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Proteogenomic landscape of gastric
adenocarcinoma peritoneal metastases

Shuangtao Zhao,1,6 Ruiping Wang,1 Shumei Song,2 Dapeng Hao,1 Guangchun Han,1 Xingzhi Song,1

Jianhua Zhang,1 Melissa Pool Pizzi,2 Namita Shanbhag,2 Andrew Futreal,1 Brian Badgwell,3 Kazuto Harada,2

George Calin,4 Jody Vykoukal,5 Chuan-Yih Yu,5 Hiroyuki Katayama,5 Samir M. Hanash,5,* Linghua Wang,1,7,*

and Jaffer A. Ajani2,*

SUMMARY

Advanced gastric adenocarcinoma (GAC) often leads to peritoneal carcinoma-
tosis (PC) and is associated with very poor outcome. Here we report the compre-
hensive proteogenomic study of ascites derived cells from a prospective GAC
cohort (n = 26 patients with peritoneal carcinomatosis, PC). A total of 16,449 pro-
teins were detected from whole cell extracts (TCEs). Unsupervised hierarchical
clustering resulted in three distinct groups that reflected extent of enrichment
in tumor cells. Integrated analysis revealed enriched biological pathways and
notably, some druggable targets (cancer-testis antigens, kinases, and receptors)
that could be exploited to develop effective therapies and/or tumor stratifica-
tions. Systematic comparison of expression levels of proteins and mRNAs re-
vealed special expression patterns of key therapeutics target notably high
mRNA and low protein expression of HAVCR2 (TIM-3), and low mRNA but high
protein expression of cancer-testis antigens CTAGE1 and CTNNA2. These results
inform strategies to target GAC vulnerabilities.

INTRODUCTION

Gastric adenocarcinoma (GAC) is a common cancer type with more than one million new cases each year.1

GAC is mostly diagnosed at an advanced stage.2 The median survival of patients with advanced GAC re-

mains <12 months mainly because of lack of effective therapies.2 Only one oncogenic driver-based

approach (Her2-directed treatment with trastuzumab) has provided modest survival benefit.3 Other thera-

peutic options (cytotoxic therapy or anti-angiogenic agents) are only transiently effective with the excep-

tion of checkpoint inhibitors for patients with microsatellite instable GACs which are infrequent at

advanced stage. GAC patients are prone to developing peritoneal carcinomatosis (PC) which can result

in accumulation of ascites requiring repeated drainage, bowel/ureteral obstruction(s), cachexia, and rapid

decline. PC occurs in �45% of GAC patients and often leads to < 6-month survival. Intraperitoneal ap-

proaches have produced unsatisfactory results, and there is no accepted standard approach.4

Molecular characterization of GACs in the cancer genome atlas (TCGA) has provided initial insights into

GAC biology.5 However, all GACs analyzed were sourced from primary tumor tissues. Proteomics data

was limited to �300 proteins using reverse phase protein arrays (RPPA), of which 45 were associated

with defined molecular subtypes.6 In general, advanced GAC has lagged in molecular investigations

compared to other common cancer types.2 We previously reported on whole-exome sequencing (WES),

bulk RNA, and single-cell sequencing of PC cells from patients with GAC.7,8 Proteomic profiling of

advanced GACs has the potential to provide insights into molecular characteristics of cells that populate

the peritoneal cavity. In this study, we present a comprehensive proteomic profiling of PC cells from

26 GACs using liquid chromatography-mass spectrometry (LC-MS) which we compare with their matched

transcriptomic profiles to derive distinctive insights into the molecular profiles of GAC.

RESULTS

The proteomics landscape of PC cells

LC-MS was performed on PC specimens from 26 patients (Figure 1A, left, and Figure S1A). Table S1 sum-

marizes the clinical and pathological characteristics of patients. Principal component analysis (PCA)
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indicated minimal batch effects (Figure S1B), and all samples passed quality filtering were included in sub-

sequent analyses. A total of 16,449 proteins were detected in one or more samples (Figure 1A, middle), of

which 3,661 proteins were considered to be highly expressed (Figures 1A and S1C–S1E), of which 637 pro-

teins were identified in all 26 samples. Some of the GAC-associated and functionally well-characterized
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Figure 1. A landscape of the mass spectrometric-derived cell from 26 advanced gastric cancer patients with peritoneal metastases

From each patient, the ascites was collected and from which the cells were isolated and processed for liquid chromatography-mass spectrometry (LC-MS).

(A) A schematic overview of the protein repertoires from total cell extract (TCE). The total number of proteins detected (total peptides >0) by each approach,

the highly expressed proteins (total peptidesR50) and the proportion of proteins unique to each approach or detected by TCE. The protein categories are

annotated in the pie charts based on their molecular functions. TF, transcription factor.

(B) Distribution of protein quantitation measured as mean intensity (Log2 scaled) by the number of samples they are detected in, color coded by the decile.

The bar plots on the top display the total counts of proteins quantified across various number of samples. The value 0 stands for the number of proteins that

were not detected in any of the samples analyzed. Some representative genes are labeled on the plots.

(C) Scatterplot shows the expression distribution with mean and median values between adenocarcinoma subtypes and histology classifications.

(D) Cumulative number of proteins identified as a function of the patient numbers. Proteins family was shown with pipe plots between NOS and SRC.

