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Simple Summary: Although there is strong evidence linking oral microbiota to several types of
cancer, the causal connections between them remain controversial. This study aims to identify the
common oral bacteria associated with various types of cancer and detect potential mechanisms
underlying the oral microbiota that could activate immune responses and lead to the onset of cancer
through cytokine secretion. We have confirmed that alterations in the composition of oral bacteria
can contribute to a reduction in SCFAs and the expression of the FFAR 2, resulting in an inflammatory
response through the upregulation of TNFAIP8 and the IL-6/STAT3 pathway, ultimately increasing
the risk of cancer onset. These findings provide valuable insights into the potential role of the oral
microbiome in cancer development and could pave the way for novel preventive and therapeutic
strategies for cancer.

Abstract: The association between oral microbiota and cancer development has been a topic of intense
research in recent years, with compelling evidence suggesting that the oral microbiome may play a
significant role in cancer initiation and progression. However, the causal connections between the
two remain a subject of debate, and the underlying mechanisms are not fully understood. In this
case–control study, we aimed to identify common oral microbiota associated with several cancer
types and investigate the potential mechanisms that may trigger immune responses and initiate
cancer upon cytokine secretion. Saliva and blood samples were collected from 309 adult cancer
patients and 745 healthy controls to analyze the oral microbiome and the mechanisms involved in
cancer initiation. Machine learning techniques revealed that six bacterial genera were associated
with cancer. The abundance of Leuconostoc, Streptococcus, Abiotrophia, and Prevotella was reduced
in the cancer group, while abundance of Haemophilus and Neisseria enhanced. G protein-coupled
receptor kinase, H+-transporting ATPase, and futalosine hydrolase were found significantly enriched
in the cancer group. Total short-chain fatty acid (SCFAs) concentrations and free fatty acid receptor 2
(FFAR2) expression levels were greater in the control group when compared with the cancer group,
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while serum tumor necrosis factor alpha induced protein 8 (TNFAIP8), interleukin-6 (IL6), and signal
transducer and activator of transcription 3 (STAT3) levels were higher in the cancer group when
compared with the control group. These results suggested that the alterations in the composition of
oral microbiota can contribute to a reduction in SCFAs and FFAR2 expression that may initiate an
inflammatory response through the upregulation of TNFAIP8 and the IL-6/STAT3 pathway, which
could ultimately increase the risk of cancer onset.

Keywords: oral microbiota; machine learning; SCFAs; FFAR2; TNFAIP8; IL-6/STAT3; cancer onset

1. Introduction

Cancer is one of the leading causes of death worldwide, and despite significant
progress in treatment and prevention, early detection remains a critical challenge. For
many years, epidemiological studies have reinforced several cancer risk factors, including
heredity, diet, age, and inflammation [1]. Moreover, studies have also examined how certain
lifestyle factors, such as smoking, alcohol consumption, and a high body mass index (BMI),
may increase the risk of developing upper-digestive tract, gastric, liver, pancreatic, and
breast malignancies [2,3]. Early cancer detection reduces medical expenses as expensive and
long-term treatments accompanying later disease detection are generally not required [4,5].
A conventional cancer diagnosis still depends on the prompt reporting of symptoms
and single-tissue medical imaging, followed by a histopathological analysis of tumor
biopsies. Such processes are generally ineffective for early cancer diagnoses as they rely on
symptomatic and phenotypic changes typically appearing at later malignancy stages [4].
However, new sensitive and precise detection methods for multiple cancer types have
emerged that can improve early cancer diagnosis rates, and ultimately benefit population
health and economics [5].

The oral microbiota consists of complicated ecosystems which have pivotal roles in
maintaining homeostasis, adjusting immune responses, and resisting disease in the body [6].
Previous human research studies reported a possible link between the oral microbiota and
carcinogenesis in different organs, including the gastrointestinal tract, the head and neck,
the oral cavity, and the pancreas [7–11]. In line with these findings, a positive associa-
tion of a higher diversity of microbiota with Haemophilus, Porphyromonas, Leptotrichia, and
Fusobacteria compared to healthy adults with pancreatic cancer has been observed in
large cohort human studies [12,13]. Additionally, investigations into Lactobacillus and
Streptococcus genera (oral bacteria) have shown that they generate volatile sulfur com-
pounds, short-chain fatty acids (SCFAs), reactive oxygen species, reactive nitrogen species,
hydrogen peroxide, and lactic acid, all of which are implicated in carcinogenesis, chronic
inflammation, genomic instability, tumor angiogenesis, and GC progression [14]. Recent
studies have also reported that Porphyromonas gingivalis promotes OC development and
progression by stimulating oral squamous cell carcinoma proliferation and inducing the
expression of key molecules nuclear factor kappa B (NF-κB), interkeukin-6 (IL-6) signal
transducer and activator of transcription 3 (STAT3), cyclin D1, matrix metallopeptidase
9 (MMP-9), and the bacterial gingipains which are implicated in tumorigenesis. In gut
microbiota-related cancer, previous data have suggested that the free fatty acid receptor 2
(FFAR2) and SCFAs (propionate, butyrate, and acetate), as the most significant microbiota
metabolites, act on G protein-coupled and are involved in pro-inflammatory cytokine gen-
eration, intestinal immune reactions, and reducing carcinogenesis [15,16]. It was reported
that obesity constituted a link between dysbiotic Hafnia alvei and Akkermansia muciniphila
bacteria in the gastrointestinal tract and lower SCFA abundance, particularly butyrate.
These effects activated FFAR2 and enhanced cytokine expression, especially tumor necrosis
factor-α (TNF-α) and IL-6 which eventually induced gastrointestinal cancer [17–19]. To
date, no studies have specifically examined associations between oral microbiota compo-
sition and specific cancer types, such as oral cancer (OC), head and neck cancer (HNC),
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pancreatic cancer (PC), and gastric cancer (GC). Additionally, no studies have yet investi-
gated the potential role of oral microbiota composition in the initiation of multiple types of
cancer. Despite the growing body of research on the association between oral microbiota
and cancer, several gaps in our understanding still exist. Some studies have reported
conflicting findings regarding the specific bacteria that are associated with cancer initiation,
while others have found variations in the bacterial profiles of cancer patients depending
on the type and stage of cancer. Additionally, previous studies have been limited in scope,
often focusing on a single type of cancer or a specific set of oral microbiota. Furthermore,
the exact mechanisms by which oral microbiota contribute to cancer initiation and pro-
gression are still not fully understood. While some studies have suggested that certain
bacteria can directly induce oncogenic changes in host cells, others have proposed that
the host’s immune response to bacterial colonization and inflammation plays a key role in
cancer onset. We hypothesized that crosstalk between the oral microbiota and mechanisms
underlying immune factors associated with SCFA alterations in the initiation of specific
cancer types, such as OC, HNC, PC, and GC. To address this, we identified the common
oral microbiota and explored the correlation between oral bacteria and possible orthologs
found in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with
several types of cancer. Subsequently, we explored the potential mechanisms of the oral
microbiota that can prompt immune responses and initiate cancer upon cytokine secretion.

