inversion of blood 
flow through the ophthalmic artery or the A1 segment of the 
anterior cerebral artery (ACA) in the context of an ipsilateral dis-

tal ICA occlusion. Another possible finding is the flow diversion 
phenomenon, which refers to the findings of high velocity and 
low resistance in the ipsilateral ACA and/or posterior cerebral ar-
tery (PCA) in the context of an MCA occlusion. This is associated 
with the presence of anastomoses between the distal branches 
of the ACA/PCA and the MCA. These findings have shown a sen-
sitivity of 81% and a specificity of 76% when compared with 
DSA for the presence of leptomeningeal collaterals.45

Functional studies
Tissue perfusion studies allow for the assessment of the com-
pensation by the collateral circulation.

CT perfusion
CT perfusion (CTP) is widely available, fast, and together with 
non-contrast CT and CTA is a part of the multimodal acute stroke 
neuroimaging protocol in many centers, including ours (Figure 5). 
In this technique, multiple acquisitions of the brain parenchyma 
are performed during contrast infusion. As the contrast flows 
through the brain, the increase, peak and decrease of density are 
captured in a time-density curve, which allows for the calcula-

Occlusion Phase 1 Phase 2 Phase 3 CBF <30% Tmax >6 s

A

B

C

Figure 5. Examples of patients with acute large vessel occlusion (LVO) and their respective computed tomography agiography (CTA) and computed tomography 
perfusion studies. Each row sequentially shows axial maximum intensity projection images of the LVO and the three phases of CTA, followed by the ischemic 
core (defined as cerebral blood flow [CBF] <30% of contralateral side) and penumbra (defined as time-to-maximum [Tmax] >6 s) images with their respective 
automated volume calculation. (A) Left “T occlusion” (distal internal carotid artery, A1 and M1 segments, arrow) with good collaterals. Notice the filling of the 
left A2 segment from the contralateral side (dashed arrow). (B) Left M1 occlusion (arrow) with moderate collaterals. (C) Left “T occlusion” (arrow) with poor 
collaterals. Notice the retrograde filling of the left A1 segment and left posterior communicating artery (dashed arrows).
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tion of different perfusion parameters.39 In particular, the volume 
of ischemic core and penumbra can be calculated using stan-
dardized definitions. These measurements are routinely used to 
select patients for acute reperfusion therapies.

Different softwares may be employed for the processing of 
perfusion images, such as the rapid processing of perfusion and 
diffusion (RAPID) software (IschemaView, Menlo Park, CA, USA) 
which is routinely used at our center and which also employs 
artificial intelligence (AI) technology to detect LVOs. CTP studies 
usually require an additional dose of contrast agent. Interest-
ingly, the StrokeSENS™ software (Circle Neurovascular Imaging, 
Calgary, AB, Canada) allows perfusion studies to be performed 
from mCTA images without the need of an additional dose of 
contrast agent and it can also perform AI-based automated 
Alberta Stroke Program Early CT Score (ASPECTS) scoring from 
non-contrast CT images and LVO detection from CTA images. 
This software is available for clinical use in the EU, UK, Canada, 
Australia, and USA but only for LVO detection, with the rest of 
the features currently reserved for research purposes.46 There are 
several other AI-based softwares that can perform automated in-
terpretation of neuroimaging in acute stroke.47

CTP can also be helpful in estimating the rate of progression 
from penumbra to ischemic core and thus in differentiating be-
tween fast and slow progressors, which can have implications in 
management and prognosis of acute stroke patients with LVO. 

The hypoperfusion index (HI) was first described in 2008 and is 
now preferably calculated as the ratio of time-to-peak concen-
tration at >10 seconds divided by time-to-peak concentration 
at >6 seconds. In a cohort of medium-vessel-occlusion and LVO 
patients, an HI >0.5 versus ≤0.5 accurately differentiated fast from 
slow progressors, respectively, in the first 24 hours of an ischemic 
stroke (Figure 6).48  

There are several possible clinical situations that may produce 
false positive and false negative results in CTP studies, so their 
results should always be interpreted considering the clinical pic-
ture and the concomitant vascular imaging. Some examples of 
these situations are migraine aura, seizures, and large vessel ste-
nosis which can alter the local hemodynamic balance.

