
Targeting alpha-synuclein via the immune system in Parkinson’s 
disease: Current vaccine therapies

Sheila M. Fleming*,
Ashley Davis,

Emily Simons

Department of Pharmaceutical Sciences, Northeast Ohio Medical University, USA

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and is defined 

pathologically by the abnormal accumulation of the presynaptic protein alpha-synuclein (aSyn) 

in the form of Lewy bodies and Lewy neurites and loss of midbrain dopaminergic neurons in 

the substantia nigra pars compacta. Because of aSyn’s involvement in both sporadic and familial 

forms of PD, it has become a key target for the development of novel therapeutics. Aberrant 

aSyn is associated with multiple mechanisms of neuronal dysfunction and degeneration including 

inflammation, impaired mitochondrial function, altered protein degradation systems, and oxidative 

stress. Inflammation, in particular, has emerged as a potential significant contributor early in 

the disease making it an attractive target for disease modification and neuroprotection. Thus, 

immunotherapies targeting aSyn are currently being investigated in pre-clinical and clinical trials. 

The focus of this review is to highlight the role of aSyn in neuroinflammation and discuss the 

current status of aSyn-directed immunotherapies in pre-clinical and clinical trials for PD.

This article is part of the Special Issue on ‘New therapeutic approaches to Parkinson’s disease’.
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1. Introduction

Parkinson’s disease (PD) cases are projected to increase to over a million people in 

the United States by 2030 (Marras et al., 2018). At the time of diagnosis patients 

typically display a combination of motor symptoms including bradykinesia, resting tremor, 

rigidity, and postural instability. There are also a host of non-motor symptoms associated 

with PD that include gastrointestinal and autonomic dysfunction, cognitive impairments, 

and neuropsychiatric dysfunction. The pathological hallmarks of PD are the loss of 

dopaminergic (DA) neurons in the substantia nigra pars compacta (SN) and the development 
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of proteinaceous inclusions in Lewy bodies and Lewy neurites in the brain and periphery. 

While PD was first described in 1817 by James Parkinson, it was not until the late 1990s 

that alpha-synuclein (aSyn) was first linked to the disease (Polymeropoulos et al., 1997; 

Spillantinin et al., 1997; Krüger et al., 1998). Since then, studies on aSyn and its role in PD 

have permeated the field and aSyn is now a key target for therapeutic development.

Alpha-synuclein is a 140 amino acid presynaptic protein involved in plasticity, vesicular 

handling, and neurotransmitter release (Cabin et al., 2002; Vargas et al., 2014; Yavich 

et al., 2004). The protein is divided into three distinct regions that include a N-terminal 

lipid binding region, a central non-amyloid-β component, and an acidic C-terminal region 

(Ahn et al., 2006; Sode et al., 2007; Rodriguez et al., 2015). In its soluble form, aSyn is 

primarily monomeric and unfolded. When pathological, aSyn misfolds into oligomeric and 

fibrillar structures along with post-translational modifications that include phosphorylation 

at Ser129 (Conway et al., 2001; Fujiwara et al., 2002). In the earliest familial forms of 

PD, missense mutations in the SNCA gene that encodes for aSyn were identified with one 

family having the amino acid substitution alanine-to-threonine at codon 53 and another with 

an alanine-to-proline substitution at codon 30 (Krüger et al., 1998; Polymeropoulos et al., 

1997). At that same time, it was also shown that aSyn was a major component of Lewy 

bodies, implicating it in both familial and sporadic forms of PD (Spillantini et al., 1997). 

Now, a direct role for aSyn in PD pathophysiology is supported by multiple studies showing 

mutations, multiplications, and polymorphisms in the aSyn gene in sporadic and familial PD 

(Polymeropoulos et al., 1997; Spillanitini et al., 1997; Krüger et al., 1998; Singleton et al., 

2003; Chartier-Harlin et al., 2004; Pankratz et al., 2009; Simon-Sanchez et al., 2009).