Statistical method: Wilcox test.
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Figure 2. Proteogenomic characterization defined 3 subgroups with differential tumor and immune cell compositions

(A) Proteomic profiling of 3 subgroups based on tumor and immune cell composition. The cell specific markers for tumor (e.g., EPCAM, MUC1, CDH1, YAP1,

ERBB2, KRT8) and immune cell (PTPRC) compartments were used for sample classification and expression of these markers are shown in the top tracks.

Heatmap shows differentially expressed genes across 3 subgroups.

(B) The OncoPrint plot shows somatic genomic alterations identified by whole-exome sequencing (WES). CNA, copy number alteration.

(C) Copy number gains and losses among cluster A (red), B (blue) and C (orange). The boxplot (black) in the violin represents the interquartile range (IQR) and

median value. The points in the violin plot depicts the samples in each group.

(D) Somatic CNAs identified across 22 chromosomes by WES. The frequency of each CNA is labeled on the right axis.
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proteins such as EGFR, ERBB2, YAP1, SOX9, TP53, and CDH1, exhibited variable abundance (Figure 1B).

The combined expression values of proteins in each patient sample were similar (Figure 1C), independent

of subtypes (NOS or SRC) and histology classifications (diffuse or intestinal). The number of protein IDs was

balanced in NOS and SRC samples (Figure 1D) whereas the number of proteins was higher for intestinal

compared to diffuse subtype (Figure S1F).

Proteomic profiling classified PC specimens into three groups with differential tumor

cellularity

To profile the global proteomic patterns of PC cells, we performed an unsupervised hierarchical clustering

analysis of proteins which revealed three subgroups (Figure 2A, S2A and S2B). Analysis based on canonical

markers for lineage-specific differentially expressed proteins (DEPs, Table S2) suggested differences in tu-

mor cell compositions between the three groups (Figure 2A). PC specimens in Cluster A displayed the

highest expression of epithelial lineage markers EPCAM and KRT8, and GAC driver genes CDH1, YAP1,

and ERBB2, and the lowest expression of the immune cell marker PTPRC (CD45), which suggests that Clus-

ter A was predominantly enriched in tumor cells. Similarly, PC specimens in Cluster C displayed the highest

expression of the immune cell marker PTPRC and exhibited low or no expression of the epithelial lineage

markers or GAC-related oncogenes, indicating a predominance of immune cells. Cluster B, however, ex-

hibited mixed expression features of both epithelial and immune cells and was therefore classified as ‘‘tu-

mor-immune mixed’’.

Whole-exome sequencing (WES) data was generated for 22 of 26 samples that had matched germline

DNAs available (Table S1). Somatic mutation analysis was then performed, and we identified recurrent mu-

tations in CDH1, TP53, and KMT2C, with frequencies that were similar to those reported in 34 independent

GACs in a prior study7 (Figure 2B). We next integrated the mutational profiles and proteomic data which

strongly supported the proteomics-based cluster designation. We observed a greater number of somatic

mutations in GAC driver genes and a higher mutation burden (TMB) in samples in Cluster A (tumor cell en-

riched), whereas no somatic mutations were detected in Cluster C (immune cell-enriched) (Figures 2B and

2C). Concordantly Cluster A samples exhibited extensive copy number alterations while no alterations

were detected in Cluster C (Figure 2C and Table S3). Overall, the genomic data recapitulated features

of the proteomics-based classification. These results are indicative of varied tumor cell enrichment in asci-

tes fluid as would be expected.

We further examined the clinical relevance of proteomics-based classification indicative of varied tumor

cell enrichment. Patients’ age was significantly older in clusters A/B than in cluster C (the Fisher exact

test p = 0.037, Figure S2C), but it could not independently affect the clusters divided by the significant pro-

teins (Figure S2D). Signet ring cell carcinomas (SRC) were more represented in clusters A and B than C but

did not reach statistical significance given the relatively small cohort size (Figures 2E and S2E). We also

observed a trend of shortened survival in patients in cluster A (Figure 2F, log rank p = 0.280). These results

indicate differences in clinical and histopathological phenotypes between the three clusters based on

proteomic profiles.

Dysregulated molecular pathways and potential druggable targets

We next focused on clusters A and C given the enrichment in tumor cells and immune cells, respectively.

We performed pathway enrichment analysis to investigate dysregulated molecular processes informed by

the proteomics data. A total of 62 upregulated hallmark and KEGG pathways were identified in cluster A

which were predominantly composed of oncogenic andmetabolic signaling (Figure 3A), such as glycolysis,

oxidative phosphorylation (OXPHOS), mTORC1 signaling,MYC, TP53, and, TGF-beta pathways (Figure 3B).

Similarly, a total of 35 upregulated pathways were identified which were predominantly immune-related

pathways including neutrophil degranulation, neutrophil activation, neutrophil-mediated immunity, and

cytokine production (Figure 3A). We next applied a stepwise filtering process to identify proteins that

were tumor-specific, highly abundant, and significantly enriched in each cluster (Figure 3C) resulting in

Figure 2. Continued

(E) Fraction of histological subtypes in 3 defined subgroups. SRC, signet ring cell carcinoma; NOS, nitric oxide synthase carcinoma. n.s., not statistically

significant. N/A, not available.