MR perfusion
Similar to CTP, in MR perfusion-weighted imaging (PWI), the sig-
nal intensity of the brain is measured at different intervals while 
a contrast agent is administered intravenously. Perfusion pa-
rameters can be calculated from the time-concentration curve 
after deconvolution.49 However, in the case of MR-based stud-
ies, the infarct core is most accurately estimated not by perfu-
sion parameters but by diffusion-weighted imaging (DWI), which 
shows areas of cytotoxic edema only minutes after the onset of 
ischemia. DWI is more sensitive for the detection of acute isch-
emia than CT-based methods, especially for small subcortical in-

Figure 6. The hypoperfusion index (HI=Tmax>10 s/Tmax>6 s) in fast versus slow progressors. (A) Fast progressor: patient with an acute left “L occlusion” (distal 
internal carotid artery extending into the middle cerebral artery [MCA], arrow) with imaging performed 90 minutes after onset of symptoms. HI=0.6. (B) Slow 
progressor: patient with an acute right MCA occlusion (arrow) with imaging performed 120 minutes after onset of symptoms. HI=0.2. CBF, cerebral blood flow.

A

B

Occlusion Tmax thresholds CBF <30% Tmax >6 s
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farcts. DWI-PWI mismatch is routinely used in MR-based stud-
ies to determine the area of penumbra.50,51

Positron emission tomography CT and single-photon 
emission CT
Tissue perfusion studies can also be performed with positron 
emission tomography CT and single-photon emission CT, but 
these are mostly reserved for investigation purposes. They can 
be combined with a vasodilator stimulus, such as in the acet-
azolamide challenge test, to assess the cerebrovascular reserve 
in a given patient.52

Other methods to assess the collateral circulation
Arterial spin labeling (ASL) is an MR-based technique that pro-
vides a quantitative measurement of cerebral blood flow (CBF) 
and it has the advantage of not requiring the administration of 
a contrast agent. It can also provide structural information of 
pial collaterals, which can be visualized as linear hyperintense 
regions of increased CBF in the periphery of the area of ischemic 
penumbra. Despite its advantages, ASL has not gained wide-
spread use in stroke for several reasons, most importantly for its 
high sensitivity to differences in arterial arrival time which may 
ultimately lead to an overestimation of CBF and an underesti-
mation of tissue at risk. These shortcomings might be mitigated 
by methodological improvements.53,54 The presence of collater-
als detected by ASL are correlated with good clinical outcomes 
in retrospective series of patients with acute ischemic stroke. The 
Imaging Collaterals in Acute Stroke (iCAS) is an ongoing pro-
spective cohort study of patients undergoing ASL imaging before 
mechanical thrombectomy and it is evaluating the relationship 
between pre-treatment collateral status and response to throm-
bectomy and functional outcomes.39 This information might be 
valuable for the potential addition of ASL into MR-based imag-
ing protocols in acute ischemic stroke.

The methods to assess the collateral circulation that we have 
mentioned so far imply the presence of a large vessel stenosis or 
occlusion that ultimately causes the pial collateral channels to 
be open (i.e., to be recruited). However, having a non-invasive 
imaging biomarker of the collateral status before a vessel occlu-
sion or stroke occurs is a current need because it would provide 
valuable information for understanding the physiology and patho-
physiology of the collateral circulation during a patient’s life, it 
could serve as a prognostic marker, and it would also help eval-
uate potential early therapeutic strategies of collateral circula-
tion augmentation.

