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BSTRACT 

umer ous cellular pr ocesses rely on the binding of 
roteins with high affinity to specific sets of RNAs. 
et most RNA-binding domains display low speci- 
city and affinity in comparison to DNA-binding do- 
ains. The best binding motif is typically only en- 

iched by less than a factor 10 in high-throughput 
NA SELEX or RNA bind-n-seq measurements. Here, 
e pr o vide insight into how cooperative binding of 
ultiple domains in RNA-binding proteins (RBPs) 

an boost their effective affinity and specificity or- 
ers of magnitude higher than their individual do- 
ains. We present a thermodynamic model to cal- 

ulate the effective binding affinity (avidity) for ide- 
lized, sequence-specific RBPs with any number of 
BDs given the affinities of their isolated domains. 
or seven proteins in which affinities for individ- 
al domains have been measured, the model pre- 
ictions are in good agreement with measurements. 
he model also explains how a tw o-f old difference 

n binding site density on RNA can increase protein 

ccupancy 10-fold. It is therefore rationalized that lo- 
al clusters of binding motifs are the physiological 
inding targets of multi-domain RBPs. 

NTRODUCTION 

NA-binding proteins (RBPs) regulate various steps of 
RN A bio genesis including RN A splicing, localization, 

r anslation, and degr adation ( 1 ). To ensure that these pro- 
eins bind the correct set of RNA molecules and at the right 
egions, the interactions have to be highly specific. Yet many 

NA-binding domains (RBDs) bind to short and degen- 
rate RNA motifs , often three , rar ely mor e than fiv e nu-
leotides in length ( 2 , 3 ), and the dissociation constants ( K d )
f their RNA-binding domains are often in the micromo- 

ar range, sometimes hundreds of micromolar ( 4–11 ). In 

ontrast, single DNA-binding domains typically recognize 
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omewhat longer motifs ( 12–14 ) and the dissociation con- 
tants of most transcription factors are in the nanomolar 
ange. 

Despite the low affinity of the individual RNA-binding 

omains, cooperativity between multiple domains in an 

BP can result in high specificities and avidities (defined as 
n ‘effecti v e’ association constant, see Materials and Meth- 
ds) for the entire RBP much higher than the K a s of in- 
ividual domains ( 15 , 16 ). When RBPs form oligomers or 
ol ymers, all RN A-binding domains of the complex can 

ind RNA cooperati v ely. Roughly 80% of eukaryotic RBPs 
ither have at least two binding domains ( 17 ) or assem- 
le into homooligomeric complexes with multiple RNA- 
inding domains ( 18 ) (Figure 1 ). 
The increase in avidity via cooperati v e binding can be ex- 

lained by the high local concentration of a protein bind- 
ng domain at the second RNA site when the first binding 

omain is bound to the first RN A site, w hich adds to the
ackground concentration ( 19 , 20 ). We will show here that, 
hen this local effecti v e concentration c eff is x -fold higher 

han the K d of the still unbound binding site (in isolation), 
he effecti v e K d f or this interaction can be x -f old lower than
or the isolated RNA-binding domain. 

Thermodynamic models of cooperati v e binding for two 

inding units have been developed for binding of bivalent 
ntibodies to antigens ( 19 , 21 ), of ligand binding by biva- 
ent and multivalent receptors ( 22 , 23 ), and of DNA-binding 

roteins with two DNA-binding domains ( 24 ). In all of 
hese cases, the combination of multiple binding domains 
nd target sites, and their connection through fle xib le link- 
rs increases avidity in an analogous way to multi-domain 

NA-binding. 
To better understand cooperati v e RNA-protein interac- 

ions and the biological implications that arise from co- 
perativity, we need to model quantitati v ely the avidity 

f proteins or oligomeric complexes with more than two 

NA-binding domains. So far, existing models have only 

escribed cooperati v e binding between two domains, with 

e xib le linkers between the domains of one binding partner 
 20 ). 
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Figure 1. Most RBPs have more than one domain per chain or per ho- 
mooligomeric complex. Numbers of RNA-binding domains per protein 
for proteins in the RNA-binding protein database (RBPDB) ( 17 ), which 
contains pr oteins fr om human, mouse, Dr osophila and Caenorhabditis 
elegans. Inset shows in black the oligomeric state as predicted by the 
PDBePISA tool ( 18 ) for the 279 PDB structures of 136 of the RNA- 
binding proteins with only one domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, our goal is to de v elop a simplified model that can
provide biologists and biochemists insight into the impor-
tant effects of cooperati v e binding of multi-domain RBPs.
Our goal is not to de v elop a model that can make accurate
predictions of avidities as this would require, if at all possi-
ble, detailed atomic-level molecular dymamic simulations. 