(F) Kaplan-Meier curve shows the difference in patient survival between patients in subgroup A and the rest of patients from subgroups B and C. The log rank

test was used to calculate the p value.
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560 proteins, 68 of which were annotated as functionally important (Figure 3D) which included EGFR,

ERBB2, CDK4 as known targets with FDA approved inhibitors, PAK4 as an emerging and attractive target

involved in cytoskeleton remodeling, invasion, andmetastasis9 and two cancer-testis antigens, RQCD1 and

CTNNA2 (Figure 3E). The latter exhibited significantly higher expression values of protein andmRNA in the

SRC compared to NOS subtype (Figure S3). Meanwhile, a total of 40 proteins including 13 tumor-promot-

ing proteins and 20 tumor-suppressing proteins were annotated as functionally important (Figures 3F and

3G), which included HAVCR2 (TIM-3), CEACAM1, ITGAM, C10orf54, LTF, and S100A12 with relevance to

cancer immunotherapy. Three proteins (CAMP, S100A8, and S100A9) were with pro- and anti-tumorigenic

functions in different tumor microenvironments.10 Generally, this integrated analysis revealed enriched

biological pathways and notably, some druggable targets (cancer-testis antigens, kinases, and receptors)

that could be exploited to develop effective therapies and/or tumor stratifications.

Correlation with histological subtypes and clinical features

This cohort included 11 PC samples derived SRC and 13 PC samples derived fromNOS. Survival analysis iden-

tified no significant difference in these patients’ prognosis between the NOS and SRC subgroups (Log rank

p = 0.830, Figure 4A). We then compared their MS expression features, which revealed 131 significantly up-

regulated proteins in the SRC subtype compared to the NOS subtype including genes involve in response to

tumor necrosis factor pathway and ABC transporter pathway (ITGB4, CTNNA2, PAK3, and TAP1), metabolism

of lipids (DECR1 andACSL6), positive regulation of necrotic cell death (PAK1 andCD14), and antigen process-

ing and presentation signaling pathway (TIMP1, CD74, and B2M; Figures 4B and 4C). A total of 6 upregulated

GOpathways were identified to be related to ribosomal large subunit biogenesis and regulation of translation

(TOP1, STMN1, and IREB2) in the NOS histological subtype (Figure 4D).

Next, we compared the proteomics data between the chemotherapy-treated (n = 16) and chemotherapy-

naı̈ve (n = 10) groups by cluster but didn’t observe significant changes in their MS profiles (Chi-squared test

p = 0.521, Table S4), likely due to the small cohort size. Some significant proteins were upregulated in the

chemotherapy-treated group compared to chemotherapy-naı̈ve group, which were involved in cell cycle

(RPA1, RFC1, ERCC2, and RAD50) and immune response (MALT1 and DDX5) pathways (Figure S4A). Simi-

larly, a total of 16 samples in the chemotherapy-treated group were identified predominantly in cell cycle

and immune response signaling, such as DNA repair, T cell receptor signaling pathway, B cell receptor

signaling pathway, E2F targets, and G2M checkpoint (Figure S4B). But in the chemotherapy-naı̈ve group,

the oncogenic pathway (PPAR signaling pathway) was upregulated including ACSL1 protein, as well as api-

cal junction pathway in 10 ascites samples. Generally, these results indicated molecular differences in ther-

apy-specific outcomes across the 26 TCE samples. We must acknowledge that our sample size is rather

small and further studies are warranted.

Figure 3. Enriched TCE proteins and associated biological pathways among three clusters and potential targets

(A) Pathway enrichment analysis identified biological pathways enriched in the subgroup A and C. The curated gene sets were downloaded from the

Molecular Signature Database (MSigDB). Both the cancer KEGG (left), Hallmark (middle) and GO (right) gene sets are shown. The pathways are colored by

their biological functions. FDR q-value, the p value adjusted for the false discovery rate (FDR). A q-value threshold of 0.01 (1% FDR) is applied.

(B) Violin plots of representative pathways from the subgroup A.

(C) Schematic flow chart showing the filtering process of identifying tumor-specific proteins enriched in the subgroups. The filtering conditions were shown

during each filtering step.

(D) A heatmap of highly expressed proteins that are enriched in the Subgroup A from the TCE approach. A list of 65 (out of 560) proteins with known functions

are shown. The expression values are Z score transformed. Subgroup classification is annotated on the left, sample names are labeled on the right, and

protein names are shown at the bottom, with an annotation track color coded by the protein functional category. Top histogram shows for each listed

protein, the fraction of samples with detected protein expression by the TCE approach (n = 26 samples). The red filled circle indicates the mean expression

level of each protein averaged across 26 samples (y axis on the right, Log2 transformed). The gray dotted horizontal line annotated the expression level of 50

total peptides.

(E) Violin plots of representative proteins from the panels D. The Mann-Whitney U test was used to calculated the p values for data displayed in panels B and

E. **p < 0.01; *p < 0.05; n.s., not statistically significant.

(F) Heatmap of highly expressed proteins that were enriched in the subgroup C from the TCE approach. Proteins that were highly expressed and significantly

enriched in the subgroup C are shown at the bottom, with an annotation track color coded by the protein functional category. The expression values are Z

score transformed. Subgroup classification is annotated on the left, sample names are labeled on the right, and protein names are shown at the bottom. Top

histogram each lists protein, the fraction of samples with detected protein expression by TCE (n = 26 samples). The red filled circles indicate the mean

expression level of each protein averaged across all samples (y axis on the right, Log2 transformed). The gray dotted horizontal lines annotate the expression

levels of 50 total peptides.

(G) Violin plots of representative proteins from the panels C. The Mann-Whitney U test was used to calculated the p values. **p < 0.01; *p < 0.05; n.s., not

statistically significant.
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Proteomic features associated with somatic mutations of CDH1, TP53, and KMT2C

CDH1, TP53, and KMT2C are frequently mutated in advanced GAC. However, these genomic alterations

are not directly druggable. To identify potentially actionable targets in tumor cells with somatic alterations

in CDH1, TP53, or KMT2C, we analyzed the proteomic data for statistical associations and for pathway

enrichment (Figure 5A).