Retinal vessel metrics have been proposed as a surrogate 
marker of leptomeningeal collateral status. Retinal fundus im-
ages have previously been used to identify alterations in the reti-

nal vasculature to predict stroke and it has been observed that 
retinal vessel width differs between stroke subtypes and between 
patients with recurrent strokes. Murine models of acute ischemic 
stroke have identified several retinal vessel parameters that pre-
dict the pial collateral status, infarct volume, and neurological 
outcomes. A recent translational human study showed that stan-
dard retinal vessel metrics such as venular widening and lower 
arterio-venular ratio and tortuosity differ in patients with acute 
ischemic stroke when compared to healthy controls, but they do 
not differentiate patients with good from those with poor pial 
collaterals. On the other hand, increased retinal vessel multi-
fractal dimensions were shown to be a marker of poor pial collat-
erals in patients with acute ischemic stroke. These findings need 
to be confirmed on larger studies, and the usefulness of these 
metrics in patients with intra- or extracranial vascular stenosis 
or occlusion prior to ischemic stroke remains to be explored.55

Scales used in the assessment of the collateral 
circulation
Numerous scales have been created to standardize the evalua-
tion of the collateral circulation. They are based on the different 
available study methods and use different criteria to grade the 
extent of collaterals.39 Several of them dichotomize the grading 
into good and poor collaterals. The variable use of these differ-
ent scales can make it difficult to compare studies regarding 
the collateral circulation and its different possible clinical uses. 
Moreover, the concordance between different modalities has 
been shown to be poor.56 A recent pooled analysis of patient-level 
data from the Highly Effective Reperfusion evaluated in Multiple 
Endovascular Stroke Trials (HERMES) collaboration comparing 
three different collateral scales showed that a regional collateral 
scale on sCTA provided the most accurate prediction of func-
tional outcome, while on time-resolved CTA there were no dif-
ferences among the different scales.38 Automated methods based 
on AI are promising techniques to improve and standardize the 
evaluation of the collateral circulation; however, their use is cur-
rently only approved for investigational purposes.47

Given the importance of a functional venous drainage sys-
tem and its complementary and synergistic nature with the ar-
terial collateral system in the context of acute ischemic stroke, 
scales that grade the venous drainage either by itself or in com-
bination with an arterial collateral grading system have been 
devised. Several of these scales have shown a significant asso-
ciation with outcomes and complications such as hemorrhagic 
transformation.57-61 These findings suggest that venous collat-
eral grading might be used as an additional imaging biomarker 
for outcome prediction and possibly treatment selection in acute 
stroke patients.
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Clinical applications

The collateral status might provide insights into 
the etiology of LVOs
Intracranial atherosclerotic disease (ICAD) is a major etiology 
of stroke, especially in patients of certain ethnicities. ICAD can 
cause strokes by several mechanisms, one of them being hypo-
perfusion secondary to progressive stenosis. In such cases, the 
longstanding ischemia may lead to the progressive recruitment 
or development of collaterals as opposed to an acute embolic 
occlusion.62 In line with these pathophysiological mechanisms, 
previous studies have reported a possible role of collateral sta-
tus observation either by structural or functional methods in de-
termining the etiology of stroke.63-65 A recent meta-analysis in 
patients with acute stroke receiving reperfusion therapies found 
that large artery atherosclerosis etiology was associated with a 
significantly increased rate of pre-treatment good collaterals 
(risk ratio [RR] 1.24; 95% CI 1.04–1.50; P=0.020) when com-
pared to cardioembolic etiology, but with heterogeneity between 
studies.66

The collateral circulation is a prognostic factor  
for both clinical and imaging outcomes  
in ischemic stroke

Overall prognosis
Poor collaterals on admission are associated with a larger isch-
emic core and worse clinical outcomes.67 In the first 48 hours 
of an ischemic stroke, the presence of good collaterals is asso-
ciated with early clinical improvement. Patients with poor col-
laterals have higher frequency of hemorrhagic transformation, 
both symptomatic and asymptomatic.68 In a large prospective 
cohort of patients with LVO, the presence of good collaterals was 
an independent predictor of good long-term outcomes, and this 
effect was more evident if they did not receive reperfusion ther-
apies. In a large cohort of patients with LVO and multimodal CT 
imaging, it was noted that the collateral status is not consis-
tently associated with the size of the penumbra, but it is associ-
ated with the core volume and its growth speed.69,70