2. Materials and Methods
2.1. Subject Characteristics

In this case–control study, we enrolled adult cancer patients (aged > 19 years) with
newly diagnosed histologically confirmed invasive cancers, who had not received any
therapy, surgery, or used immunosuppressive treatment agents. Participants came from the
National Cancer Centre, and Seoul National University Dental Hospital, Republic of Korea.
Healthy controls with no cancer at enrolment were recruited from the Cancer Screening
Centre, National Cancer Centre, Republic of Korea. Eligible subjects were identified from
309 cancer patients with oral cancer (n = 178), HNC (n = 21), PC (n = 50), and GC (n = 60),
and 745 healthy controls.

Among characteristic parameters, age, sex, smoking and drinking status, stage, tumor
extent (T stage), and lymph node involvement (N stage) were considered as the main
clinical variables. BMI was constituted of continuous variables and divided into 5 groups:
lean with less than 18.5, normal with 18.5 to 22.9, overweight with 23.0 to 24.9, obese
with 25.0 to 29.9, and severely obese with 30 or more value of BMI. The smoking status
of participants was classified into three groups: non-smoker, current smoker, and former
smoker, and in terms of drinking, they were divided into three groups: non-drinker, current
drinker, and former drinker. All cancer was classified into four stages. Regarding cancer
stages, T stage was classified as (T1, T2, T3, and T4), while N stage was categorized into
(N0, N1, N2, and N3). The study was approved by the Institutional Ethics Committee
of the National Cancer Centre, Korea (IRB No. NCC 2019-0116), and the Seoul National
University Dental Hospital (IRB No, CRI15017). Participants provided written informed
consent prior to enrolment.

2.2. Saliva and Blood Sampling

From our comprehensive clinical protocol, saliva, and blood samples were collected.
For the saliva samples, participants were asked to refrain from eating, drinking, or smoking
for 1 h before collection. Saliva was then deposited into a specimen cup, aliquot into
1.5 mL tubes, and stored at −80 ◦C. Blood samples were collected after a 12 h fast from the
antecubital veins using K2 EDTA tubes (BD Vacutainer, Franklin Lakes, NJ, USA). Tubes
were centrifuged at 3000 rpm for 15 min at 4 ◦C to generate, plasma, buffy coat, and red
blood cells were stored at −80 ◦C. These measures allowed us to analyze the microbiota
and other factors in the saliva and blood samples between cohorts at baseline.
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2.3. DNA Isolation, 16S rRNA Gene Sequencing, and Analysis

Oral microbial DNA was extracted from saliva samples using the Fast DNA Spin ex-
traction kit (MP Biomedical, Santa Ana, CA, USA) according to manufacturer’s instructions.
DNA quality and quantification were evaluated using a Qubit dsDNA BR assay kit (Life
Technologies, Carlsbad, CA, USA) on a Qubit fluorometer (Life Technologies). Polymerase
chain reaction (PCR) thermal cycle parameters were 95 ◦C for 3 min, and 25 cycles of
95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, with a final elongation at 72 ◦C for 5 min.
Following 2% agarose gel electrophoresis, PCR products were visualized and purified
products were used for secondary amplification steps to attach the Illumina (San Diego, CA,
USA) NexTera barcodes using Index 2 i5 forward and Index 1 i7 reverse primers (Bionics,
Cosmogenetech, Seoul, Republic of Korea) (Table S1). Reactions underwent eight cycles in
aforementioned thermal cycling conditions, followed by PCR product purification using
an AMPure bead kit (Agencourt Bioscience, Beverly, MA, USA). Mixed amplicons were
pooled in Chunlab (https://www.cjbioscience.com/ (accessed on 21 August 2022)) and
DNA isolation and sequencing were performed at the National Cancer Center South Korea
using an Illumina iSeq100 sequencer. The variable V4 region of the bacterial 16S rRNA gene
was amplified using barcoded fusion primers 341F and 805R (Bionics, Cosmogenetech,
Seoul, Republic of Korea). The Ezbiocloud cloud database holds taxonomic information
and functions as a bioinformatic tools to help classify bacteria. Poor quality sequences
of reading length < 80 bp or >2000 bp were eliminated and averaged Q values were <25.
DUDE-Seq. software was used for denoising and the identification of non-redundant reads.
The UCHIME algorithm was used against the Ezbiocloud 1616s-based microbial taxonomic
profiling database to evaluate and eliminate chimeric sequences. Taxonomic assignments
were performed using USEARCH tools to find and quantify sequence homology in query
single-end reads against the EzBioCloud 16s-based microbial taxonomic profiling database.
Sequencing reads were classified into operational taxonomic units (OTUs) with 97% se-
quence similarity using the UPARSE algorithm. To cluster single-end read samples into
multiple OTUs, the UCLUST tool, with aforementioned cutoff values, was used.

