Skip to main content
. 2023 Jun 1;11(11):1617. doi: 10.3390/healthcare11111617

Table 1.

Characteristics of included studies: articles published using AI and/or ML to detect IUGR during various pregnancy timings.

Author Study Type Setting Sample (n) Preg Time (weeks) Methods AI/ML Model Outcomes Measures (Accuracy)
Guo, Z. [50] Obs. retr. case-control China 2199 12–28 DNA profiling LR Using ML to predict FGR and BW 79%
Dahdoud, S. [58] Obs. retr. case-control USA 80 18–39 MRI RUSBoost Using ML to predict FGR and BW 86%
Lunghi, F. [45] Obs. retr. case-control Italy 909 30–35 FHR by CTG SVM Realizing an automatic system for identified FGR 84%
Magenes, G. [48] Obs. retr. case-control Italy 100 30–35 FHR by CTG SVM Realizing an automatic system for identified FGR 78%
Signorini, M. [60] Obs. retr. case-control Italy 120 30–35 FHR by CTG RF (best) Find the best classification ML model for identifying IUGR 91%
Crockart, I.C. [27] Obs. prosp. case-control USA and S. Africa 6004 20–29 FHR by CTG Stochastic Gradient Descent, LR & RF Using ML to predict FGR and BW 91%
Bahado–Singh, R. [46] Obs. retr. case-control USA 80 Delivery Biochemical SVM Find the best classification ML model for identifying IUGR 80%
Pini, N. [47] Obs. retr. case-control Italy 262 36–37 FHR by CTG RBF-SVM Build a ML screener for late IUGR 93%
Magenes, G. [51] Obs. retr. case-control Italy 122 30–35 FHR by CTG RF & LR Find the best classification ML model for identifying IUGR RF = 85%; LR = 83%
Xu, C. [52] Obs. retr. nested case-control China 810 12–27 DNA profiling SVM & LR Find the best classification ML model for identifying IUGR 83%
Buscema, M. [54] Obs. retr. case-control Italy 46 Delivery Biochemical ACM & ACS Find the best classification ML model for identifying IUGR 87%
Foltran, F. [55] Obs. prosp. case-control Italy 46 20–32 Biochemical BN Realizing an automatic system for identified FGR 90%
Street, M.E. [56] Obs. retr. case-control Italy 48 20–32 Biochemical ANNS Find the best classification ML model for identifying IUGR 89%
Ferrario, M. [57] Obs. retr. case-control Italy 59 27–34 FHR by CTG LZ complexity Realizing an automatic system for identified FGR 91%
Deval, R. [49] Obs. retr. case-control India 214 - Biochemical SVM, MLP Using ML models to predict IUGR SMO = 95.5%; MLP = 8.5%
Gómez–Jemes, L. [53] Obs. retr. case-control Slovenia 95 24–38 Doppler indices: UA, sFIt-1, and PIGF values Multi-models (extra-trees, RF) Using ML models to predict pre-Eclampsia, IUGR Extra trees = 78%, RF = 73%
Sufriyana, H. [59] Obs. prosp. case-control Slovenia 95 24–37 Doppler indices: UA, sFIt–1, and PIGF values CVR Using ML models to predict pre-Eclampsia, IUGR CVR = 90.6%
Aslam, N. [61] Obs. retr. case-control Italy 382 30–37 FHR by CTG SVM & RF Using ML models to predict IUGR RF = 97%
Gürgen, F. [62] Obs. retr. case-control Turkey 44 <38 Doppler indices: PI & RI of UA, MCA, DV, and AFI SVM Using ML models to predict IUGR SVM = 81%
Van, S.N. [25] Obs. prosp. case-control China 75 - Physiological, clinical, and socioeconomic Seven ML algorithms Identify the latent risk clinical attributes using the ML algorithms. 94.73%