In the case of ICAD, the association of good collaterals with 
better outcomes may not be valid because in these cases the oc-
currence of a stroke might represent an exhaustion of the collat-
eral system. However, there is scarce data to support this notion 
and more information is needed.60 In a retrospective analysis of 
the Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) 
trial the quality of collaterals independently predicted the oc-
currence of new strokes in the symptomatic territory.71

Prognosis in intravenous thrombolysis
In a systematic review and meta-analysis which included 25 
retrospective cohorts and 3 post-hoc analyses of randomized 
controlled trials (RCTs) and a total of 3,057 patients, those with 
good collaterals had a lower risk of symptomatic hemorrhagic 
transformation (RR 0.38; 95% CI 0.16–0.90; P=0.03), a higher 
frequency of early neurological improvement (RR 4.21; 95% CI 
1.57–11.28, P=0.004), a higher frequency of good clinical out-
comes (modified Rankin Scale [mRS] 0–2) at 3–6 months (RR 
2.45; 95% CI 1.94–3.09; P<0.001), a lower National Institutes 
of Health Stroke Scale (NIHSS) on admission (median difference 
of 6 points), and a smaller infarct volume on admission. There 
were no statistically significant results associated with collateral 
status for successful recanalization and reperfusion, global risk 
of hemorrhagic transformation, final infarct volume, and mor-
tality at 3 months.72

Prognosis in endovascular thrombectomy
In two systematic reviews and meta-analyses which included 
studies that were published until March 2015, good collaterals 
before the endovascular procedure were significantly associated 
with a higher frequency of successful reperfusion as measured 
by the modified Thrombolysis in Cerebral Infarction (mTICI) score 
(RR=1.28; 95% CI 1.17–1.40; P<0.001), a higher frequency of suc-
cessful recanalization as measured by the Arterial Occlusive Lesion 
(AOL) score (RR=1.23; 95% CI 1.06–1.42; P=0.006), a higher fre-
quency of good funcional outcome (mRS≤2) at 90 days (RR=1.98, 
95% CI 1.64 to 2.38; P<0.001), a reduced risk of periprocedural 
symptomatic intracranial hemorrhage (sICH) (RR=0.59; 95% CI 
0.43 to 0.81; P=0.001) and death at 90 days (RR=0.49; 95% CI 
0.38 to 0.63; P<0.001).73,74 Table 2 shows studies published after 
March 2015 that reported the association of collateral status and 
outcomes in patients treated with endovascular thrombectomy 
(EVT) for anterior circulation LVO stroke.40,75-92 A similar analysis 
for vertebrobasilar LVO can be found in a recent review, showing 
conflicting results.93 

When considering specifically patients in the late time window 
(6–24 hours since symptom onset), better collaterals are signifi-
cantly associated with smaller CTP core, smaller penumbra, larger 
mismatch ratio, lower HI, and better functional outcomes.92,94

The collateral circulation has become  
an important factor to consider when selecting  
or excluding patients from acute reperfusion  
therapies
The latest American Heart Association/American Stroke Associ-
ation guidelines suggest that it may be reasonable to incorpo-
rate collateral flow status into clinical decision-making in some 
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candidates to determine eligibility for mechanical thrombectomy 
with a IIb level of evidence. No specific criteria are suggested.95

Considering the overall ominous functional prognosis in pa-
tients with pre-procedure poor collaterals, one may make a case 
for excluding these patients from EVT. However, it must be kept 
in mind that the number of patients in previous analyses was 
small and that probably the collateral status is one more of several 
factors that should be considered when making such a decision.79

We may highlight some special groups of patients when con-
sidering the collateral status as a factor to select or exclude pa-
tients from acute reperfusion therapies.