We present an equilibrium thermodynamic model for
m ulti-domain RN A-binding with any number of RNA-
binding domains. We treat the RNA linkers between bind-
ing motifs as w orm-lik e chains and, in contrast to earlier
work ( 19 , 20 ), we take the entropy of the chain into account.
Howe v er, we hav e to simplify by ignoring interactions of
the RNA linker with the proteins. The model can describe
RNA-binding domains connected by fle xib le peptide link-
ers ( 25 ), which we also treat as w orm-lik e chains. 

Using this model, we can show that the avidity increases
exponentially with each added pair of binding domain and
target site. In this way, high affinities and specificities can be
achie v ed with low-affinity and low-specificity RNA-binding
domains. We validate the model on se v en RNA-binding
proteins for which the affinities of the entire protein and of
indi vidual domains hav e been measured. We find that the
avidities estimated with the model are in good agreement
with the measured values. Lastly and most importantly,
we demonstrate that, by cooperati v e binding with multiple
RNA-binding domains with the same binding pr efer ences,
RNAs can be sensiti v ely distinguished based on their bind-
ing motif density. This result suggests that sequence-specific
RBPs achie v e high specificity and avidity by binding to clus-
ters of binding sites on their target RNAs. 

MATERIALS AND METHODS 

Simple cooperative binding model 

The model describes the cooperati v e, multi valent binding of
RNA-binding proteins possessing n RNA-binding domains
to an RNA with n binding sites (Figure 2 A). To be able to
anal yticall y calculate the avidity for the protein and its RNA
substrate, we need to make three simplifying assumptions.
First, we assume that each RNA-binding domain can only
bind to a single, cognate binding site on the RNA, so do-
main 1 to RNA site 1, domain 2 to RNA site 2, and so on.
Second, we assume that an RNA is at most bound by a sin-
gle protein. This is a good approximation as long as the lo-
cal concentration of domains of the already bound protein
at the RNA sites is much larger than the background pro-
tein concentra tion. W hen the linkers between binding sites
on the RNA are short enough, typically up to about 20 nu-
cleotides, the first-bound protein will outcompete all other
pr oteins fr om binding to its RNA. Third, we assume that
the RNA linker between motifs does not interact with the
proteins nor other parts of the RNA. 

We denote binding configurations in this model by a bi-
nary string that indicates which sites are bound. For in-
stance, 101 r epr esents the configuration in which the first
and third sites on the RNA are bound by the first and third
domains of one protein. 

Inter- and intramolecular reactions of first and second order 

We have to consider two types of reactions. First, when the
RNA and protein are not linked, all possible reactions are
second order intermolecular reactions between one protein
domain and its cognate RNA binding site. We call the as-
sociation constant for this K a, i (units of molar), where i is
the index of the interacting domain and RNA site. These
reactions only depend on the concentrations of free RNA,
[0...0], and free protein, c (Figure 2 B). 

In the second case, where the protein is already bound
to the RNA with at least one domain, new domains can
bind in a first order intramolecular reaction and we can de-
scribe the unitless association constant for one binding step
based on the law of mass action. For example, the reaction
100 � 110 (Figure 2 A) depends on the local effecti v e con-
centration c 12 of domain 2 (of the already bound protein) at
RNA site 2. In a first, rough approximation, we can assume
this concentration to be constant inside the volume acces-
sible to RNA site 2 ( 19 , 20 ). The concentration is 1 divided
by the accessible volume, a sphere with radius equal to the
length l 12 of the RNA between sites 1 and 2 (Figure 3 A):
c 12 ≈

( 4 
3 πl 3 12 

)−1 
. (See below for a refinement of this esti-

mate.) This is the same as c 21 , the concentration of protein
site 1 at RNA site 1 when a protein site 2 is bound to RNA
site 2. 

The law of mass action for the reaction 100 � 110 reads

K a, 2 = 

[110] 
[100] c 12 

and by rearranging we get for the association constant of
the reaction 100 � 110 , 

K a , 100 �110 = 

[110] 
[100] 

= K a, 2 c 12 . (1)

This means that all possible first order reaction steps have
an apparent association constant (e.g. K a , 100 �110 ) equal to
the individual K a, i for the domain-to-RNA-site interaction
multiplied by the local concentration c ij of the domain at its
cognate site (Figure 2 A). 
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A

C

B

D

Figure 2. Thermodynamic model for cooperati v e RNA-protein interactions. ( A ) Illustration of an RNA with an RNA-binding protein binding to it. All 
binding sites on the RNA are only bound by one domain of the RBD. Each of these interactions has its individual K a, i . ( B–D ) Reaction networks for 
one, two, and three binding sites on the RNA. Each system has 2 n possible states. Every possible reaction step has an association constant equal to the 
individual K a, i for the domain-to-RNA-site interaction multiplied by the concentration of the domain at its cognate site. 
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hermodynamic definition of the avidity K av 

e w ould lik e to calculate for each concentration c of the
NA-binding proteins what fraction of RNA molecules is 
ound by a protein. For a single binding domain and RNA 

inding site n = 1, we can simply write the association con- 
tant of binding as K a , 1 = 