2. Inflammation in Parkinson’s disease

2.1. Clinical evidence

There is considerable support for a key role of the immune system in neurodegeneration 

in patients with synucleinopathies that include PD, multiple system atrophy (MSA), and 

dementia with Lewy bodies (DLB). Early evidence of neuroinflammation in PD showed 

increased human leukocyte antigen DR expression in the SN indicative of activated 

microglia, the resident immune cells of the brain, in postmortem brains (McGreer et 

al., 1988). When activated, microglia alter their morphology, become phagocytic, express 

increased levels of major histocompatibility complex (MHC) antigens, and release both 

proinflammatory and anti-inflammatory cytokines. Indeed, increased cytokine expression 

has also been found in PD including tumor necrosis factor-α (TNFα) in SN, striatum, 

and cerebral spinal fluid (CSF), interleukin (IL)-1β, and IL-6 in striatum and transforming 

growth factor (TGF)-β1 in striatum and ventricular CSF. (Boka et al., 1994; ; Mogi et al., 

1994a,b, 1995). Later studies highlight activated microglia, increased MHC class II cells that 

correlate with aSyn deposition in the SN in PD, altered CD3, CD4, CD8 T cells, increases in 

the leukocyte marker CD45, and altered cytokine profiles in PD, MSA, and DLB (Imamura 

et al., 2003; Croisier et al., 2005; Rydbirk et al., 2017; Surendranathan et al., 2018; Williams 

et al., 2020). Positron emission tomography studies using the radiotracer [11C](R)-PK11195 

for activated microglia corroborate postmortem analyses and show increased microglial 

activity that correlates with dopamine transporter binding and motor severity in PD (Ouchi 
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et al., 2005; Gerhard et al., 2006). The imaging work also indicates microglial activation 

can be an early pathological event in PD. While debatable, some epidemiological studies 

suggest the use of nonsteroidal anti-inflammation drugs (NSAIDs) may reduce the risk 

of developing PD (Chen et al., 2003a, b; Gagne and Power, 2010; Gao et al., 2011). 

Taken together, the postmortem, imaging, and epidemiological work make a compelling 

case for inflammation as an important mechanism of pathology in PD. How to target the 

inflammatory response therapeutically in PD is now an urgent area of study in the field 

with several current potential immunotherapies for PD specifically targeting aSyn in clinical 

trials.

2.2. Inflammation and aSyn animal models

Both innate and adaptive immune systems have been implicated in PD. The innate immune 

system is immediate and reacts rapidly to invading pathogens. It is antigen-independent and 

the pathogenic patterns it can recognize are limited. In contrast, the adaptive immune system 

is antigen specific and dependent which results in a slower response or activation time but 

has the capacity for memory to recognize pathogens it was previously exposed to. Both 

systems work together with the innate system tuning and influencing the adaptive immune 

response, and collectively they protect the body from harmful pathogens. As microglia 

are the resident innate immune cells in the brain, it is not surprising they play a key 

role in the immune response in PD (Allen Reish and Standaert, 2015). Microglia respond 

to injury to limit damage but have the potential to be both beneficial and detrimental to 

neurons. Reactive microglia and astrocytes are the most common inflammatory processes 

measured and reported in the brain in animal models of PD. Indeed, work in animal models 

of synucleinopathy has been essential in facilitating our understanding of the time course 

and series of immune-related events that can occur in PD (Table 1). They have also been 

instrumental in testing potential aSyn-directed immunotherapies that are now in clinical 

trials.

The Thy1-aSyn (line 61) mouse line overexpressed human wildtype aSyn under the Thy1 

promotor (Rockenstein et al., 2002). This model has been extensively studied and develops 

multiple pathologies and behavioral deficits reminiscent of what is found in PD (Chesselet 

et al., 2012). Thy1-aSyn mice also develop a robust inflammation phenotype throughout 

aging making it a useful model for studying potential immunotherapeuties (Watson et al., 

2012). As early as one month of age, Thy1-aSyn mice show increased microglial activation 

and increased TNF-α mRNA and protein in the striatum. At 5–6 months, TNF-α remains 

upregulated in the striatum but was also found to be increased in the SN and serum. Further, 

toll-like receptors (TLRs) 1, 4, and 8 were increased in the SN. By 14 months of age, TLR 