Patients with low ASPECTS
There are several ongoing trials to assess the effectiveness and 
safety of EVT in patients with a low baseline ASPECTS. The col-
lateral status may be an important factor to consider when se-

Table 2. Selected studies reporting the association between pre-treatment collateral status and outcomes after EVT of anterior circulation large vessel occlu-
sion stroke

Study Patients (n)
Collateral scale 

(method)
Main findings

Highly Effective Reperfusion Evaluated  
in Multiple Endovascular Stroke trials 
(HERMES) collaboration75

1,764 (871 EVT,  
  893 control)

Tan et al.76 (sCTA,  
mCTA, or CE-MRA)

Analyses suggested benefit with EVT across all strata of collateral circulation  
status; however, patients with poor collaterals were less likely to benefit  
from EVT than those with better collaterals (not statistically significant).

Endovascular Therapy Following  
Imaging Evaluation for Ischemic 
Stroke (DEFUSE 3) trial77

130 (65 EVT,  
  65 control)

Tan et al.76 No significant association with good clinical outcome*, sICH, or death.  
Good collaterals were associated with significantly smaller ischemic core 
volume and less ischemic core growth.

Diffusion-Weighted Imaging or  
Computed Tomography Perfusion  
Assessment With Clinical Mismatch  
in the Triage of Wake-Up and Late  
Presenting Strokes Undergoing  
Neurointervention With Trevo  
(DAWN) trial92

161 (91 EVT,  
  70 control)

Tan et al.76 (CTA)
ASITN/SIR78 (DSA)

Significant association between collateral status and infarct core at 24 h,  
ASPECTS at 24 h, successful revascularization (eTICI ≥2b), good functional 
outcome*, and death.

Gerber et al.79 93 Tan et al.76 Good collaterals were significantly associated with good clinical outcome*  
(OR 9.69; 95% CI 2.28–59.27; P=0.001).

Sedation versus Intubation for  
Endovascular Stroke TreAtment  
(SIESTA) trial80

104 Tan et al.76 Good collaterals were significantly associated with smaller final infarct  
volume, improvement in the mean NIHSS at 24 h, and in-house mortality. 
No significant association was found with functional outcome or 3-month 
mortality.

Sallustio et al.81 135 Tan et al.76 (CTA)
Christoforidis et al.82  
(DSA)

Significant association between good collaterals and good functional outcome*  
(OR 2.13; 95% CI 1.44 to 3.15; P<0.001), lower mortality rate, lower rate of 
sICH, higher ASPECTS at 24 h, and higher NIHSS improvement at 24 h.

Park et al.83 119 Regional colateral  
scoring system84

Good collaterals were an independent predictor of good functional outcome*  
(OR 5.14; 95% CI 1.62–16.26; P=0.005).

Renú et al.85 339 (257 EVT,  
  82 no EVT)

Tan et al.76 The benefit of EVT (reduction in infarct growth, functional outcome, and  
mortality) was significantly higher in patients with poor collaterals.

Weiss et al.86 84 Tan et al.76 (sCTA)
Miteff et al.87 (sCTA)
Maas et al.88 (sCTA)

Good collaterals in the Miteff and Maas scores were significantly associated  
with good functional outcome*.

Al-Dasuqi et al.89 283 Miteff et al.87 (sCTA) Collateral grade was significantly associated with final infarct volume but not  
with functional outcome.

Optimizing Patient’s Selection for  
Endovascular Treatment in Acute  
Ischemic Stroke (SELECT) study90

361 (285 EVT,  
  �76 medical  
management)

mCTA40 Collateral status was significantly associated with early infarct growth rate  
which in turn was significantly associated with functional outcome.

Endovascular Treatment in Ischemic  
Stroke (ETIS) Registry91

2,020 ASITN/SIR (DSA) Good collaterals were associated with successful reperfusion (OR 1.77; 95%  
CI 1.32–2.39; P<0.001), excellent reperfusion (OR 1.71; 95% CI 1.41–2.09; 
P<0.001), and good functional outcome* (OR 1.5; 95% CI 1.19–1.88; 
P<0.001), but not with sICH or mortality at 3 months.