[1] 
c [0] , where [0] is the concentra- 

ion of unbound RNA and [1] is the concentration of bound 

NA (Figure 2 B). When the RNA contains two binding 

ites and the protein contains two cognate ones ( n = 2), we 
o not have a single bound state anymore but rather three: 
0 (first site on RNA bound), 01 (second site bound), and 

1 (both sites bound by protein) (Figure 2 C). An associ- 
tion constant can only describe the equilibrium between 

wo states. We ther efor e need a generaliza tion of associa tion 

onstants to multistate systems. Following Kitov et al. ( 23 ), 
e can define the avidity –– sometimes called ‘effecti v e’, ‘ap- 
arent’, or ‘functional’ affinity or association constant –– as 
he ratio of the sum of concentrations of all bound states 
ivided by the concentrations of the two unbound species 
 and B : 

K av = 

[ all bound states AB] 
[ A ] [ B] 

. (2) 

or instance for the case of n = 2 RBDs per protein and two
NA binding sites per RNA, this gi v es us 

K av = 

[10] + [01] + [11] 
c [00] = 

[10] 
c [00] + 

[01] 
c [00] + 

[11] 
c [00] . (3) 
ith the exception of Kitov et al. ( 23 ), the term avidity has
o far mostly been used qualitati v ely to describe coopera- 
ivity in multivalent binding ( 16 , 26 ). 

By substituting all concentration terms in equation ( 3 ), 
e can express the K av with n = 2, in terms of the associ-
tions constants of the individual domain-to-RNA-site in- 
eractions K a, i 

K av = K a, 1 + K a, 2 + K a, 1 c 12 K a, 2 . 

he derivation for this has been shown elsewhere be- 
ore. In the Supplementary Methods (Section 4) we de- 
i v e the K av for n = 2 for the alternati v e case, where the
wo domains have the same specificities such that each of 
hem can bind to any of the two binding motifs on the 
NA. 
Mainly, howe v er, we generalize the derivation to any 

umber n . Detailed ma thema tical steps are shown in the 
upplementary Methods (Section 1), while here, we focus 
n explaining the intuition behind the formulas. First, we 
eed to write equation ( 2 ) for the reaction system with 2 

n 

tates (shown in Figure 2 B-D for one, two and three sites). 
y the same logic that leads to equation ( 1 ), we can substi-

ute all concentration terms in equation ( 2 ). In the limiting 

ase where the fully bound configuration dominates the par- 
ially bound sta te, tha t is, if K a, i − 1 c i − 1, i � 1 and c i − 1, i K a, i 

1 for all i = 2, 3, . . . , n , we find that (Supplemental Meth-
ds, section 1) 

K av ≈ K a, 1 c 12 K a, 2 c 23 . . . K a, n −1 c n −1 ,n K a, n . (4) 
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A B

C

Figure 3. Effecti v e concentration c 12 of domain 2 at RNA site 2, when at 
least one RNA site is already bound. ( A ) In the simplest approximation, the 
concentration is uniform inside the sphere of radius l 12 around the bound 
domain. l 12 is the RNA chain length between binding sites. ( B ) Mor e r eal- 
isticall y, w hen the RNA chain is treated as a ‘worm like chain’ the concen- 
tration c 12 has a Gaussian density (for large l 12 ). Its size depends on l 12 and 
the 3D distance d 12 between binding domains on the protein. ( C ) Compar- 
ison of the effecti v e concentration in the simple case described in (A), with 
the mor e r ealistic w orm-lik e chain in (B). The concentration decays much 
more slowly if modelled by a Gaussian. The distance between binding sites 
on the protein is d 12 = 3 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each added binding site a pproximatel y m ultiplies the avid-
ity by a factor c i − 1, i K a, i . Intuiti v ely, this is a consequence
of the reaction path from the unbound state [0. . . 0] to the
fully bound state [1. . . 1], for instance by flipping unbound
sites to bound sites in the order from leftmost to rightmost
site. The total K a of such an n -step reaction (where the to-
tal reaction is the sum of individual steps), is the product of
association constants of individual reaction steps. 

Effective concentrations using the worm-like chain model 

The effecti v e concentra tion c ij of site j on the RNA a t site j of
the protein when site i is already bound was approximated
above as the reciprocal of the accessible volume (4 π l 3 i j / 3) −1 ,
where l ij is the chain length between binding sites i and j ( 20 ).
This approximation neglects the entropy. The closer d ij is
to l ij , the fewer spatial conformations are available to the
linker. For a more accurate estimate, we use the w orm-lik e
chain model, a statistical mechanics description of semi-
fle xib le polymers ( 27 , 28 ). Gi v en a sufficient length l ij , the lo-
cal concentration c ij has a Gaussian shape centered around
site i (Figure 3 B) ( 29 ). Its variance depends on l ij and on
the 3D distance d ij between binding domains on the pro-
tein. The rigorous ma thema tical description of this case and
of the second case in which the protein has fle xib le link-
ers between domains that is allowed to move independently
is gi v en in the Supplementary Methods (Section 2 and 3,
Figure S1). 