2.4. Measuring SCFA, FFAR2, and Chemokine/Cytokine-Related Cancer Associations with Oral
Microbial Signals

Total SCFAs in saliva were measured using a human SCFA enzyme-linked immunosor-
bent assay (ELISA) kit (Catalog No. MBS7269061; MyBioSource, Inc., San Diego, CA, USA).
According to manufacturer’s instructions, different standard concentrations and saliva
samples (100 µL) were added to 96-well plates. Next, 10 µL balance solution was added to
only the samples. Then, 50 µL conjugate was added to wells (not the blank control well).
The plate was covered and incubated for 1 h at 37 ◦C. A second incubation step occurred
for 15–20 min at 37 ◦C following the addition of 100 µL substrate A and B. Finally, 50 µL
stop solution was added to wells and optical density was determined using a microplate
reader (SPECTROstar Nano, Ortenberg, Germany) at 450 nm.

Human plasma FFAR2 (Catalog No. abx556340; Abbexa Ltd., Cambridge, UK) and
IL-6 (Catalog No. ab178013; Abcam, Cambridge, UK) levels were determined using ELISA
kits according to manufacturer’s instructions. The minimum detectable concentration
was 8 pg/mL for FFAR2 and 1.6 pg/mL for IL-6. Plasma STAT3 concentrations were
also determined using ELISA kits (Catalog No. MBS2509698; Mybiosource, San Diego,
CA, USA); its lower limit of detection was 0.19 ng/mL. Plasma TNFAIP8 levels were also
quantified using ELISA (Catalog No. ABIN6951264; Antibodies-Online, Limerick, PA,
USA); its minimum detectable concentration was 0.188 ng/mL.

2.5. Oral Microbiota Key Metabolic Pathways Prediction

Oral microbiota functional profiles were evaluated using the phylogenetic inves-
tigation of communities by reconstruction of unobserved (PICRUST) algorithm in the
EzBioCloud 16S-based microbiota taxonomic profiling pipeline. Raw sequencing reads
were obtained by running the EzBioCloud 16S microbiota pipeline with default parameters
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and discriminating reads within the reference database. The annotation of oral microbiota
functional abundance profiles was based on bioinformatics, specifically by multiplying
the vector of gene counts for abundance of that OTU value of each taxon, using the KEGG
orthology module and pathway database. Based on microbial anticipation in results, dis-
crepancies in KEGG pathways, and KEGG orthologies related to metabolism and biological
systems between the different cancer groups were detected. The accuracy of each functional
profile was determined using the nearest sequenced taxon index.

2.6. Machine Learning and Statistical Analyses

Machine learning was performed using Python version 3.7.15 (Python Software Foun-
dation) and the H2O python module (Python package version 3.38.0.2. https://github.
com/h2oai/h2o-3 (accessed on 3 January 2023)). To address class imbalance, oversam-
pling methods were applied using the “smote-variants” package (version 20), which in-
cluded “Borderline-SMOTE”, “Safe-level-SMOTE”, “polynom-fit-SMOTE”, “ADASYN”,
and “SYMPROD” [20–22]. These methods generate synthetic samples for the minority
class to balance the dataset. Specifically, Borderline-SMOTE generates synthetic samples
near the decision boundary, Safe-level-SMOTE focuses on safe-level minority samples,
polynom-fit-SMOTE fits a polynomial function to the dataset to generate synthetic sam-
ples, ADASYN adjusts the density distribution of the minority class to generate synthetic
samples, and SYMPROD applies synthetic minority over-sampling in a product space. To
exclude low-count taxa, only groups with at least 10 genera and significance as indicated in
the Wilcoxon rank sum tests were included. Three algorithms were used: generalized linear
model (GLM), random forest (RF), and gradient-boosting machine (GBM), and their hyper
parameters were fine-tuned. For the GLM, hyper parameter tuning was performed by
systematically varying the regularization strength and type to optimize model performance.
Regularization is a technique that helps prevent overfitting by adding a penalty term to the
cost function that shrinks the magnitude of the coefficients. Three types of regularization
were used: LASSO (L1 penalty), ridge (L2 penalty), and elastic net (a combination of both
penalties). The hyper parameters were optimized using cross-validation, which involved
splitting the data into training and validation sets and evaluating model performance
on the validation set. The hyper parameters that resulted in the highest F2 scores and
AUC-PR were selected. For the RF and GBM, hyper parameter tuning was also performed
to optimize the performance of the models. Specifically, the complexity of individual trees
and their structures were varied to find the best-performing models. The performance
of the classifiers was evaluated using F2 scores, the area under the precision-recall curve
(AUC-PR), AUC, and accuracy metrics, with a focus on the positive class.