2 was increased in the SN, and MHCII was increased in the striatum. By 22 months of 

age, peripheral CD4 and CD8 positive T cells were increased in blood. Collectively, these 

changes occur in the presence of aSyn overexpression but without frank neurodegeneration 

(Watson et al., 2012). Transgenic mice expressing mutated forms of aSyn report activated 

microglia and astrocytes in the brain but in general their immune response has been less 

characterized compared to the Thy1-aSyn mouse line (Giasson et al., 2002; Gomez-Isla 

et al., 2003). There is one reported transgenic rat line, the bacterial artificial chromosome 

(BAC) human aSyn rat, that develops a significant immune phenotype (Krashia et al., 2019; 
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Nuber et al., 2013). These rats develop increased CSF interferon gamma (IFN-γ) at 2 

months of age and increased microglial density and activation in the SN and striatum at 

4 months of age. They also show increased MHCII and CD68 positive monocytes in the 

periphery (Krashia et al., 2019). The transgenic aSyn models have been important in the 

identification and validation of different inflammation-related mechanisms in PD.

Targeted overexpression of human wildtype or mutated aSyn using recombinant adeno-

associated viral (AAV) or lentiviral vectors in animals has proven to be a good model for 

studying the aSyn-related immune response. In this model, aSyn is typically overexpressed 

in the SN resulting in a protracted loss of nigrostriatal dopamine neurons (Kirik et al., 2002, 

2003; Lo Bianco et al., 2002; Eslamboli et al., 2007; St. Martin et al., 2007; Theodore et 

al., 2008; Subbarayan et al., 2020). Targeted aSyn overexpression in mouse and rat models 

show increased CD68 positive microglia, increased MHCII expression, infiltration of B 

and T lymphocytes, increased proinflammatory cytokines, and increased immunoglobulin. 

Similarly, targeted overexpression of aSyn using AAV in non-human primates also resulted 

in upregulated microglial activation with increased MHCII expression in SN one year after 

injection.

In the newer aSyn preformed fibril (PFF) model of PD, synthetic aSyn fibrils are injected 

into the striatum or SN where they are taken up by neurons and act as seeds to induce 

endogenous aSyn to aggregate into pathological phosphorylated aSyn inclusions and 

ultimately leads to cell death (Luk et al., 2012). In these models, increased activated 

microglia, increased MHCII expression, infiltration of B and T cells, and activation of 

the microglial NLR family pyrin domain containing 3 (NLRP3) inflammasome have been 

reported (Harms et al., 2017; Duffy et al., 2018; Gordon et al., 2018; Earls et al., 2019). 

When AAV-aSyn and PFFs are combined in the rat similar increases in activated microglia 

and infiltration of CD4 and CD8 positive T cells have been shown. Taken together, the 

available aSyn animal models of PD display a robust inflammatory response and have 

been important in contributing to understanding the role of inflammation in PD and for the 

development of novel aSyn-targeted immunotherapies.

While vaccination approaches for treating PD have been investigated and refined over 

the last 15 years, the aSyn animal models have been instrumental in the identification of 

novel inflammation-related targets. For example, specific inhibitors targeting the NLRP3 

inflammasome include Baicalein, flufenamic and mefenamic acids, and Hypoestoxide (HE) 

which all show anti-inflammatory effects in PD models (Rui et al., 2020; Daniels et 

al., 2016; Valera et al., 2015). Additionally, drugs including lenalidomide and AZD1480 

regulate pro-inflammatory cytokines such as T cells have been shown to inflammation 

pathology in aSyn PD models (Valera et al., 2015; Qin et al., 2016).

3. aSyn-directed immunotherapies: preclinical studies

Immunotherapies can be classified as either passive or active immunization. Active 

immunizations are classic vaccination strategies that activate a prolonged humoral 

response through the administration of antigens to trigger the generation of specific 

antibodies (Baxter, 2007). Whereas passive immunization refers to the direct administration 
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of laboratory engineered antibodies. This type of immunization does not generate a 

humoral response and these antibodies can be humanized to prevent unwanted reactions. 