EVT, endovascular thrombectomy; sCTA, single-phase computed tomography angiography; mCTA, multiphase computed tomography angiography; CE-MRA, con-
trast-enhanced magnetic resonance angiography; sICH, symptomatic intracranial hemorrhage; CTA, computed tomography angiography; ASITN/SIR, American 
Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology scale; DSA, digital subtraction angiography; ASPECTS, Alberta Stroke 
Program Early CT Score; eTICI, expanded Thrombolysis in Cerebral Infarction; OR, odds ratio; CI, confidence interval; NIHSS, National Institutes of Health Stroke 
Scale; mRS, modified Rankin Scale.
*Good functional outcome: mRS ≤2 at 90 days.



Vol. 25 / No. 2 / May 2023

https://doi.org/10.5853/jos.2022.02936 http://j-stroke.org  191 

lecting these patients. In a retrospective analysis of 100 patients 
with LVO and ASPECTS ≤5 who were treated with EVT, a good 
collateral status and younger age (<73 years) were associated 
with better functional outcomes.96

Patients presenting in the late time window (6–24 hours  
from symptom onset) and very late time window  
(>24 hours from symptom onset)
A pooled analysis of late window EVT studies compared patients 
selected using collateral status plus perfusion imaging (current 
standard criteria) with those selected using collateral status only. 
They found no significant difference in functional outcomes at 
3 months, but sICH was twice more frequent in the collateral only 
group with no significant difference in mortality at 3 months.97 
There are currently two ongoing trials evaluating patient selec-
tion for late window EVT with CT and CTA which could provide 
more insight into this issue: Randomization of Endovascular Treat-
ment in Acute Ischemic Stroke in the Extended Time Window 
(RESILIENTExt, NCT04256096; Brazil) and Multicenter Random-
ized Clinical Trial of Endovascular Treatment of Acute Ischemic 
Stroke in the Netherlands for Late Arrivals (MR CLEAN-LATE, 
ISRCTN19922220; Netherlands). Such approaches that do not 
require CTP might help us expand the access to EVT.

There is limited data evaluating the safety and efficacy of 
very late window EVT, but well-selected patients might benefit 
from this treatment, highlighting the importance of a tissue-
based approach rather than a time-based approach to acute re-
perfusion therapies. A trial to assess EVT beyond 24 hours will 
probably require a collaborative approach from multiple centers 
given the low number of patients that might be eligible.98-100 As-
sessment of the collateral circulation might also be an impor-
tant factor to consider when selecting these patients.

The collateral circulation is an important factor 
to consider when determining the optimal blood 
pressure level in the peri-EVT period
The optimal blood pressure (BP) management strategy in the peri-
EVT period is an ongoing area of research. Enhancing the col-
lateral perfusion before recanalization and avoiding reperfusion 
damage and hemorrhagic transformation after recanalization 
are of utmost importance to achieve better functional outcomes. 
Patients with better collaterals might have better tolerance to 
BP fluctuations and it has been shown that poor baseline col-
laterals can aggravate the deleterious effects of higher BP levels 
or higher BP variability on clinical outcomes.101

The collateral circulation is an important factor  
to consider when evaluating experimental  
neuroprotective agents
The Efficacy Study of Combined Treatment With Uric Acid and 
rtPA in Acute Ischemic Stroke (URICO-ICTUS) trial was an RCT 
in patients treated with intravenous thrombolysis to assess the 
administration of uric acid before the thrombolytic infusion 
was completed. The trial was negative for the primary outcome 
of better functional outcome at 3 months. In a posterior nested 
study that divided the patients by collateral status, only those 
with excellent collaterals had significantly better functional 
outcomes after the administration of uric acid. This example em-
phasizes the possible role of collaterals in the delivery of poten-
tial neuroprotective agents to the ischemic tissue.102

Therapeutic strategies

Several treatment options to enhance the collateral circulation 
have previously been tested in clinical trials. Currently, none of 
these strategies have demonstrated a clear benefit to recommend 
their regular use. However, several of them have had promising 
results, and there are ongoing trials trying to prove their benefit.