Analyses and visualizations were performed in R version 4.1.1 (R Foundation for
Statistical Computing, Vienna, Austria). General patient characteristics were compared
between groups using t-tests for continuous variables (age and BMI) and chi-square tests
for categorical variables (BMI, smoking status, drinking status, stage, T stage, and N stage).
Groups were analyzed using one-way analysis of variance for continuous variables and chi
square tests. Alpha diversity indicated bacterial richness and diversity using OTU and phy-
logenetic diversity (PD) whole tree analyses. Beta diversity was calculated using principal
coordinates analysis (PCoA) according to weighted and unweighted UniFrac distances, and
evenly sampled OTU abundance. Results were analyzed using the “Phyloseq” package in
R. Statistical significance in groups, taxa, and functional composition profiles was analyzed
based on abundance quartiles values, Wilcoxon rank sum tests, and fold change (FC) in
R. Univariate logistic and multivariate-adjusted conditional logistic regression analyses
were conducted in R. Logistic regression analyses were conducted to estimate odds ratios
(OR) and corresponding 95% confidence intervals (CIs). Adjusted conditional logistic
regression was set for sex, age, smoking, and alcohol consumption. Differential abundance
and cladogram analyses were performed using the linear discriminant analysis of effect
size (LEfSe) method for taxa at the genus level in the “microbiota Marker” package in R.
Venn diagrams identified overlaps between groups at the genus level using “Venn Detail”
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in R. The distribution of the six most important genera according to group, sex, drinking,
and smoking status was performed using “ggplot2” and “ggpubr” in R. SCFA level, FFAR2
expression, and inflammatory cytokine correlations between distinctive oral microbiota,
smoking, and drinking were performed using Wilcoxon rank sum tests in R. Associations
between genera and orthology were analyzed using Spearman’s correlations in R (Figure 1).
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Figure 1. The study utilized advanced techniques, such as PICRUST and machine learning, to analyze
oral microbiota, identifying correlations between certain microbiota and cancer, and suggesting
potential early markers of cancer.

3. Results
3.1. Demographic and Lifestyle Characteristics of Study Participants

In total, 1054 participants were selected, including 178 individuals with oral cancer,
21 with HNC, 50 with PC, 60 with GC, and 745 healthy controls. Participants were chosen
based on inclusion and exclusion criteria to examine the changes in oral microbiota across
different groups. The age and sex of participants in the case and control groups were
matched according to the criteria. There were some minor differences in the age and sex
distribution and oral dysbiosis between the case and control groups, and the cases had
significantly higher rates of drinking, smoking, and overweight compared to the control
group. (Table 1). The demographics and clinical characteristics of the four cancer groups
and healthy controls and association between oral cancer risk and six genera with age and
sex are summarized (Tables S2 and S3).
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Table 1. General characteristics of 745 controls and 309 cancer patients in this study.

Variable
Control Cancer p Value a
(n = 745) (n = 309)

Age a 57.3 ± 9.20 63.2 ± 12.2 <0.0001
Sex a <0.0001
Female 434 (58.3%) 116 (37.5%)
Male 311 (41.7%) 193 (62.5%)
BMI (kg/m2) 24.0 ± 3.03 23.6 ± 3.67 <0.0001
<18.5 17 (2.28%) 24 (7.77%) 0.002
18.5~22.9 272 (36.5%) 101 (32.7%)
23.0~24.9 197 (26.4%) 78 (25.2%)
25.0~29.9 226 (30.3%) 90 (29.1%)
30≥ 27 (3.62%) 11 (3.56%)
Smoking b <0.0001
Non-smoker 447 (60.0%) 152 (49.2%)
Former smoker 202 (27.1%) 85 (27.5%)
Current smoker 71 (9.53%) 66 (21.4%)
Drinking c <0.0001
Non-drinker 179 (24.0%) 118 (38.2%)
Former drinker 85 (11.4%) 56 (18.1%)
Current drinker 441 (59.2%) 129 (41.8%)
Stage d

1 89 (28.8%)
2 43 (13.9%)
3 43 (13.9%)
4 101 (32.7%)
T Stage e

T1 96 (31.1%)
T2 57 (18.5%)
T3 36 (11.7%)
T4 63 (20.4%)
N Stage f

N0 141 (45.6%)
N1 40 (12.9%)
N2 32 (10.4%)
N3 14 (4.53%)

Abbreviations: BMI = body mass index, T Stage = T describes the size of the tumor and any spread of cancer
into nearby tissue, N Stage = N describes spread of cancer to nearby lymph nodes. a p values from t-tests for
continuous variables and chi-square tests for categorical variables for comparisons between cancer and control
groups. b Smoking status was split into three groups, non-smokers, former smokers, and current smokers.
c Drinking status was split into three groups, non-drinkers, former drinkers, and current drinkers. d Stage
information data from cancer patients. e T stage data from GC patients were not collected; only 229 cancer patients
were included. f N stage information from PC and GC patients was not collected; only 170 cancer patients were
included.