Interestingly, proteins that were significantly upregulated in the CDH1-high PC cells included ERBB2,

EGFR, CTNNA2, and SOX9, three of which are druggable. Pathway analysis identified upregulated

OXPHOS and cell cycle signaling in CDH1-high PC cells (Figure 5B). IGF2R and CREBBP were significantly

elevated in tumor cells in the TP53-low group. These data provide potentially druggable targets related to

distinct mutation profiles.

Correlation between mRNA and protein expression and key marker genes

To assess the complementary value of proteomic and mRNA data, correlation analysis was carried out that

involved 6,638 proteins and mRNAs divided into four quantiles (i.e., Q1, Q2, Q3, and Q4) based on their

overall distribution. Protein abundance showed different correlations with their correspondent mRNAs

in different quantiles (Figure 6A). Among the consistently highly expressed genes in Q4 (n = 860), we iden-

tified enzymes and transporters as the top two families and oncogenic signaling andmetabolic signaling as

the significantly enriched pathways. Importantly, the oncogene FN1 correlated with the EMT signaling

pathway. However, within the consistently low expressed genes in Q1 (n = 744), we identified enzymes

and transcriptional factors as the top two families, with a predominance of cell cycle-related processes (Fig-

ure 6B). Genes with discordant RNA and protein expression included potentially interesting therapeutic

targets notably cancer/testis proteins CTNNA2, LTF, CTAGE1, and immunotherapy targets LAIR1 and

HAVCR2 (TIM3) (Figure 6C). These data suggested that the protein data provided complementary informa-

tion to yield an improved understanding of biological processes involved in PC.

DISCUSSION

The ultimate impact of genomic dysregulation is on protein expression.11 Our study was aimed at identi-

fying hallmarks of protein expression in PC ascites cells. Our results provide complementary information to

TCGA and Clinical Proteomic Tumor Analysis Consortium (CPTAC) data12–14 and a panoramic view of can-

cer-related proteomics in PC cells. Isolation of tumor cells from biological fluids that contain a multitude of

cell types may be accomplished through the enrichment or selection of cells based on the expression of

particular markers. However, such an approach may be biased because of heterogeneity among tumor

cells with respect to the expression of particular markers. Our profiling did not rely on a tumor cell selection

process but rather on unbiased molecular classification which was informative with respect to tumor cell

enrichment and correlation with prognosis and biological characteristics.

Molecular subtyping of cancers was aimed to classify patients into distinct subtypes correlated with prog-

nosis, therapy responses, and biological features. Tumors consisted of heterogeneous cells that display

varying levels of functional and genetic heterogeneity.15,16 Interestingly, in our study, we discovered three

different clusters in the PC ascites cells (tumor-enriched cluster A, tumor-immune mixed cluster B, and im-

mune-enriched cluster C) that could functionally serve as heterogeneity. Cluster A expressed the epithelial

lineagemarkers EPCAM and KRT8, and driver genes of GAC such as CDH1, YAP1, and ERBB2; and cluster C

expressed immune-related gene PTPRC. WES analysis showed that a large number of genes were identi-

fied with mutations and insertions/deletions in the dataset related to tumor cell enrichment as may be ex-

pected. Pathway enrichment analysis displayed that oncogenic and metabolic signaling pathways were

predominant in cluster A; whereas immune-related pathways were enriched in cluster C. Thus, cluster A

was more representative of mutational and pathway alterations that occur in GAC tumor cells with the

occurrence of therapeutic targets including CTAGE1, CTNNA2, ERBB2, and EGFR. GACs with reduced

Figure 4. Enriched tumor specific proteins and associated biological pathways between the NOS and SRC subgroups and potential targets

(A) The Kaplan-Meier curve shows the difference in patient survival between patients in NOS and the rest of patients from the SRC histological subtype. The

log rank test was used to calculate the p value.

(B) Volcano plot shows the DEPs between two NOS and SRC with a tumor-immune of log2(fold change) > 1 and p value <0.05, different colors indicate the

significant genes involving in oncogenic (black), cell cycle (light blue), metabolic (orange) and immune response (pink) pathways.

(C) The pathway enrichment analysis identified biological pathways enriched in the SRC subtype. Pathways are colored by their biological functions.

(D) The pathway enrichment analysis identified biological pathways enriched in the NOS subtype. Pathways are colored by their biological functions.
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enrichment in tumor cells as in cluster C may benefit from alternative therapies that take advantage of the

predominance of immune cells.

As a conserved cellular program, paligenosis undergoes plastic changes respond to damage and main-

tains homeostasis.17 And in the successful paligenosis program, multiple tissues and cells require stress

response proteins to modulate critical cell energy and survival networks centered on MTORC1 and

P53.18 Previous study displayed that pre-cancerous metaplasia was a normal, wound-healing, regenerative

response produced by paligenosis. However, once the paligenosis was abnormal, the DNA damage were

not eliminated or stalled in the paligenotic cells until DNA repair was completed. And then these cells will

accumulate DNA damage and undergo malignant transformation, ultimately occurring at the gastric

cancer initiation.19,20 In this study, we discovered that PC cells presented a high proliferative state with sig-

nificant MTORC1, glycolysis, OXPHOS, and TGF-beta signaling pathway in cluster A and B. And it was re-

ported that MTORC1 signaling pathway controls the adaptive transition of quiescent cells in G0 to re-enter

the cell cycle in response to injury-induced signals.21 And these proteins analysis within PC ascites cells vali-

dated again that paligenosis is a stepwise, specific program with multiple signaling pathways involved.