Additionally, this type of immunization can be closely monitored and even ceased if adverse 

side effects develop. Passive immunization, however, can require repeated administration of 

antibodies potentially long-term (Marcotte et al., 2015; Shahaduzzaman et al., 2015).

Multiple vaccination strategies have been tested in aSyn models of PD (Table 2). In one of 

the first approaches, Masliah et al. (2005) used active vaccination and immunized transgenic 

aSyn mice (Line D) for 8 months with recombinant human aSyn in E. coli from sequence 

verified human aSyn cDNA. Immunization in aSyn mice produced high affinity antibodies 

to aSyn and was associated with decreased accumulation of aSyn in neurons and reduced 

neurodegeneration. In A30P transgenic mutant mice the antibody mAb47 that is selective 

for aSyn protofibrils was tested in older (14 months) symptomatic mice. Administration of 

this antibody resulted in lower levels of soluble and membrane-associated aSyn protofibrils 

within the spinal cord and reduced motor symptoms (Lindström et al., 2014). A dendritic 

cell based vaccination approach in A53T transgenic mice was also shown to generate 

specific anti-aSyn antibodies and reduced IL-1α and improved motor function (Ugen et 

al., 2015). Similarly, the human-derived antibody BIIB054, which is highly selective for 

aggregated aSyn and has an 800-fold higher affinity for fibrillar aSyn over monomeric 

aSyn, was studied in multiple transgenic aSyn mouse lines (Weihofen et al., 2019). In this 

study wildtype, transgenic A53T mice under the prion promoter, and BAC A53T mice were 

injected with aSyn PFFs targeting the striatum. Treatment with BIIB054 was administered 

prior to and following PFF injections, resulting in reduced spreading of aSyn pathology, 

reduced loss of dopamine transporter in striatum, and improved motor function (Weihofen et 

al., 2019).

Immunotherapy targeting the C-terminal region of aSyn has also been shown to be effective 

in transgenic aSyn mice (Games et al., 2014). C-terminus truncation of aSyn is associated 

with increased aSyn oligomerization, propagation, and toxicity (Li et al., 2005; Michell et 

al., 2007). Using the Thy1-aSyn (line 61) model, mice were immunized with antibodies 

directed against the C-terminus of aSyn. Antibodies 1H7 and 5C1 were most effective 

at decreasing higher molecular weight aggregates, decreasing C-terminus aSyn levels and 

improving DA pathology and behavior (Games et al., 2014).

Using the AAV aSyn rat model, Sanchez-Guajardo et al. (2013) vaccinated rats using 

human recombinant aSyn prior to injection of AAV-aSyn into the SN. They showed aSyn 

vaccination decreased aSyn accumulation in striatum and this correlated with microglial 

activation, MHCII expression, and CD4 positive T cell infiltration. Importantly, this study 

also showed early and persistent recruitment of Foxp3 positive cells in the SN which 

suggests the induction of the Treg system that prevents detrimental autoimmunity and 

promotes tolerance (Schwab et al., 2020; Tan et al., 2020). However, PD is not the only 

synucleinopathy model used for developing and testing aSyn-directed immunotherapies. 

Using an active immunization approach, the AFFITOPE® vaccine AFF 1 was administered 

in a transgenic mouse model of MSA (Mandler et al., 2015). This vaccine induced aSyn 

specific antibodies in myelin basic protein (MBP) aSyn transgenic mice (Mandler et al., 

2015). Immunization with AFF 1 decreased the accumulation of aSyn aggregates within 
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oligodendrocytes, reduced activated microglia, and slowed the spread of aSyn indicating 

encouraging translational potential to the clinical population (Mandler et al., 2015).