Extracranial-intracranial indirect bypass surgery
The management of ICAD can be challenging, especially when 
best medical therapy fails. The use of invasive procedures in this 
situation raises the concern for associated adverse events.

Encephaloduroarteriosynangiosis (EDAS) is an indirect extra-
cranial-intracranial (EC-IC) bypass surgical technique, which is 
most described as a treatment option for patients with moyam-
oya disease/syndrome. The EDAS Revascularization for Symp-
tomatic Intracranial Atherosclerotic Steno-occlusive (ERSIAS) 
trial was a phase-II single-arm trial in patients with symptom-
atic ICAD (>70% stenosis in the intracranial ICA or M1 segment) 
and failure to best medical therapy. It compared EDAS plus in-
tensive medical therapy versus intensive medical therapy alone. 
They found a reduction of any stroke or death in the first 30 
days or any stroke in the territory of the affected vessel there-
after, reaching the non-futility threshold for advancement to a 
phase-III trial, with only mild surgical complications and no ICH. 
A post-hoc analysis of the trial, which only considered patients 
with borderzone infarcts, which are considered to have a higher 
risk of recurrence, found a significant reduction of the primary 
endpoint. A phase-III trial is expected.103

Remote ischemic conditioning
Ischemic conditioning is a technique that consists of producing 
transient ischemia—but not necrosis—in a tissue. It can be per-
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formed directly, e.g., on a coronary artery, or remotely, e.g., on a 
limb. It is believed that it activates endogenous protective path-
ways in distant organs such as the kidney, the heart, and the 
brain via humoral, immune, and neural mechanisms.104 Remote 
ischemic conditioning (RIC) can be applied as preconditioning (i.e., 
before the ischemic event), perconditioning (e.g., during the isch-
emic event), or postconditioning (i.e., after the ischemic event).

RIC has been evaluated in acute myocardial infarction, where 
it has demonstrated a reduction in infarcted tissue in ST-seg-
ment elevation myocardial infarction patients, but with no ben-
efit in clinical outcomes.105 In the case of ischemic stroke, clini-
cal studies have not revealed a clear benefit to recommend its 
use. There is low-quality evidence suggesting that postcondi-
tioning might have a beneficial effect on clinical and neuroim-
aging outcomes.106,107 There are several ongoing trials of RIC in 
acute ischemic stroke.105,108,109

RIC is a simple, low-cost, and safe treatment, so the demonstra-
tion of its benefit could easily lead to widespread implementation.

Sphenopalatine ganglion stimulation
As we mentioned before, the stimulation of the extrinsic para-

sympathetic pathway has an effect on the intracranial vascula-
ture. Specifically, pre-clinical and physiological studies have de-
termined at least four mechanisms by which the stimulation of 
the sphenopalatine ganglion (SPG), a parasympathetic ganglion 
located in the pterygopalatine fossa, could be beneficial in isch-
emic stroke: vasodilation with the subsequent increase in blood 
flow through collateral pathways, stabilization of the blood-
brain barrier, neuroprotection via central cholinergic and adren-
ergic pathways, and enhancement of neuroplasticity.110

The stimulation of the SPG through an implantable device has 
been tested in the injectable implant to stimulate the spheno-
palatine ganglion for treatment of acute ischaemic stroke (Im-
pACT) trials, but they failed to show a significant benefit in the 
intention to treat population. However, they did demonstrate a 
significant benefit as an improvement beyond expectation in the 
mRS in the subgroup of patients with a confirmed cortical infarct, 
highlighting the importance of adequate patient selection.111

Capsaicin (8-methyl-N-vanillyl-trans-6-nonenamide)—a com-
ponent of hot chili peppers—is being investigated as a non-in-
vasive alternative for the stimulation of the SPG. In a pilot study 
performed in healthy volunteers, oral capsaicin showed a dose-
dependent augmentation of the MCA mean velocity and dimi-
nution of the pulsatility index on transcranial Doppler.112