Promisingly, we discovered that targeting paligenosis by MTROC1 inhibitors reduced proliferation of PC

cells from ascites by inducing apoptosis.

The immunosuppressive and pro-tumorigenic functions are characterized in tumor infiltrating immune cells

that play distinct and complex roles in tumor ecosystems.22,23 Tumorigenesis and metastasis could be

propagated by self-renewing the tumor cells with pluripotent and plastic characteristics.24 And immune

cells could promote tumor proliferation and metastasis and also reprogram the tumor ecosystem to main-

tain a suitable niche.25 Our signaling pathway analysis highlighted neutrophil-related pathways in cluster C

ascites cells in the peritoneal ecosystem. Therefore, we speculate that neutrophils in the peritoneal cavity

maintain tumor cell plasticity via immune-related signaling pathways. In this study, tumor suppressor genes

such as C10orf54, ITGAM, LTF, and S100A12 were discovered involved in maintaining homeostasis, and

loss tumor suppressor functions will cause cellular plasticity that drives numerous types of cancer,26

including gastric cancer.

While the comparison between the NOS and SRC histotypes is potentially interesting and would be

adequately powered for at least preliminary analysis across all samples including 13 NOS samples and

11 SRC samples. It is definitely flawed to compare these two subtypes only within the same cluster with

limited number of samples. In our study, we identified the DEPs involved in oncogenic (ITGB4,

CTNNA2, PAK3, and TAP1) and immune response (TIMP1, CD74, and B2M) pathways in the SRC group

but metabolism (TOP1, STMN1, and IREB2) and cell cycle (KDM6A and SMARCD1) pathways in NOS

type. Studying the ecosystems of ascites between NOS and SRC subtypes will be helpful to provide a crit-

ical direction for the further investigation of ascites of gastric cancer. A published study indicated that mul-

tiple biomarkers of aggressiveness and targets were identified by DEGs analysis and functional studies.7

Ascites from high-grade serous ovarian cancer displayed to be correlated with a poor prognosis and

drug resistance,27 which harbored three different cell clusters (immune cells, epithelial cells, and cancer-

associated fibroblasts) in the ascites ecosystem.28 Because ascites samples via paracentesis is easier and

safer than tissue biopsy which is different from peripheral blood in the immune features. These results pro-

vide a direction for the detection of tumor status by sampling ascites instead of biopsy tissue or peripheral

blood.

To identify the DEPs among three clusters from the ascites samples also allowed us to more reliably nomi-

nate potential drug targets. In this study, we discovered some proteins significantly higher expression in

tumor-enriched group belong to cancer/testis antigens, enzyme, ligand, receptor, kinase, or transcription

factor, including several ‘‘star’’ molecules including CTAGE1, CTNNA2, CDK4, ERBB2, and EGFR derived

from cancer driver gene analysis, their elevated expressions might be associated with poor survival. And it

Figure 5. Distinct protein expression features and signaling pathways associated with aberrant expression of CDH1, TP53, and KMT2C

(A) Heatmap shows differentially expressed proteins between the ‘‘high’’ and ‘‘low’’ groups for CDH1 (left), TP53 (middle), and KMT2C (right). The expression

values are Z score transformed and data from the TCE approach are shown. The names of some presentative genes are listed. The median expression levels

of CDH1, TP53, KMT2C (across 26 samples) were used to define the ‘‘high’’ (>median) and ‘‘low’’ (%median) groups. Other annotation tracks included

somatic mutations (of each specific gene) identified from WES, and protein-based subgroup classification from Figure 2. The curved lines in the top plots

indicate the protein and mRNA (mRNA sequencing) expression levels of each specific gene across all samples.

(B) Differentially expressed signaling pathways between the ‘‘high’’ and ‘‘low’’ groups for CDH1, TP53, and KMT2C.
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will be interesting to explore these ‘‘star’’ molecules and the other potential drug candidates that we nomi-

nated for treatment or developing drugs.

Notably, while we identified a considerable number of genes with DNA mutations, their gene products

were sometimes detected in the DEPs analysis. Proteogenomic analysis in relation to CDH1, TP53, and

KMT2C revealed a poor correlation between genomic and proteomic data as previously observed in other

datasets.12–14 We detected frequent occurrences of mutations in CDH1, TP53, and KMT2C genes. Loss-of-

function CDH1 mutation was associated with the upregulation of several key genes notably ERBB2, EGFR,

SOX9, and CTNNA2 suggesting that loss-of-function of a tumor suppressor gene may yield opportunities

to target specific oncoproteins.29 This observation added a cautionary note on nominating treatment can-

didates based solely on DNAmutations and further strengthen the necessity of considering proteins in the

precision medicine.

It is unclear about the relationship between gene expression measured at the mRNA level and the corre-

sponding protein level in human cancer.30 Guoan Chen etc.30 reported that no significant correlation

between mRNA and protein expression, which was validated again in our study. The mRNA-protein corre-

lation coefficient varied among proteins with multiple isoforms, indicating potentially separate isoform-

specific mechanisms for the regulation of protein abundance.31 So far, the CPTAC, integrating DNA

methylation, copy number alterations, and mRNA and protein profiling of TCGA tumor specimens into

analysis to portray proteogenomic landscapes of colorectal cancer, breast, and ovarian cancers,12–14

discovered that mRNA transcript abundance could not reliably predict protein abundance differences

generally, although CNV displayed strong cis- and trans-effects on mRNA abundance but extend to the

protein level.12,13 Also, protein level data informs about the extent to which RNA levels are translated

into proteins and the extent of protein stability which is needed for the assessment of potential targets.