4. aSyn-directed immunotherapies: clinical trials

Immunotherapy trials for synucleinopathies are currently underway, with several completing 

phase 1 clinical trials that test for safety and tolerability (Table 3). The vaccines PD01A 

and PD03A developed by AFFiRiS were designed to target the C-terminal region of 

aSyn. The phase 1 randomized trial for PD01A and PD03A was conducted in patients 

with MSA (Meissner et al., 2020). Both treatments triggered an antibody response with 

PD01A resulting in an increased response compared to PD03A. These vaccinations 

show some promise in immunotherapy treatment for MSA, although they warrant further 

investigation. The safety and tolerability of PD01A and PD03A were also evaluated in 

PD. In a randomized, single-blinded phase 1 trial, PD01A was administered to PD patients 

and was deemed safe and well tolerated with no serious adverse events reported. This 

active immunization resulted in a substantial immune response against the aSyn epitope. 

(Volc et al., 2020). PD03A immunotherapy was also assessed in a randomized, placebo-

controlled, phase 1 clinical trial in PD patients (Poewe et al., 2021). This trial evaluated 

immunological activity following immunization as a secondary objective. Immunization 

resulted in a sustained IgG antibody response against the peptide PD03 and was determined 

to have a good safety and tolerability profile in PD (Poewe et al., 2021). Another active 

immunotherapy, UB-312, targeting aSyn oligomers is currently ongoing in a phase 1 clinical 

trial (Table 3) (Nimmo et al., 2020). This study will determine the safety, tolerability, and 

immunogenicity of UB-31 in healthy participants and PD patients.

Passive immunization approaches targeting amyloid-β in Alzheimer’ s disease have 

been used previously and demonstrate the ability of the immunotherapy LY3002813 

(Donanemab) to reduce amyloid plaque deposition (Lowe et al., 2021). A recent study 

on a phase 2 clinical trial testing Donanemab in early symptomatic Alzheimer’s disease 

replicated the reduction in amyloid plaques seen in phase 1 studies. However, Donanemab 

showed only a modest effect on cognitive decline, no effect on tau load, and one in 

four participants developed amyloid-related imaging abnormalities with edema or effusions 

(Mintun et al., 2021). These results from immunotherapy studies in Alzheimer’s suggest the 

mere reduction in amyloid burden is likely insufficient to alter the course of the disease. 

Clinical trials of immunotherapies in synucleinopathies are currently not as advanced as 

those in Alzheimer’s but it will be important to learn from those studies and proceed 

cautiously in future trials.

Passive immunization approaches in PD include the randomized phase 1 clinical trial of 

the anti-aSyn monoclonal antibody PRX002/RG7935 (PRX002) in patients and showed 

antibody binding in peripheral aSyn, increased PRX002 in CSF, and demonstrated good 

safety and tolerability (Jankovic et al., 2018). These findings supported a phase 2 study 

(PASADENA) of Prasinezumab (RO7046015/PRX002) in patients with early PD (Jankovic 

et al., 2018; Pagano et al., 2021). The primary conclusion of this study was that the 

PASADENA study population proved suitable to investigate the potential of Prasinezumab 

to slow PD progression (Pagano et al., 2021). The secondary endpoints, including a 

Fleming et al. Page 6

Neuropharmacology. Author manuscript; available in PMC 2023 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduction in the Part 3 (motor) MDS-UPDRS in the active arm, encouraged a phase 2b study 

(PADOVA) which is actively recruiting. Also in PD, the randomized phase 1 clinical trial 

of the monoclonal anti-aSyn antibody, BIIB054 (Cinpanemab), was conducted to evaluate 

this antibody’s safety, tolerability, and pharmacokinetic action in patients with PD (Brys et 

al., 2019). Although this treatment appeared to be safe and tolerable, phase 2 recruitment of 

BIIB054 was terminated due to not adequately meeting the primary or secondary outcome 

measures resulting in the development of BIIB054 to be discontinued and the study to be 

closed. This negative outcome compared to the more promising Prasinezumab could be due 

to the different binding sites of aSyn as Cinpanemab binds to the amino-terminus of aSyn, 

while Prasinezumab binds to aSyn’s C-terminus. Currently, another passive immunotherapy 

is ongoing in a phase 1 clinical trial investigating multiple ascending doses of MEDI1341 

(Astra Zeneca) in PD patients. This study is estimated to be complete by May 2022. 