NO donors
NO donors are candidate neuroprotective agents in acute isch-
emic stroke. Due to their vasodilator effects, they are postulat-

ed to produce a potentiation of collateral circulation and a de-
crease in blood pressure. Nitroglycerin is a systemic NO donor 
and vasodilator. Its transdermal administration has been tested 
in the context of acute ischemic and hemorrhagic stroke, but 
no clinical benefit has been demonstrated when given within 
6 hours of symptom onset.113 It has been suggested that an ear-
lier administration of nitroglycerin may provide clinical benefit; 
however, recently the prehospital transdermal glyceryl trinitrate 
in patients with presumed acute stroke (Multicenter Randomized 
trial of Acute Stroke treatment in the Ambulance with a nitro-
glycerin Patch [MR ASAP]) trial failed to demonstrate a clinical 
benefit of this treatment when applied within 3 hours of symp-
tom onset in the prehospital setting. Interestingly, the study 
suggested a possible harm in ICH patients, in whom we might 
have suspected that the BP lowering effects would have been 
beneficial.114

Other vasodilator agents
PP-007 (previously Sanguinate™, SG) is a PEGylated carboxyhe-
moglobin (PEG-COHb) gas transfer agent with pleiotropic effects 
on the brain and cerebral circulation. Its protective effects are 
thought to be mediated by several mechanisms, including vaso-
dilation. Preclinical studies have demonstrated decreased neu-
rological deficits, reduced infarct volume, and collateral enhanc-
ing properties of SG. There is an ongoing phase 1 multicenter 
clinical trial for treatment of LVO in patients undergoing endo-
vascular thrombectomy (Safety Study of PP-007 in Subjects 
With Acute Ischemic Stroke [HEMERA-1]).25

Rapamycin is an inhibitor of mammalian target of rapamycin, 
which has been shown to be neuroprotective in animal models 
of stroke. In a rat model of stroke, rapamycin increased collateral 
perfusion during MCA occlusion and reperfusion. The observed 
dilation of leptomeningeal anastomoses was abolished by NOS 
inhibition, suggesting NO release as a mechanism of collateral 
enhancement by rapamycin. Currently, no clinical trials of ra-
pamycin in acute ischemic stroke are ongoing.25,115

TM5441 is a selective inhibitor of plasminogen activator in-
hibitor-1. It has a vasodilator effect that is mediated through NO 
release. In a rat model of stroke, the infusion of TM5441 increased 
collateral perfusion and reduced early infarct. Currently, no clin-
ical trials of TM5441 in acute ischemic stroke are ongoing.25,116

Conclusions and future challenges

Significant advances in the field of brain collateral circulation 
research have been made in the past few years. Our understand-
ing of this complex bypass system during all stages of life in both 
healthy and morbid states is ever-growing, yet still incomplete. 
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There is robust evidence to support the idea that the collateral 
circulation is a major determinant of outcomes in ischemic stroke 
and thus effective strategies to potentiate it are a current necessity.

Early interventions to potentiate the collateral circulation and 
avoid its rarefaction with age and other comorbid factors may 
have a significant impact in patients with acute stroke. In this 
regard, a deeper understanding of collaterogenesis and the fac-
tors that impact the collateral circulation across a patient’s life 
might reveal new potential intervention strategies. Assessment 
methods of the collateral circulation before a stroke occurs are 
also a necessity in the development and evaluation of these early 
intervention strategies.

More comprehensive scales that consider not only the arte-
rial bypass routes but also the importance of the venous drain-
age system, and also a standardization of assessment methods 
is needed to better assess this complex system and to simplify 
communication and collaboration in research and daily clinical 
practice. Automated AI-based softwares are a promising tool for 
this purpose.

Safe and effective methods for acute potentiation of the col-
lateral circulation in the context of acute ischemic stroke are 
also important, given that this will most likely remain the most 
common situation in which we might potentially intervene.
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