In this study, we discovered some functionally important genes with discordant protein and mRNA expres-

sion in PC samples, such as cancer/testis antigens CTNNA2, LTF, CTAGE1, and immunotherapy targets

LAIR1 and HAVCR2 (TIM3), which enriched in oncogenic (P53 pathway, TGF-beta signaling, TNFa signaling

via NFkb, NOTCH signaling pathway), metabolic (glycolysis, OXPHOS), and immune-related (complement

and coagulation cascades, and leukocyte trans-endothelial migration) pathways. And the first four genes

were with high protein expression but low in mRNA expression. Inversely, HAVCR2 (TIM3) was with high

mRNA expression (Q3/4) but low (Q1) in protein expression. Previous study reported that novel-miR-

4885 could promote migration and invasion of esophageal cancer cells by binding to the 30 untranslated
region of CTNNA2,31 and CTNNA2 was a tumor suppressor gene frequently mutated in laryngeal carci-

noma.32 LTF (lactotransferrin, also known as lactoferrin) is a critical component of the innate immune de-

fense,33 and its downregulation inhibits the normal immune response in the body, thus making cancer cells

escape the immune process.34 For CTAGE1, it is a cutaneous T cell-lymphoma-specific tumor antigen that

might lead to further candidate proteins for specific immunotherapy of cutaneous T cell lymphoma and

other malignancies.35 LAIR1 (leukocyte associated immunoglobulin like receptor 1) is an immune inhibitory

receptor expressed on most immune cell types, and blocking LAIR1 signaling pathway in immune cells

could inhibit tumor development.36 LAIR1 has intracellular immunoreceptor tyrosine-based inhibitory mo-

tifs in the signaling domains, which decides the different functions of individual proteins. Now, the im-

muno-oncology therapeutic products based on targeting LAIR1-mediated signaling are anticipated with

significant advancement.37 TIM-3 (T cell immunoglobulin mucin 3) is a promising immune checkpoint target

in cancer therapy, and the expression level of HAVCR2 was remarkably correlated with cancer immune infil-

tration or immune checkpoint genes, suggesting that HAVCR2 could participate in immune infiltration in

Figure 6. Correlation between MS protein and mRNA expression and profiling of genes with consistent and distinct expression patterns

(A) Correlation analysis between the protein and mRNA expression. The normalized protein expression data from the TCE approach and the normalized

mRNA expression data from the whole transcriptome sequencing (RNA-seq) were used for correlation analysis. The correlation analysis was stratified by the

protein and mRNA expression levels (protein low and mRNA low; protein high and mRNA high; protein low and mRNA high; protein high and mRNA low).

The Pearson’s correlation is applied and the correlation coefficient (r) and p values are labeled.

(B) Characterization of genes with consistent mRNA and protein expression. The genes were classified into 4 groups (Q1-4) based on their overall distribution

of mRNA and protein expression, respectively. The alluvial plot shows the relationship between protein and mRNA expression for genes in each group and

the genes that are consistently high (n = 860) or low (n = 744) in their expression from both platforms are highlighted (yellow strips) and taken into subsequent

analysis, including protein functional categories and pathway enrichment analysis.

(C) Characterization of genes with inconsistent mRNA and protein expression. The genes were classified into 4 groups (Q1-4) based on their overall

distribution of mRNA and protein expression, respectively. The alluvial plot shows the relationship between protein and mRNA expression for genes in each

group and the genes that are inconsistently expressed high are highlighted and taken into subsequent analysis, including protein functional categories and

pathway enrichment analysis.
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tumorigenesis.38 The discordance of mRNA/protein abundance could be explained by (1) tumor heteroge-

neity, in which lowmRNA abundance in a small number of tumor cells, while their alteration in protein abun-

dance is high; (2) limited number of samples with the samemRNA/protein expression, which diminishes the

power of statistical analysis to calculate its correlation. In general, it might be possible to understand the

complex mechanisms influencing protein expression in PC from advanced GAC by combining proteomic

and transcriptional analysis, and the potential to identify specific protein isoforms correlated with biolog-

ical behavior in GC would be of quite interest and would promote our realization of the regulation of gene

products by transcriptional, translational and post-translational mechanisms.

In summary, our integrative proteogenomic characterization revealed different therapeutic targets in PCs

involving signaling proteins, metabolic enzymes, kinases, and cancer antigens. The findings from our study

warrant further assessment of the utility of targets and pathways we have uncovered.

Limitations of the study

We acknowledge that the lack of either paired primary GAC samples or an appropriate normal tissue con-

trol is a shortcoming of this study. Ideally, we should collect paired tumor and nearby/normal tissue from

the same patient to compare with PC cells to identify genetic and proteomic alterations. We agreed with

that few normal controls or paired tumor tissue could further complicate proteomics analysis and limit our

analysis to identify individually altered cancer proteome and dysregulated-signaling pathways. So, in this

study, protein expression data in normal gastric tissues from HPA were used as the control to select tumor-

specific proteins. However, to identify tumor-specific proteins, a large number of paired normal gastric

tissues are optimal and future investigations are needed to elucidate the consequences of up- or

-down-regulated proteins and potential molecular mechanisms involved. Also, some validation experi-

ment is needed to identify the new druggable targets in the future work.
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All unique/stable reagents generated in the study are available from the lead contact with a completedma-

terials transfer agreement.