Previously, a single ascending does study of MEDI1341 in healthy volunteers was recently 

completed in March 2021 (Schofield et al., 2019). Results from these studies will ascertain 

the safety and tolerability of single ascending doses in healthy volunteers as well as multiple 

ascending doses in patients with PD.

5. Conclusions and future directions

Targeting the immune response in PD and related synucleinopathies is an active and 

growing area of research. Our knowledge of how the immune system reacts and behaves 

in these diseases has increased dramatically over the last decade. Active and passive 

vaccination approaches are currently in clinical trials and new links between peripheral 

and central immune responses and aSyn support the development of novel aSyn-directed 

immunotherapies and immune-related biomarkers for PD. Studies showing an association 

between monocytic changes in blood and PD are certainly compelling (Nissen et al., 2019). 

Recent work also suggests the monocyte-specific biomarker soluble CD163 in CSF may 

be a useful biomarker for PD as it inversely correlates with cognitive scores (Nissen et al., 

2021). Interestingly, peripheral monocyte markers also correlate with immune and dopamine 

changes in the brain in REM behavior sleep disorder which is a common autonomic 

symptom in PD and a risk factor for synucleinopathies. Other well established non-motor 

symptoms in PD such as gastrointestinal dysfunction also implicate the peripheral immune 

system in PD and are actively being examined to determine novel therapeutic strategies for 

disease modification (Aho et al., 2021). These recent findings support an already strong 

rationale for targeting the immune system to help identify biomarkers of disease progression 

and disease-modifying therapies for PD.
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Abbreviation

AAV adeno-associated viral vector

aSyn alpha-synuclein
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CSF cerebrospinal fluid

DA dopaminergic

DLB dementia with Lewy bodies

IFN-γ interferon gamma

IL interleukin

MHC major histocompatibility complex

MSA multiple systems atrophy

NLRP3 NLR family pyrin domain containing 3

PD Parkinson’s disease

PFF preformed fibril

SN substantia nigra pars compacta

TGF transforming growth factor

TLR toll-like receptor

TNF-α tumor necrosis factor alpha
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Table 1

Inflammation Profiles in aSyn Models.

Model Age Inflammatory Profile References

Transgenic

    Thy1-aSyn 
(line 61)

1, 5–6, 14, 22 
months

↑Activated Microglia (Str, SN), ↑TNF-α (Str, SN, 
serum), ↑TLRs 1,2,4,8, ↑MHCII (Str), ↑CD4+, CD8+ 

T cells (blood)

Watson et al. (2012)

    A53T and 
A30P mice

↑Astrogliosis and microgliosis (ctx, hpc, spinal cord) Giasson et al. (2002); Gomez-Isla 
et al. (2003)

    BAC aSyn Rat 2, 4 months of age ↑Activated microglia (SN, Str), ↑IFN-γ (CSF), ↑ 
Monocytes (periphery), ↑MHCII (periphery), ↑CD68 
(periphery)

Krashia et al. (2019); Nuber et al. 
(2013)

AAV-aSyn

    Mouse 4, 12 weeks p.i. ↑CD68+ Microglia, infiltration of B and T 
lymphocytes, ↑proinflammatory cytokine markers 
(TNF, ICAM-1, IL-6, IL-1α), ↑immunoglobulin

Theodore et al. (2008); Harms et 
al. (2013)

    Rat 4, 8, 15 weeks p.i. ↑MHCII and CD68+ microglia, ↑CD4 and CD8+ T 
cells; ↑proinflammatory cytokine markers (TNF-α, 
IL-1β, IFN-γ)

Chung et al. (2009); Sanchez-
Guajardo et al. (2010)

    Non-human 
Primate

12 months p.i. ↑Activated microglia, ↑MHCII, B cell infiltration Barkholt et al. (2012)

PFF aSyn

    Mouse 5 months ↑NLRP3 inflammasome, ↑Activated Microglia and 
Astrocytes, Infiltration of B and CD4 and CD8+ T cells

Gordon et al. (2018); Earls et al. 
(2019)

    Rat 2 month p.i. ↑Activated Microglia, ↑MHCII Harms et al. (2017); Duffy et al. 
(2018)

AAV + PFF

    Rat 10 days p.i. ↑Activated Microglia, Infiltration of CD4 and CD8+ T 
cells

Thakur et al. (2017)

Neuropharmacology. Author manuscript; available in PMC 2023 June 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fleming et al. Page 16

Ta
b

le
 2

Pr
e-

cl
in

ic
al

 im
m

un
ot

he
ra

py
 s

tu
di

es
.