When we consider the dependence of c ij on the linker
length l ij , it is instructi v e to observ e the difference between
both models (Figure 3 C). From a uniformly distributed
concentration, one would expect the concentration enhanc-
ing effects of an RNA or protein linker to vanish much
mor e quickly, compar ed to the w orm-lik e chain model.
Accor ding to this, cooperati v e binding can be observ ed
e v en for RNAs with relati v ely long linkers between binding
sites. 

Effect of different RNA motif densities 

Consider a long RNA with N binding sites and proteins
with n binding sites. We can estimate the avidity for proteins
to bind the RNA in this special case, by making additional
simplifying assumptions. First, we assume that all binding
domains bind to the same binding motifs, and we model
the binding sites on the RNA with equal distances between
them. Second, we assume that fully bound conformations
with domains bound to adjacent binding motifs dominate
the K av (Eq. ( 4 )). The number of binding conformations for
an RNA with N motifs is then approximately N − n + 1
higher than for an RNA with n motifs, because each of the
conformations with all domains bound can be placed at N
− n + 1 positions. Ther efor e, the avidity for the RNA with
N binding sites is a pproximatel y 

K av ( N, n ) ≈ K av · ( N − n + 1) . (5)

Simulation of cooperative binding with Gillespie algorithm 

We cross-checked our analytical calculations de-
scribed above with simulations using the Gillespie
algorithm ( 30 , 31 ), implemented in the Python library
Gillespy2 ( 32 ). We performed simulations of the model by
defining all binding configurations as molecular entities
in the simulation and determining the avidity based on
trajectories of the simulated system (See Supplementary
Methods, section 5 for more details on how the simulations
were set up). 

Determining the model parameters 

K d values of individual binding domains are taken from ex-
perimental measurements like electrophoretic mobility shift
assays (EMSA) or isothermal titration calorimetries (ITC).
Distances between binding sites on the protein are 3D Eu-
clidian distances calculated based on available PDB struc-
tures. The contour lengths of ssRNA linkers between bind-
ing sites and the length of fle xib le linkers between pro-
tein domains are estimated as the number of nucleotides
or amino acids multiplied with a length per base of 5.5 Å
(mean of 5 measurements) ( 33–37 ) or a length per amino
acid of 3.8 Å ( 38 ) respecti v ely. The persistence length l p of
ssRNA is estimated as 2.7 nm, the mean of fiv e pub lica-
tions ( 33–37 ), and the mean persistence length for disor-
dered proteins is 3.04 Å ( 38 ). 
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Figure 4. Measured avidities are in good agreement with model predic- 
tions. We found se v en RBPs composed of two or three RBDs (or RBD 

pairs) for which dissociation constants of the full-length protein had been 
measured together with those of individual RBDs ( 4–11 , 39 ). We used the 
simple thermodynamic model to estimate the avidities of the full-length 
RBPs from those of their individual domains and from linker lengths l 
and protein binding site distances d and found agreement within a factor 
of ∼5. No free fitting parameters were used (see Supplementary Methods, 
section 6 for details). Orange triangles indicate the theoretical case of in- 
dependent binding of the two or three domains (equivalent to an infinitely 
long RNA linker), calculated as the sum of K a values of individual do- 
mains. 
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ESULTS 

he model correctly estimates dissociation constants 

o validate the new model, we analyzed seven multi-domain 

BPs for which the K d values of individual domains and the 
hole protein have been measured experimentally. We esti- 
ated the avidity for the full-length proteins using the disso- 

iation constants of the individual domains and employing 

he analytical results outlined in the Supplementary Meth- 
ds, section 1 (Figure 4 ). We cross-checked the calculations 
ith simulations using the Gillespie algorithm. 
The proteins used are the zipcode binding protein 1 

ZBP1) ( 4 ), the heterogeneous nuclear ribonucleoprotein 

1 (hnRNP A1) ( 5 ), the two terminal domains of the 
olypyrimidine tract binding protein (PTB) ( 6 , 7 ), the first 

our domains of the insulin-like growth factor 2 mRNA- 
inding protein 3 (IMP3 or IGF2BP3) ( 8 ), the first two 

H2 domains of IMP1 ( 10 ), the U2 snRNP auxiliary fac- 
or (U2AF65) ( 11 ), and the K-homology splicing regulator 
rotein (KSRP) ( 9 , 39 ) (see Supplementary Methods, sec- 
ion 6 for parameters used in the calculations). With the ex- 
eption of IMP3 and KSRP, these proteins consist of two 

igidly linked domains. In contrast, IMP3 consists of three 
omain pairs with fle xib le linkers between the pairs. In our 
odel the first two of the three IMP3 domain pairs were 

 epr esented as two binding sites, connected by a fle xib le
inker. KSRP contains four KH-domains, with the middle 
wo connected as a rigid unit. Measurements were done for 
he wild-type protein and for variants, in which mutations in 

he binding domains remove the ability to bind for that do- 
ain (see Supplementary Methods, section 7 for further as- 

umptions we make, and predictions of the remaining mea- 
urements). 
The measur ements wer e done using fix ed target RNA se- 
uences. The affinity of full-length U2AF was measured for 
NAs with thr ee differ ent linker lengths between the bind- 

ng sites. This allows us to confirm the distance dependence 
n our model for the local concentration (Figure 3 C). All 
r edictions wer e at least within a factor ∼5 of the experi- 
ental value, demonstrating the applicability of the model 

o multi valent, cooperati v e binding of RBDs to their RNA 

ubstrates. 