Data and code availability

All WES and RNA-Seq data have been deposited at the European Genome-phenome Archive (EGA). The

datasets can be fully accessed under the accession number EGAS00001003180. Further information about

EGA can be found on https://ega-archive.org (’the EGA of human data consented for biomedical research’:

http://www.nature.com/ng/journal/v47/n7/full/ng.3312.html). The MS data in the current study are avail-

able from Table S5.

The key source codes that supported these results and findings can be found on GitHub (https://github.

com/wpwan/GutAscites) and is publicly available as of the date of publication.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics approval and consent to participate

Ethical approval was obtained from the institutional review committee. And The design and performance

of the study are in accordance with the Declaration of Helsinki. Signed informed consent was obtained from

all participants before inclusion, allowing analysis of tumor tissue, blood samples and clinical data.

Patient cohort and sample collection

A total of 26 GAC patients with documented PC were selected for this study. All patients were treated at

The University of Texas MD Anderson Cancer Center (Houston, USA). PC specimens were obtained during

a therapeutic procedure once patients provided a written approved informed consent document under an

Institutional Review Board approved protocol. PC is stage 4 cancer under the American Joint Committee

REAGENT or RESOURCE SOURCE IDENTIFIER
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http://www.nature.com/ng/journal/

v47/n7/full/ng.3312.html
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Software and algorithms

R v3.5.3
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The R Project for Statistical Computing

Gene Set Enrichment Analysis

https://www.r-project.org/

https://www.gsea-msigdb.org/gsea/index.jsp
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on Cancer Staging Manual (8th edition).2,39 The clinical characteristics including age, sex and race and

treatment information of these patients are listed in the Table S1. Information regarding patient treatment

is provided in Figure S1A. PC cells were collected through these steps below. Ascites samples ranging from

100 mL to 2000 mL were obtained from GAC patients who underwent a therapeutic and/or diagnostic pro-

cedure. Cells were spun down at 2,000g for 20 minutes. Pelleted cells were lysed in red blood cells lysis

buffer consisting of 0.079 g of ammonium bicarbonate and 6.1 g of ammonium chloride in 1 L of distilled

H2O. Red blood cells were removed to enrich in PC cells for further analysis. The percentage of malignant

cells was recorded by a pathologist or cytologist.

METHOD DETAILS

Mass spectrometry based proteomic analysis

Total cell extracts (TCEs) were obtained by sonication of cell lysate pellets in 4M Urea, 3% IsoPropanol,

20 mM Tris containing the detergent 2% octyl-glucoside (OG, Sigma-Aldrich), and protease inhibitors

(complete protease inhibitor cocktail, Roche Diagnostics) and phosphatase inhibitor (PhosSTOP, Roche

Diagnostics) followed by centrifugation at 20,000 x g at 4 �C for 30 min. TCE proteins were reduced in

DTT and alkylated with acrylamide before the fractionation of intact proteins using RP-HPLC. Proteins

were desalted and separated using an off-line ACQUITY ultra-performance liquid chromatography

(UPLC) Class-H system (WATERS) with reversed-phase column (4.6-mm internal diameter 3 150-mm

length; Column Technology). Collected fractions were dried by lyophilization followed by in-solution

digestion with trypsin (Mass Spectrometry Grade, Thermo Fisher).

A total of 23 fractions were subjected to LC-MS/MS analysis per ascites sample. Tryptic peptides were in-

jected onto reversed phase nanoLC-MS/MS using a nanoAquity LC system coupled online with SYNAPT

G2-Si ion-mobility mass spectrometer (WATERS). Separations were performed using 75 mm id 3 360 mm

od 3 25-cm-long fused-silica capillary column (Column Technology) slurry packed with 3 mm, 100 A�

pore size C18 silica-bonded stationary phase. Following injection of � 2 mg of protein digest onto a C18

trap column (Waters, 180 mm id 3 20 mm), peptides were eluted using a linear gradient of 0.35% mobile

phase B (0.1 formic acid in ACN) per minute for 90 min, then to 95% B in an additional 10 min, all at a con-

stant flow rate of 300 nL/min.

LC-HDMSE Data was acquired in high resolution mode using Waters Masslynx (version 4.1, SCN 851). The

capillary voltage was set to 2.80 kV, sampling cone voltage to 30 V, source offset to 30 V, and source tem-

perature to 100 �C. Mobility utilized high-purity N2 as the drift gas in the IMS TriWave cell. Pressures in the

helium cell, Trap cell, IMS TriWave cell, and Transfer cell were 4.50 mbar, 2.47e-2 mbar, 2.90 mbar, and

2.53e-3 mbar, respectively. IMS wave velocity was 600 m/s, helium cell DC was 50 V, Trap DC bias was

45 V, IMS TriWave DC bias was 3 V, and IMS wave delay was 1,000 ms. The mass spectrometer was operated

in V-mode with a typical resolving power of at least 20,000. All analyses were performed using positive

mode ESI using a NanoLockSpray source. The lock mass channel was sampled every 60 s. The mass spec-

trometer was calibrated with a [Glu1] fibrinopeptide solution (300 fmol/mL) delivered through the reference

sprayer of the NanoLockSpray source. Accurate mass LC-HDMSE data was collected in an alternating, low

energy (MS) and high energy (MSE) mode of acquisition with mass scan range from m/z 50 to 1800. The

spectral acquisition time in each mode was 1.0 s with a 0.1-s inter-scan delay. Data were collected in the

low energy HDMS mode, at constant collision energy of 2 eV in both Trap cell and Transfer cell. In high en-

ergy HDMSE mode, the collision energy was ramped from 25 to 55 eV in the Transfer cell only. The RF

applied to the quadrupole mass analyzer was adjusted such that ions fromm/z 300 to 2,000 were efficiently

transmitted, ensuring that any ions observed in the LC-HDMSE data less than m/z 300 were known to arise

from dissociations in the Transfer collision cell.