M
od

el
C

om
po

un
d

R
ou

te
 o

f
A

dm
in

is
tr

at
io

n
M

ec
ha

ni
sm

E
ff

ec
t 

on
 a

Sy
n

E
ff

ec
t 

on
In

fl
am

m
at

io
n

E
ff

ec
t 

on
 B

eh
av

io
r

R
ef

er
en

ce
s

M
B

P-
 a

Sy
n 

tr
an

sg
en

ic
 m

ic
e

A
FF

IT
O

PE
®

 

(A
FF

 1
)

SC
Ta

rg
et

s 
C

-t
er

m
in

us
 

of
 a

Sy
n

R
ed

uc
ed

 a
Sy

n 
ag

gr
eg

at
es

A
FF

1 
ac

tiv
at

ed
 m

ic
ro

gl
ia

; 
↑ 

an
ti-

in
fl

am
m

at
or

y 
IL

-1
R

a,
 I

L
-3

, a
nd

 I
FN

γ

M
ot

or
 im

pr
ov

em
en

ts
: ↓

 e
rr

or
s 

on
 

ro
un

d 
be

am
 te

st
M

an
dl

er
 e

t a
l. 

(2
01

5)

T
ra

ns
ge

ni
c 

m
ic

e 
m

T
hy

1-
 a

Sy
n,

 li
ne

 6
1

PR
X

00
2

IP
Ta

rg
et

s 
C

-t
er

m
in

us
 

of
 a

Sy
n

R
ed

uc
ed

 
in

tr
ac

el
lu

la
r 

aS
yn

↓ 
as

tr
og

lia
 a

nd
 m

ic
ro

gl
ia

; 
pr

es
er

ve
d 

T
H

 in
 s

tr
ia

tu
m

M
ot

or
, l

ea
rn

in
g,

 a
nd

 m
em

or
y 

im
pr

ov
em

en
ts

: ↓
 e

rr
or

s 
on

 r
ou

nd
 

be
am

; ↓
 p

at
h 

an
d 

la
te

nc
y 

to
 p

la
tf

or
m

 
in

 w
at

er
 m

az
e

G
am

es
 e

t a
l. 

(2
01

4)

T
ra

ns
ge

ni
c 

aS
yn

 
A

53
T

 (
M

83
) 

m
ic

e 
&

 
T

ra
ns

ge
ni

c 
B

A
C

 a
Sy

n 
A

53
T

B
II

B
04

5
IP

Ta
rg

et
s 

N
-t

er
m

in
us

 
on

 a
Sy

n 
ag

gr
eg

at
es

R
ed

uc
ed

 a
Sy

n 
pa

th
ol

og
y

N
ot

 m
ea

su
re

d
M

ot
or

 im
pr

ov
em

en
ts

: ↑
 la

te
nc

y 
in

 
tim

e 
to

 f
al

l i
n 

w
ir

e 
ha

ng
 te

st
W

ei
ho

fe
n 

et
 a

l. 
(2

01
9)

Neuropharmacology. Author manuscript; available in PMC 2023 June 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fleming et al. Page 17

Ta
b

le
 3

aS
yn

-d
ir

ec
te

d 
Im

m
un

ot
he

ra
py

 C
lin

ic
al

 T
ri

al
s.