vidity increases exponentially with number of binding sites 

e then asked how the avidities for RBPs depend on the 
umber n of their RBDs (Figure 5 A). We chose K d val- 
es for RBDs and linker lengths in the ranges of typical 
BPs. We observed an exponential increase in avidity with 

he number of binding sites by a factor K a, i c i − 1, i for each 

dded domain (eq. ( 4 )) (i.e. a shift in the concentration at 
alf occupancy by the inverse of this factor). The local con- 
entration of the RBDs, c ij , depends on the linker length 

 between consecuti v e binding sites and the distance d be- 
ween the consecuti v e RBDs, which determine the variance 
f the Gaussian concentration density (Figure 3 B, Supple- 
entary Methods, section 2). While the factor in real RBPs 
ill depend on individual K d s and distances between bind- 

ng sites, the analysis shows that the inverse avidity can 

rop by orders of magnitude per domain added. So, the 
ddition or removal of one domain –– or one RNA binding 

ite –– can make the difference between binding and essen- 
ially no binding. 

ontributions of individual domains to the avidity becomes 
egligible after a threshold in the individual K d 

o further investigate the effect of domain K d s to the total 
f finity, we calcula ted the avidities for artificial RBPs with 

 domains, kept the K d of the first domain constant and 

aried K d, 2 and K d, 3 (Figure 5 B). As expected, the inverse 
vidity increases when the K d of one individual domain is 
ncreased. According to equation ( 4 ), when K a, i c i − 1, i ≤ 1, 
r, equivalently, K d, i ≥ c i − 1, i , the contribution of domain i 
o the avidity quickly sa tura tes (vertical line in Figure 5 B), 
hich was also concluded from experiments in ( 40 ). Only 

omains with a dissociation constant below the effecti v e 
oncentration contribute significantly to the avidity. As Fig- 
re 3 C shows, this concentration can lie in the millimolar 
ange. 

rotein binding can depend sensitively on the density of bind- 
ng motifs on the RNA 

he combination of m ultiple RN A-binding domains is im- 
ortant for providing the specificity needed to bind to the 
orrect target RNAs ( 41 ). The density of binding sites on 

he RNA molecule is also an important determinant of 
inding affinity and specificity ( 42 , 43 ). To investigate this 
f fect, we calcula ted the avidity and the binding probability 

or relati v e occupancy) of RBPs as a function of the binding 

ite density on the RNA based on equation ( 5 ) (Figure 5 C
nd D). With increasing binding site density, the RNA 

inker length l between binding sites decreases, the standard 

art/lqad057_f4.eps
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A
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D

Figure 5. Dependence of the avidity (effecti v e association constant) of RBPs on the number of RBDs , their K d ’s , the effecti v e local concentrations c ij , 
and the binding site density on the RNA. ( A ) The inverse avidity K 

−1 
av decreases exponentially with the number of binding domains n , because each added 

binding site multiplies the avidity by ∼K a, i times the local concentration c i − 1, i of the free i ’th RNA binding site at the site of the i ’th free RBD (equation 4 ). 
The slope thus depends on the spacing of binding sites via c i − 1, i . All RBD K d ’s were set to 10 �M and distances d between rigidly linked binding domains 
to 2 nm. ( B ) Individual RBDs contribute proportionally to the total avidity as long as their K d, i is less than the local concentration, K d ,i = K 

−1 
a ,i < c i−1 ,i 

(here shown for i = 3). The K d for the first domain is K d, 1 = 10 �M, the K d s for the second and third domain are varied as indicated. K 

−1 
av was calculated for 

equal distances between rigidly linked binding domains of 2 nm and an RNA linker length of 20 nt. ( C ) The inverse avidity decreases with the binding site 
density on the RNA. For this plot, we a pproximatel y neglect non-sequential binding modes, which are much less populated than the sequential ones. K d s of 
individual domains were 50 �M and the total RNA length was 200 nt. The horizontal line indicates a concentration of 0.1 �M used for the calculations in 
(D). ( D ) Binding probability of RBPs as measured by [ RNA ] / ( K 