3.2. Taxonomic Analyses and the Identification of Genera Potentially Associated with Cancer Risk

In taxonomic analyses of the oral microbiota using machine learning, among six
genera, GBM was the best model for all cancer prediction (F2 = 0.96, AUCPR = 0.98,
sensitivity = 0.96, precision = 0.95, AUC = 0.98, and accuracy = 0.97). The disease index
probability was significantly higher in the cancer group when compared with controls
(Figure 2a–f). A greater abundance of Leuconostoc (FC = not available (NA); p < 0.01),
Streptococcus (FC = 1.75; p < 0.01), and Abiotrophia (FC = 3; p < 0.01) genera was associated
with a significant increase in the risk of all cancers, while Prevotella (FC = 0.67; p < 0.01),
Haemophilus (FC = 0.56; p < 0.01), and Neisseria (FC = 0.76; p < 0.01) abundance was
associated with decreased risk for all cancers (Table 2 and Table S4).
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Figure 2. The six most important microbiota in the Gradient Boosting Machine (GBM) model,
along with relevant classification information. Confusion matrix evaluated machine learning model
performance with actual and predicted labels, and error rate calculated by incorrect predictions
divided by total predictions (a); The Probability of Detection Index (POD) for Gradient Boosting
Machine (GBM) displayed value (0–1) for classifying samples into control and cancer, with values
closer to 1 indicating higher likelihood of being classified as cancer (b); The stands for Area Under
the Receiver Operating Characteristic curve (AUC-ROC) represented the relationship between the
true positive rate (TPR) against the false positive rate (FPR) at various classification thresholds (c);
Precision–Recall Curve depicted binary classification model performance, plotting precision against
recall at different classification thresholds, useful for imbalanced datasets (d); Feature importance
indicated how much each feature contributes to model prediction, indicating the relative importance
of features in distinguishing between classes (e); SHAP value revealed an explanation of machine
learning model output, providing local interpretations for individual predictions by attributing the
feature contribution to the final prediction (f).

Table 2. Logistic regression analysis of six genera for all cancer risks in the GBM model.

Taxon Name Logistic Regression Number of Subjects a
OR b (95% CI) p Value c

Control Cancer

Streptococcus

Continuous scale 745 309 3.13 (2.51, 3.94) 3.33 × 10−23

Quartile 1 187 33 ref
Quartile 2 186 36 1.09 (0.65, 1.83) 0.72
Quartile 3 186 57 1.73 (1.08, 2.81) 0.02
Quartile 4 186 183 5.57 (3.69, 8.62) 1.60 × 10−15

Haemophilus

Continuous scale 745 309 0.42 (0.35, 0.51) 3.30 × 10−19

Quartile 1 187 165 ref
Quartile 2 186 46 0.28 (0.18, 0.40) 9.15 × 10−11

Quartile 3 186 38 0.23 (0.15, 0.34) 1.83 × 10−12

Quartile 4 186 60 0.36 (0.25, 0.52) 3.76 × 10−8

Prevotella

Continuous scale 745 309 0.51 (0.42, 0.62) 1.62 × 10−11

Quartile 1 187 131 ref
Quartile 2 186 70 0.53 (0.37, 0.76) 0.00
Quartile 3 186 60 0.46 (0.31, 0.66) 3.42 × 10−5

Quartile 4 186 48 0.36 (0.24, 0.53) 4.55 × 10−7
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Table 2. Cont.

Taxon Name Logistic Regression Number of Subjects a
OR b (95% CI) p Value c

Control Cancer

Leuconostoc
Continuous scale 745 309 2.23 × 1041

(1.24 × 1026, 2.06 × 105) 3.06 × 10−6

=0 715 207 ref
>0 30 102 11.74 (7.69, 18.42) 1.45 × 10−28

Neisseria

Continuous scale 745 309 0.72 (0.63, 0.83) 4.86 × 10−6

Quartile 1 187 111 ref
Quartile 2 186 74 0.67 (0.46, 0.95) 0.02
Quartile 3 186 63 0.57 (0.39, 0.82) 0.00
Quartile 4 186 61 0.55 (0.37, 0.79) 0.00

Abiotrophia
Continuous scale 745 309 658.08 (98.59, 5651.18) 3.24 × 10−10

=0 368 104 ref
>0 377 205 1.92 (1.46, 2.54) 3.42 × 10−6

Abbreviations: OR = Odd ratio, CI = confidence interval. a The number and percentage of subjects in each category.
b Odds ratio: if categorized, the first category was the standard category and was referenced for other regression
coefficient calculations. c p value represents significance of the regression coefficient.

