Skip to main content
. 2023 Jun 8;15(1):2220149. doi: 10.1080/19420862.2023.2220149

Table 3.

Predictive in-line monitoring accuracy for five regression models.

Model Q2 Q MSE MAE MAPE
Aggregates (HMW%)
KNN 0.86 0.93 0.37 0.53 20%
CNN 0.81 0.90 0.75 0.76 27%
SVR 0.81 0.90 1.36 1.00 24%
PCR 0.09 0.31 3.39 1.47 31%
PLS 0.29 0.53 4.65 1.78 39%
Fragments (LMW%)
KNN 0.65 0.80 0.33 0.35 13%
CNN 0.68 0.82 0.53 0.58 34%
SVR 0.66 0.81 0.35 0.44 15%
PCR 0.12 0.34 0.78 0.75 24%
PLS 0.49 0.70 0.74 0.74 24%

Following the results shown in Figure 2a, different metrics of model predictive performance are shown, including Q: the predictive correlation coefficient, MSE: mean squared error, MAE: mean absolute error, MAPE: mean absolute percent error.