−1 
av + [ RNA ]) as a function of binding site density on the RNA at an RNA concentration 

of 0.1 �M (horizontal line in (C)). Curves show fits with sigmoidal Hill-functions, with Hill coefficients of h 1 = 0.99, h 2 = 2.35, h 3 = 4.01 and h 4 = 5.7 for 
one to four domains, respecti v ely. Note the strongly cooperati v e, switch-like behaviour for n = 4 RBDs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

deviation of the Gaussian density of the local concentration
c ij decreases, and the local concentration increases. Suppose
the increase is c ij to c ′ i j . The avidity increases with increasing
motif density by a factor c ′ i j /c i j for each of the n domains,
or ( c ′ i j /c i j ) n for the whole protein, as long as the approxima-
tion in equation ( 5 ) holds , that is , as long as K a, i c i − 1, i �
1. Ther efor e, the inverse avidity decreases a pproximatel y ex-
ponentially with increasing binding site density (Figure 5 C).
With growing number of domains, this results in lower
threshold densities of the binding curves and more and
more switch-like binding behaviour (Figure 5 D). To quan-
tify the cooperativity of this transition, we fitted a sigmoidal
Hill function 1 / (1 + ( D 0 / D ) h ) to the binding probability as a
function of the binding site density D on the RNA. The Hill
coefficient h , a common measure of cooperativity, grows
somewhat faster than the number of domains ( h 1 = 0.99,
h 2 = 2.35, h 3 = 4.01 and h 4 = 5.7 f or one to f our domains,
respecti v ely). 
 

DISCUSSION 

Thermodynamic model extends previous models of coopera-
tive binding 

Pr evious models tr ea ted coopera ti v e binding for two bind-
ing sites. Crothers and Metzger de v eloped a model to deter-
mine the avidity of the two binding sites of an antibody, esti-
mating c eff with the particle-in-a-sphere model (Figure 3 A)
and assuming that the RNA binding site is uniformly dis-
tributed inside a sphere with a radius of l around the first
already bound binding site ( 19 ). This model has been ex-
tended se v eral times, taking into account different proper-
ties like chain length of the fle xib le linker between bind-
ing sites / domains and also transferring it into the con-
text of RNA-binding ( 20–22 , 24 ). All of these studies, de-
ri v e avidities for two domains. The results for n = 2 match
our model, which describes binding for an arbitrary number
of binding sites. Previous models can only describe a flexi-
ble linker between the binding sites on one binding partner.

art/lqad057_f5.eps
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owe v er, many RNA-binding proteins have flexible peptide 
inkers between their domains. We have ther efor e extended 

he model to include the possibility of fle xib le linkers in both 

inding partners. 

implifying assumptions limit model accuracy 

e describe a simple, idealized model system. Still, the 
odel estimates of the avidity for the full-length proteins 

gree with the experimental measurements to within an or- 
er of magnitude (Figure 4 ). This supports the general va- 

idity of the model, but also highlights the limits in the use 
s a predicti v e tool, while it can ra ther of fer intuiti v e mech-
nistic insights. 

Various simplifying assumptions can potentially explain 

he deviations from measurements. Most notably, many 

inkers between RNA binding sites are very short. To es- 
imate the effecti v e local concentration c eff , we use the as- 
umption that the chain length is much larger than the per- 
istence length ( l p , measure of flexibility in the w orm-lik e 
hain model) of the RNA, l � l p . If the chain length is 
horter, the end-to-end distribution will not be an isotropic 
aussian anymore but will depend on the initial tangent 

rientation of the bound end ( 29 ). It has been shown that
nly for l 

2 l p 
> 5 . 6 the distribution has a single maximum 

ear the origin in direction of the initial orientation and 

pproaches a Gaussian for larger values ( 29 ). The chain 

engths in the examples given earlier correspond to rather 
tiff chains. Depending on the orientation of the next bind- 
ng site in relation to the first, the effecti v e concentration 

nd consequently the avidity can be over- or underesti- 
ated. To increase the accuracy of estimates for c eff we 
ould have to take into account other geometric proper- 

ies of the protein in addition to the distance between bind- 
ng sites. Howe v er, for short polymers, the analytical solu- 
ion to the w orm-lik e chain model becomes highly com- 
lex and the simplicity and intuition of the model would be 

ost. 
In addition to short RN A linkers, RN A secondary struc- 

ure and unspecific binding can decrease the accuracy of the 
r edictions. Furthermor e, the sequence of the RNA influ- 
nces its flexibility. Many measurements of the persistence 
ength of ssRNA have been done with repetiti v e sequences. 
hus, for short chains the RNA sequence might have a 

tronger effect on estimations of RN A flexibility, w hile for 
onger chains this effect will most likely average out. 