The acquired LC-HDMSE data were processed and searched against the Uniprot proteome database (Hu-

man, January 2017) through ProteinLynx Global Server (PLGS, Waters Company) with two trypsin miss

cleavage allowed. The modification search settings included cysteine (Cys) alkylation with acrylamide

(71.03714@C) as a fixed modification, and methionine (Met) oxidation (15.99491@M) as a variable modifi-

cation. The searched data was filtered with False Discovery Rate 4%. The spectral counts for each protein

driven by the identified peptides were used as a measure of protein abundance. The normalization was

done by each protein spectral counts divided by the total spectral counts of each patient ascites cells multi-

plied by the factor 50,000.
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Protein expression values represented by MS events were generated with the total peptides aggregated

based on Ensemble gene symbols (build hg19). Proteins that were not identified in some samples

were assigned a value of 0. All values of proteins were then log2-transformed for further downstream

processes. Highly expressed proteins were defined using a cut-off of total MS events of > 50

(Figures S1C and S1D).

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample classification based on proteomic data

A total of 1,980 out of 16,449 proteins detected inR 80% of all samples (n = 26), were selected for principal

component analysis (PCA) to assess the distribution of samples based on the global protein expression

profiles, explore optimal three clusters (tumor cell enriched, immune cell enriched and tumor immune

mixed) and evaluate possible batch effects (Figures 1B–1D, S2A, and S2B). PCA analysis using TCE proteins

indicated minimal batch effects and all samples were included for subsequent analyses. Then 2,361 differ-

entially expressed proteins (DEPs) were identified among three clusters defined by PCA and used for the

unsupervised hierarchical clustering analysis. Protein expression data in normal gastric tissues were down-

loaded from the Human Protein Atlas (HPA) and used as controls to select tumor-specific proteins (Fig-

ure S1E). Group enriched proteins were selected by applying a cut-off of expression fold change R2

and adjusted p-value (FDR q-value) <0.05.

Pathway enrichment analysis

Gene sets of interest were processed using Gene Set Enrichment Analysis (GSEA)40 against the curated

gene sets (H and C2 collections) downloaded from Molecular Signature Database (MSigDB)41 to identify

significantly enriched signaling pathways ( FDR adjusted p-value < 0.01 and overlapped genes numbers

R 3). Results were subsequently visualized in R with ggplot2 package.

DNA and RNA data analysis

Whole-exome sequencing (WES) was performed on 22 of 26 PC specimens, with 11 having matched germ-

line DNA from peripheral blood. We submitted the extracted gDNAs to Sequencing and Microarray Core

Facility (SMF) at UT MD Anderson Cancer Center for WES. Then the raw output of Illumina exome

sequencing data was processed with Illumina’s Consensus Assessment of sequence And Variation

(CASAVA) tool (v1.8.2). Genotyping quality control was completed to rule out any possible contamination

or sample swapping. And we called germline SNPs by Platypus (v0.8.1). Finally, we identified somatic mu-

tations and Pindel with MuTect (v1.1.4). We calculated the mutation load by first counting the number of

nonsynonymous somatic mutations called in a sample and then normalized the numbers by the sample’s

20x target base coverage. And then we applied the Mutalisk tookit to quality-filtered somatic mutations,

and quantified the statistical relative contribution of each of the 30 characterized COSMIC mutational sig-

natures. We conducted the DNA copy number analysis by an in-houses application ExomeLyzer followed

by CBS segmentation.

RNA sequencing was performed on 21 specimens by FastQC with RNA-seq FASTQ files to generate a se-

ries of RNA-seq related quality control metrics. All samples passed the quality control and generated RNA-

seq BAM files with STAR 2-pass alignment (v2.5.3). Finally, the RNA-Seq gene expression raw read counts

were produced from HTSeq-count (v0.9.1).

mRNA and protein correlation analysis

To assess the correlation between mRNA and protein abundance, the overlapping genes (n = 1,016) ex-

pressed in R 95% samples that were shared between the two platforms for 21 samples were subjected

to Pearson correlation analysis.

Statistical analysis

The statistical methods used in this study were performed in the R statistical environment (v3.5.3). The

evaluation of normal distribution was checked using the Shapiro-Wilk test. The statistical significance

of differences observed among clusters was determined by the ANOVA test or t-test for normal distri-

bution data and the non-parametric Kruskal-Wallis test or Wilcoxon test for non-normal distribution

data when comparing continuous variables, and the Fisher’s Exact test when comparing frequencies

of clinical factors. To control for false discovery rate (FDR) and correct p-values from multiple testing,

ll
OPEN ACCESS

18 iScience 26, 106913, June 16, 2023

iScience
Article



the Benjamin-Hochberg method was applied to calculate an FDR adjusted p-value (or q-value). Kaplan-

Meier plots and log-rank tests were used for univariate survival analysis. Pearson’s correlation coefficient

was calculated to evaluate the association between two continuous variables. Hypothesis testing was

performed in a two-sided manner, with p-value or adjusted p-value (if applicable) < 0.05 considered

to be statistically significant.
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