A
ct

iv
e/

P
as

si
ve

Im
m

un
ot

he
ra

py
C

om
po

un
d

R
ou

te
 o

f
A

dm
in

is
tr

at
io

n
M

ec
ha

ni
sm

F
in

di
ng

s
E

ff
ec

t 
on

 α
-s

yn
R

ef
er

en
ce

s

A
ct

iv
e

PD
01

A
/A

FF
iR

iS
Su

bc
ut

an
eo

us
 in

je
ct

io
n

M
im

ic
s 
α

-s
yn

 C
-t

er
m

in
al

; a
ct

s 
as

 
B

 c
el

l e
pi

to
pe

C
om

pl
et

ed
; s

af
e 

an
d 

to
le

ra
bl

e
↓ 

C
SF

 α
 -

sy
n 

ol
ig

om
er

s;
 I

gG
 

an
tib

od
y 

re
sp

on
se

 to
 α

-s
yn

 
ep

ito
pe

V
ol

c 
et

 a
l. 

(2
02

0)

A
ct

iv
e

PD
03

A
/A

FF
iR

iS
Su

bc
ut

an
eo

us
 in

je
ct

io
n

M
im

ic
s 
α

-s
yn

 C
-t

er
m

in
al

; a
ct

s 
as

 
B

 c
el

l e
pi

to
pe

C
om

pl
et

ed
; s

af
e 

an
d 

to
le

ra
bl

e
Su

st
ai

ne
d 

Ig
G

 a
nt

ib
od

y 
re

sp
on

se
 to

 α
-s

yn
 e

pi
to

pe
Po

ew
e 

et
 a

l. 
(2

02
1)

Pa
ss

iv
e

PR
X

00
2/

R
G

79
35

 
(P

ra
si

ne
zu

m
ab

)/
Pr

ot
he

na
 B

io
sc

ie
nc

es
 

L
im

ite
d

In
tr

av
en

ou
s 

in
fu

si
on

Ta
rg

et
s 
α

-s
yn

 C
-t

er
m

in
al

 to
 h

al
t 

α
-s

yn
 n

eu
ro

na
l t

ra
ns

m
is

si
on

C
om

pl
et

ed
; s

af
e 

an
d 

w
el

l 
to

le
ra

te
d;

 P
ha

se
 I

I 
is

 o
ng

oi
ng

R
ed

uc
ed

 f
re

e 
se

ru
m

 α
-s

yn
Ja

nk
ov

ic
 e

t a
l. 

(2
01

8)

Pa
ss

iv
e

B
II

B
05

4 
(C

in
pa

ne
m

ab
)/

B
io

ge
n

In
tr

av
en

ou
s 

in
fu

si
on

Ta
rg

et
s 

ag
gr

eg
at

ed
 α

-s
yn

C
om

pl
et

ed
; d

id
 n

ot
 m

ee
t 

pr
im

ar
y 

or
 s

ec
on

da
ry

 
ou

tc
om

es
; P

ha
se

 I
I 

te
rm

in
at

ed

B
II

B
05

4/
α

-s
yn

 c
om

pl
ex

 
fo

rm
at

io
n

B
ry

s 
et

 a
l. 

(2
01

9)

Pa
ss

iv
e

M
E

D
I1

34
1/

A
st

ra
 

Z
en

ec
a

In
tr

av
en

ou
s 

in
fu

si
on

Ta
rg

et
s 

m
on

om
er

ic
 a

nd
 

ag
gr

eg
at

ed
 a

Sy
n

Ph
as

e 
I 

is
 o

ng
oi

ng
C

ur
re

nt
ly

 u
na

va
ila

bl
e

Sc
ho

fi
el

d 
et

 a
l. 

(2
01

9)

A
ct

iv
e

U
B

-3
12

In
tr

am
us

cu
la

r 
in

je
ct

io
n

Ta
rg

et
s 

ag
gr

eg
at

ed
 a

Sy
n

Ph
as

e 
I 

is
 o

ng
oi

ng
C

ur
re

nt
ly

 u
na

va
ila

bl
e

N
im

m
o 

et
 a

l. 
(2

02
0)

Neuropharmacology. Author manuscript; available in PMC 2023 June 09.


	Abstract
	Introduction
	Inflammation in Parkinson’s disease
	Clinical evidence
	Inflammation and aSyn animal models

	aSyn-directed immunotherapies: preclinical studies
	aSyn-directed immunotherapies: clinical trials
	Conclusions and future directions
	References
	Table 1
	Table 2
	Table 3