We describe two examples in which our simplifying as- 
umptions are violated and our model fails to accurately 

redict the K d of the full-length protein. For the two- 
omain protein TDP-34, which binds to UG-rich RNA, 
ur model underestimates the K d by more than an order of 
agnitude because it violates two assumptions. First, since 

inding is measured against a (UG) 6 -RNA, it does not con- 
ain two well defined binding sites, but instead a continuous 
nteraction surface. Second, K d s for the individual RRMS 

ere only measured for (UG)) 3 - and (UG) 6 -RNA and e v en
ary across studies ( 44 , 45 ), and it is unclear whether they
 epr esent the true effecti v e K d,1 and K d,2 in the complex.
 second example is the binding of PTB ( 7 ) to different
ABA RNA constructs ( 46 ). The RNAs ar e r elati v ely long
nd the lack of defined binding sites, the complex RNA sec- 
ndary structure, and the possibility for multimerization of 
TB and thus, the formation of complexes with stoichiom- 
try other than 1:1 render our model inapplicable. 

isorder in RNA binding domains 

e model two distinct situations with respect to the link- 
rs between RBDs. In the first case, protein domains are 
igidly linked and move together as a unit. In the second 

ase, they are connected by a fle xib le linker and move inde- 
endentl y, onl y restricted by the length of the linker. In re- 
lity, howe v er, it is possib le to observ e situations in between
hese two e xtreme cases. Fle xib le protein linkers might ei- 
her come in contact with the RNA, play a role in confor- 
ational changes of the two domains relati v e to each other, 

hange their flexibility upon binding, or undergo a disorder- 
o-order transition ( 25 , 40 ). We do not expect these addi- 
ional complexities to influence the general derivation of 
ur model. Rather, all these situations r equir e mor e com- 
lex calculations of the effecti v e concentration c eff , as the 
ssumption of either completely independent or joint move- 
ent is violated. 
Partial binding of the peptide linkers to the RNA af- 

er binding of one domain violates our model’s assump- 
ion of independent movement of the RNA and unbound 

rotein domain connected by the linker. A positi v e corre- 
ation could considerably increase the local concentration 

f the RNA binding motif at the second domain relati v e to 

ur model’s estimate. In addition, the binding can result in 

 much reduced flexibility of the linkers. If the persistence 
ength of RNA or peptide becomes to large, the distribution 

annot be assumed isotropic, resulting in an increase or de- 
rease of the effecti v e local concentration of the RNA motif 
t the second RBD (see discussion above). 

In addition to disordered linkers between domains from 

he same protein, intrinsically disorder ed r egions can also 

ead to the association of RBDs from different proteins. 
his creates the possibility for cooperati v e binding in a sim- 

lar way to what is described here. If two domains associate 
ia their IDRs before binding to an RNA and this com- 
lex is stable on the timescale of RNA binding, the two do- 
ains can be treated in the same way as a two-domain pro- 

ein, with a fle xib le linker between the domains. Increases 
n avidity are expected, whether RBDs are covalently linked 

r whether the effecti v e number of domains is increased by 

imerization or multimerization. 

ulti-domain RBPs can distinguish sensitively between 

NAs with different binding site densities 

nalyses of high-throughput measurements of RNA bind- 
ng affinities for 86 RNA-binding proteins by high- 
hroughput RNA SELEX ( 47 ), 78 by RNA Bind-n-Seq ( 2 ), 
nd 205 by RNAcompete ( 3 ) showed generally low enrich- 
ent factors of the most enriched motifs. Enriched motifs 
ere short and degenerate for a substantial fraction of pro- 

eins and often motifs consisted of short mono- or dinu- 
leotide repeats ( 48 ). Our thermodynamic model of coop- 
rati v e binding e xplains how such degenerate motifs bound 
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with relati v ely low binding affinities in the micro- to mil-
limolar range can yield highly selecti v e binding behavior
to dense clusters of binding motifs, in which density as
much as binding affinity of individual motifs determines the
binding affinity. This underscore the need for bioinformatic
methods that can learn ‘clustered motif’ binding models for
multi-domain RBPs from high-throughput experiments. 

Four RBDs result in a Hill-like coefficient of 5.7 for the
dependence of avidity on motif density. It is easy to imagine
how homodi-, and -multimerization of RBDs can increase
the effecti v e number of RBDs to much higher numbers, par-
ticularly in liquid phases enriching for certain RBPs (next
subsection). Such homo-oligomer assemblies can become
exquisitely specific and affine for target RNAs with a corre-
sponding number of target binding site. 

As an example, in a study of the function of Nrd1 / Nab3
heterodimers in recognizing and degrading antisense tran-
scripts in yeast it was found that a mere factor 1.5 higher
density of Nrd1 and Nab3 binding sites on antisense ver-
sus sense transcripts seems sufficient to selecti v ely degrade
antisense transcripts ( 43 ). It was later observed that, while
the Nrd1 / Nab3 dimer contains only two RNA-binding do-
mains, both proteins contain disordered regions prone to
form aggregates or e v en liquid droplet phases and that ag-
gregation of Nrd1 / Nab3 via these disordered regions leads
to their polymerization or aggregation in concert with bind-
ing to their target RNA ( 49 , 50 ). The high effecti v e number
of binding domains in the formed polymers could there-
fore explain how high Hill coefficients can be realized (Fig-
ure 5 D). Similarly, selecti v e inhibition of polyadenylation of
U1A mRNA over other mRNAs by U1A, depends on the
presence of two binding sites on the RNA with correct spac-
ing, to allow two interacting U1A molecules to bind ( 51 ). 