3.3. Oral Microbiota Profiles Are Switched in All Cancer and Control Groups

In total, 50 phyla and 1666 genera were identified across all samples. From phy-
lum level analyses (mean relative abundance > 1%), Firmicutes, Proteobacteria, Bacteroidetes,
Fusobacteria and, Actinobacteria were the five most abundant phyla and accounted
for > 90% of the bacterial community (Figure S1). The average number of readings per
sample was 39,000, with a minimum of 25,000 readings per sample. The taxonomic analysis
revealed that the percentage of readings assigned to each taxonomic group were as follows:
Protoebacteria (50%), Firmicutes (15%), Bacteroidetes (12%), Actinobacteria (10%), and other
groups (13%). We found no significant variation in the percentage of unassigned readings
between the study groups. To examine oral microbiota fluctuations in cancer patients when
compared with controls, we conducted LEfSe on 209 genera. To exclude low count taxa,
we only included genera with at least one sequence in at least 5% of the participants. In
alpha diversity analyses, PD whole tree and observed OTUs were significantly higher in
all cancer cases when compared with controls (Wilcoxon, p < 0.001) (Figure 3a). Moreover,
beta diversity, as shown by PCoA based on weighted and unweighted (Wilcoxon, p < 0.001)
UniFrac distances in oral microbiota communities, exhibited clear and distinct divisions
between groups (Figure 3b). An OTU Venn diagram showed that 722 genera overlapped
between groups (Figure 3c). LEfSe cladogram results identified thirteen separated oral
bacteria in the cancer groups and seven in the control group (Figure S2). At the genus level,
Streptococcus, Abiotrophia, and Leuconostoc were significantly associated with an increased
risk of all cancer, with higher risks identified in the highest quartile when compared with
the lowest ones. In contrast, Prevotella, Haemophilus, and Neisseria showed a significant
negative association with higher risks in the lowest quartile when compared with the
highest. We further investigated oral microbiota associations in smoking and drinking
subgroups. Correlations between distinctive bacteria, smoking, and drinking status are
explained in Figures S3 and S4.



Cancers 2023, 15, 2898 10 of 16Cancers 2023, 15, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 3. Analysis of oral microbiota diversity, SCFAs, FFAR2, and cytokine levels in the control 
and cancer groups. Alpha diversity was estimated via the phylogenetic diversity whole tree (OTUs, 
p < 0.001) and by observing operational taxonomic units (p < 0.001) (a); Beta diversity was calculated 
using principal coordinate analyses based on weighted (p < 0.001) and unweighted (p < 0.001) 
UniFrac distances in oral microbiota communities (b); Venn diagrams showing overlaps between 
groups at the genus level (c); Oral saliva total short-chain fatty acid concentrations (d); Free fatty 
acid receptor 2 concentrations in oral saliva (e); Concentrations of human plasma TNF-α induced 
protein 8 (f); Human plasma interleukin-6 levels (g); Human plasma signal transducer and activator 
of transcription 3 levels (h). 

3.4. Identification of Potential Correlation between Specific KOs in Oral Microbiota and In-
creased Cancer Risk 

In this study, a total of 14,842 KEGG KOs were identified by conducting PICRUSt 
analysis. Among this, G protein-coupled receptor kinase, H+-transporting ATPase, and 
futalosine hydrolase were found significantly enriched in the cancer group (Table 3). In 
the metabolic pathway of H+-transporting ATPase and futalosine hydrolase, SCFAs and 
its associated receptor (FFAR2) were found significantly down-regulated in the compari-
son between cancer and control group (p < 0.001) (Figure 3d,e) Subsequently, we explored 
the associations between six genera and three KOs based on Spearman’s rank correlation 
coefficients. The G protein-coupled receptor kinase (K08291), H+-transporting ATPase 
(K01535), and futalosine hydrolase (K1178), were remarkably correlated with oral micro-
biota and associated with cancer (Table 4). 

  

Figure 3. Analysis of oral microbiota diversity, SCFAs, FFAR2, and cytokine levels in the control
and cancer groups. Alpha diversity was estimated via the phylogenetic diversity whole tree (OTUs,
p < 0.001) and by observing operational taxonomic units (p < 0.001) (a); Beta diversity was calculated
using principal coordinate analyses based on weighted (p < 0.001) and unweighted (p < 0.001) UniFrac
distances in oral microbiota communities (b); Venn diagrams showing overlaps between groups
at the genus level (c); Oral saliva total short-chain fatty acid concentrations (d); Free fatty acid
receptor 2 concentrations in oral saliva (e); Concentrations of human plasma TNF-α induced protein
8 (f); Human plasma interleukin-6 levels (g); Human plasma signal transducer and activator of
transcription 3 levels (h).

3.4. Identification of Potential Correlation between Specific KOs in Oral Microbiota and Increased
Cancer Risk

In this study, a total of 14,842 KEGG KOs were identified by conducting PICRUSt
analysis. Among this, G protein-coupled receptor kinase, H+-transporting ATPase, and
futalosine hydrolase were found significantly enriched in the cancer group (Table 3). In the
metabolic pathway of H+-transporting ATPase and futalosine hydrolase, SCFAs and its
associated receptor (FFAR2) were found significantly down-regulated in the comparison
between cancer and control group (p < 0.001) (Figure 3d,e) Subsequently, we explored the
associations between six genera and three KOs based on Spearman’s rank correlation coeffi-
cients. The G protein-coupled receptor kinase (K08291), H+-transporting ATPase (K01535),
and futalosine hydrolase (K1178), were remarkably correlated with oral microbiota and
associated with cancer (Table 4).
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Table 3. Analysis of 3 orthologs with significant differences between cancer patients and control
groups.

