Table 3.
Predictive in-line monitoring accuracy for five regression models.
Model | Q2 | Q | MSE | MAE | MAPE |
---|---|---|---|---|---|
Aggregates (HMW%) | |||||
KNN | 0.86 | 0.93 | 0.37 | 0.53 | 20% |
CNN | 0.81 | 0.90 | 0.75 | 0.76 | 27% |
SVR | 0.81 | 0.90 | 1.36 | 1.00 | 24% |
PCR | 0.09 | 0.31 | 3.39 | 1.47 | 31% |
PLS | 0.29 | 0.53 | 4.65 | 1.78 | 39% |
Fragments (LMW%) | |||||
KNN | 0.65 | 0.80 | 0.33 | 0.35 | 13% |
CNN | 0.68 | 0.82 | 0.53 | 0.58 | 34% |
SVR | 0.66 | 0.81 | 0.35 | 0.44 | 15% |
PCR | 0.12 | 0.34 | 0.78 | 0.75 | 24% |
PLS | 0.49 | 0.70 | 0.74 | 0.74 | 24% |
Following the results shown in Figure 2a, different metrics of model predictive performance are shown, including Q: the predictive correlation coefficient, MSE: mean squared error, MAE: mean absolute error, MAPE: mean absolute percent error.