Figure 5 C demonstrates that four RNA-binding domains
achie v e an avidity of around (2 nM) −1 when each of the do-
mains has a very modest single-domain RNA-binding affin-
ity of (50 �M) −1 . This might be the reason why RBPs rarely
contain more than four RNA-binding domains: the result-
ing avidities would simply be below what is needed in the
cell. 

Some motifs on the RNA consist of mono- or dinu-
cleotide r epeats, cr eating the possibility for multiple bind-
ing registers in one RNA motif ( 15 , 16 ). This can be seen for
example in the HuR C-terminal RRM binding to AU-rich
RNA regions ( 52 ) and also in PTB, one of our examples,
which binds to polypyrimidine tracts ( 53 ). When the repeat
r egions ar e long enough, the protein domains can bind in
more than one arrangement. The effects on the affinity of
an individual domain by encompassing N binding registers
in one RNA motif can be estimated through a simple sta-
tistical consideration by dividing the K d by a factor of N
(equation ( 5 ) can be applied here). 

The concept of ‘fuzziness’ describes the more general sit-
uation when e v ery RNA binding site can at least to some
degree bind to e v ery protein domain ( 54 ). We calculate this
effect in our model for two binding sites (Supplementary
Methods, section 4). Including fuzzy binding in the calcula-
tions increases the number of possible bound configurations
and thus the complexity of the combinatorics. However, it
does not qualitati v ely change the results that we present

here.  
Multi-domain RNA-binding can promote phase separation 

Phase-separa ted biological droplets / condensa tes, which
function to concentrate and organize molecules inside the
cell, form via multi valent networ ks of interactions ( 55 ).
These multivalent interactions can arise from weak inter-
actions between intrinsically disordered regions of the pro-
teins and / or b y multiv alency through multiple connected
domains ( 25 , 56 ). Many stages of RNA metabolism also in-
volve phase separation ( 56–58 ), in which RNAs form con-
densates together with RNA-binding proteins ( 59 ). The
same cooperativity that enables the formation of phase sep-
ara ted condensa tes visible under a light microscope will also
enable the formation of condensates or aggregates of RNAs
and RNA-binding proteins on a nanoscale ( 60 ), containing
only tens or thousands of molecules, perhaps e v en contain-
ing a single RNA ( 61 , 62 ). Within these aggregates, as well as
within true condensates, the concentration of RNA-binding
proteins and RNA is much higher than in the cytosol, and
ther efor e e v en low-affinity binding sites on the RNA can get
sa tura ted. We suggest tha t this type of coopera tivity is often
amplified by the one we investigate here, involving multiple
domains within one protein complex ( 56 ). A better quanti-
tati v e understanding of it could help to gi v e insights into the
formation of RNA-protein aggregates and phase-separated
condensates. 

Cooperativ e binding pla ys a r ole in other biomolecular inter-
actions 

While we focused on RNA binding proteins in this work,
the general concept described here is applicable to many
other types of interactions. Most closely related might be
DN A binding proteins, w hich employ m ulti-domain bind-
ing in a similar way to RBPs ( 24 , 63 ). The first quantitati v e
treatment of cooperati v e multi valent binding was applied
to antibodies binding to antigens ( 19 ). Another application
of the presented model could be for binding of proteins
to intrinsically disorder ed r egions in proteins ( 54 , 64 ). The
same concept of e xploiting multi valent binding to maximize
avidity is used in fragment based drug discovery ( 65 , 66 )
and in the de v elopment of small molecule inhibitors for
RNAs ( 67 ). 

CONCLUSION 

The simple thermodynamic model for RNA binding of
multi-domain RBDs shows how cooperati v e binding of
their domains can lead to very high specificity and avid-
ity with RBDs that, alone, have low specificity and affinity.
The actual binding motifs of multi-domain RBDs should
be considered to be clusters of simple binding motifs, in
which the total avidity is determined not only by the affini-
ties of individual motifs but to a large extend by their num-
ber and density. A single additional site can change the avid-
ity by two orders of magnitude (Figure 5 C), and a twofold
change in motif density can change avidity by a factor 10
(Figure 5 D). 

DA T A A V AILABILITY 

The code for the simulations and all calculations is
availa ble at https://github.com/soedingla b/cooperati v e rbp

https://github.com/soedinglab/cooperative_rbp


NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 2 9 

(
s
u
6

S

S

A

A
a
S  

w

F

F
m
g
C

R

1

1

1

1

1

1

1

1

1

1

2

2

2

2
 

2

2

2

2

2

2

3

3

3

3

3

3

3

3

permanent DOI: 10.5281 / zenodo.7963695). The protein 

tructures used in the validation of the model are available 
nder the PDB accession codes 2n8l, 6dcl, 2adc, 6fq1, 6gqe, 
qey and 2jvz. 
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