Function Name
Abundance Median Fold

Change Univariate
Logistic

Regression
OR (95% CI) b p Value c AUC

Control
(n = 750)

Cancer
(n = 313) p Value a Cancer/

Control

G protein-coupled
receptor kinase

(K08291)
3.1 × 10−8 1.7 × 10−7 1.5 × 10−16 5.40

Continuous Scale 1.75 (1.54–1.98) 7.2 × 10−18

0.73
Quartile 1 ref

7.1 × 10−25Quartile 2 1.37 (0.87–2.15)
Quartile 3 2.34 (1.57–3.49)
Quartile 4 3.13 (2.20–4.45)

Futalosine hydrolase
(K11783) 2.3 × 10−8 1.2 × 10−7 6.9 × 10−8 5.20

Continuous Scale 1.39 (1.24–1.56) 1.9 × 10−8

0.76
Quartile 1 ref

6.8 × 10−19Quartile 2 2.35 (1.58–3.51)
Quartile 3 3.06 (2.09–4.48)
Quartile 4 4.61 (3.24–6.57)

H+-transporting
ATPase (K01535) 5.1 × 10−8 2.5 × 10−7 8.5 ×

10−23 5.00

Continuous Scale 1.74 (1.56–1.94) 1.2 × 10−23

0.73
Quartile 1 ref

3.1 × 10−25Quartile 2 1.66 (1.07–2.60)
Quartile 3 1.78 (1.15–2.76)
Quartile 4 6.74 (4.71–9.66)

a p value was computed using Wilcoxon rank-sum test for continuous variables. b quartiles of each genus
were divided based on the distribution among controls only. c p value was computed using chi-square test for
continuous scale and quartiles. OR: Odds ratio. 95% CI: Confidence interval.

Table 4. Spearman correlation of 6 genera and 3 orthologs.

Name
Leuconostoc Streptococcus Abiotrophia Prevotella Haemophilus Neisseria

r a p b r a p b r a p b r a p b r a p b r a p b

G protein-coupled
receptor kinase (K08291) 0.16 <0.0001 0.16 <0.0001 0.05 0.13 −0.07 0.02 −0.10 0.001 −0.12 0.000

Futalosine
hydrolase (K11783) 0.13 <0.0001 0.16 <0.0001 0.12 0.000 −0.14 <0.0001 −0.10 0.001 −0.01 0.79

H+−transporting ATPase
(K01535) 0.22 <0.0001 0.21 <0.0001 0.07 0.02 −0.12 <0.0001 −0.18 <0.0001 −0.14 <0.0001

a r value represents the relationship between 6 genera and 3 orthology. b p value indicates the significance of the
r value.

3.5. Oral Microbiota Modified Systemic Inflammation and Cancer Initiation

To confirm the key role of the identified orthologs (K08291, K01535, and K11783) that
correlated with oral microbiota in the cancer group and determine the effect of oral micro-
biota alteration on immune homeostasis, inflammation, cancer initiation, we measured the
concentrations of TNF-α, induced protein 8 (TNFAIP8/TIPE), and IL-6, which are cytokines
associated with these orthologies. The cancer group had higher TNFAIP8 serum (Wilcoxon,
p < 0.001) (Figure 3f) and IL-6 levels (Wilcoxon, p < 0.001) (Figure 3g) when compared with
the control group. We also measured STAT3 levels which were induced by IL-6. Similar to
inflammatory cytokines, STAT3 had higher levels in the cancer group when compared with
the control group (Wilcoxon, p < 0.001) (Figure 3h).

4. Discussion

In this first case–control study of the oral microbiota and risk for all cancers, we found
that a greater abundance of the bacterial genera Streptococcus, Abiotrophia, and Leuconostoc
while a lower abundance of Prevotella, Haemophilus, and Neisseria was associated with an
increased risk of cancer. Furthermore, our analysis revealed that certain KOs, found to
be significantly associated with oral microbiota, may contribute to the initiation of cancer
by activating the SCFA and inflammation cytokine pathways. These findings highlight
the important role of bacterial metabolites, such as SCFAs, in cancer onset and suggest
potential targets for intervention in cancer prevention and treatment.
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Even though ours is the first study examining the associations between the oral micro-
biota and all cancer risk, evidence in the literature supports this finding. Several culture and
DNA sequencing-based studies identified oral microbiota prevalence in multiple cancer
types while accounting for smoking and alcohol consumption influences [23]. In our novel
cohort study, Streptococcus, Abiotrophia, and Leuconostoc were enriched while Haemophilus,
Neisseria, and Prevotella were reduced in cancer patients. Alterations in oral microbiota
communities, particularly Firmicutes and Bacteroidetes in alcohol consumers [24–26] and
smokers, were associated with a risk of several cancer types [27,28]. For oral cancer, the
evidence now shows that the well-known risk factors of smoking and alcohol consumption
cannot explain 15% of oral cancer cases [29], which may be related to ecological shifts in
microbiota abundance induced by homeostatic microflora loss [30,31]. These data suggest
that smoking and drinking may reshape the oral microbiota, including the potential deple-
tion of beneficial commensal bacteria and the increased colonization of potential pathogens
linked to enhanced systemic inflammation and carcinogenesis [27].

Based on our results, oral microbiota and microbial compositional diversity were
increased in all cancer groups concomitant with unhealthy lifestyles. This was con-
cluded based on the enhancement of the relative abundance of some bacteria, including
Streptococcus, Abiotrophia, and Leuconostoc, and the reduction in the relative abundance of
Prevotella, Haemophilus, and Neisseria in the cancer group when compared with controls.
Similar to other studies, patients with oral squamous cell carcinoma, hematologic malig-
nancy, and esophageal cancer [32–34] had significant changes in saliva microbial diversity,
such as Streptococcus [35–37] and Abiotrophia [38], when compared with healthy individuals.
In contrast, Leuconostoc, believed to have probiotic properties and anticancer activities [39],
promoted apoptosis in colon cancer cell lines by upregulating mitogen-activated protein ki-
nase 1 (MAPK1), Bax, and caspase 3, and by downregulating AKT serine/threonine kinase
1(AKT), NF-κB, and B-cell lymphoma-extra-large (Bcl-XL) expression [40]. Interestingly,
distinct salivary microbiota composition was observed in patients with GC and colorectal
adenocarcinoma, and exemplified by enriched putative pro-inflammatory taxa including
Streptococcus [41,42], and significantly decreased oral microbiota, including Haemophilus,
Neisseria, and Prevotella, which reduced nitrites and potentially induced the accumulation of
carcinogenic compounds [43]. Indeed, different bacteria have been suggested as potential
risk factors in several cancers [38,44]. We showed that fluctuations in certain oral bacteria
genera, such as Streptococcus, Abiotrophia, Leuconostoc, Haemophilus, Neisseria, and Prevotella,
can produce SCFAs, which have been shown to induce cytokine production and inflam-
mation. The activation of cytokine receptors through chronic inflammation and cytokine
production can promote carcinogenesis. It has been highlighted that certain bacteria, such
as Capnocytophaga gingivalis, Prevotella melaninogenica, and Streptococcus mitis, contribute
to cancer initiation through various mechanisms, including the induction of chronic in-
flammation, interference with cellular signaling pathways, or metabolizing carcinogenic
substances [29].

We found via in-depth investigations that among 14,842 KEGG KOs, 3 orthologs genes
including, H+-transporting ATPase, G protein-coupled receptor kinase and, futalosine
hydrolase were highly correlated with Streptococcus, Abiotrophia, Leuconostoc, Haemophilus,
Neisseria, and Prevotella. The H+-transporting ATPase and futalosine hydrolase orthologs
are involved in various aspects of cellular metabolism, particularly transport of SCFAs
by activating FFAR2 across the cell membrane (https://www.genome.jp/pathway/map0
1100+K01535 (accessed on 14 October 2022)) (https://www.genome.jp/pathway/map0
1100+K11783 (accessed on 14 October 2022)). In the same context, this study suggested
that alteration in specific bacteria may shift the expression of FFAR2 and SCFA, which
could influence cancer initiation via cytokine receptor activation and chronic inflammation.
Studies demonstrated that the fatty acid produced by the fermentation of Faecalibacterium,
Eubacterium, and Roseburia is able to stimulate an immune response in mice in a GPR43-
dependent manner. Moreover, activation of FFAR2 and SCFAs signaling pathway can
stimulate a range of cellular responses, including the regulation of immune response

https://www.genome.jp/pathway/map01100+K01535
https://www.genome.jp/pathway/map01100+K01535
https://www.genome.jp/pathway/map01100+K11783
https://www.genome.jp/pathway/map01100+K11783
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and carcinogenesis [45]. The acetate loss induces lipid peroxidation following oxidative
stress, resulting in gastric epithelial cell apoptosis and GC 54. Additionally, sodium acetate
(>12.5 mM) impeded cell proliferation in PC cell lines (Capan-2, AsPC-1, and MiaPaCa-
2) and caused cell detachment and reduced cell density [46]. Additionally, we showed
that TNFAIP8, the IL-6 cytokine receptor, and IL-6-activated STAT3 pathway activity
increased following FFAR2 reduction in the all cancer group. Several studies reported
that elevated IL-6 and TNFAIP8 levels and reduced FFAR2 levels [19], and enhanced
IL-6/JAK/STAT3 [47,48] and NF-κB [49] pathways. These pathways are aberrantly hyper-
activated in many cancer types, the hyper-activation generally associated with poor clinical
prognoses and cell proliferation. All findings indicate that alterations in the composition
of oral microbiota lead to a reduction in levels of SCFAs and FFAR2. This reduction
may contribute to the promotion of TNFAIP8 and IL-6/STAT3, ultimately provoking
inflammation and potentially increasing the risk of developing cancer (Figure 4).
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Figure 4. Graphical abstract. Oral microbiota-related SCFAs induce cancer and immune responses.
Alcohol consumption and smoking modified the oral microbiota and short-chain fatty acids (SCFAs),
free fatty acid receptor 2 (FFAR2), and relevant cytokine concentrations, which contributed to cancer
initiation and systemic immune responses. ↑: increased, ↓: decreased.

5. Conclusions

In conclusion, this study provided the first proof that alcohol consumption and smok-
ing modified the oral microbiota, which contributed to cancer initiation and systemic inflam-
mation. Smoking and drinking reduced the relative abundance of Prevotella, Haemophilus,
and Neisseria, but increased Streptococcus, Abiotrophia, and Leuconostoc. These transforma-
tions in the oral microbiota can contribute to changes in microbial metabolites particularly
SCFAs, cytokines, and chemokines, which may trigger an inflammatory response and
potentially increase the risk of cancer onset. Therefore, our microbiota study provided
links between microbiota composition, drinking, smoking, and carcinogenesis. By investi-
gating the potential mechanisms behind these associations, our study sheds light on the
complex interplay between oral microbial communities, immune response, and cancer
development in several cancer types. However, further studies are needed to fully elucidate
the functional connection between the oral microbiota and cancer development, and to
determine whether the changes observed in this study are host-derived, dysbiosis-derived,
or a combination of both. This information can be used to develop new and more effective
prevention and treatment strategies. Early detection and monitoring of these microbiota
changes could potentially allow for early intervention and targeted treatments, which may
improve patient outcomes and reduce the burden of cancer on healthcare systems.
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