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Abstract: Maternal diabetes has been associated with a greater risk of neurodevelopmental disorders
in offspring. It has been established that hyperglycemia alters the expression of genes and microRNAs
(miRNAs) regulating the fate of neural stem cells (NSCs) during brain development. In this study,
the expression of methyl-CpG-binding protein-2 (Mecp2), a global chromatin organizer and a crucial
regulator of synaptic proteins, was analyzed in NSCs obtained from the forebrain of embryos of
diabetic mice. Mecp2 was significantly downregulated in NSCs derived from embryos of diabetic
mice when compared to controls. miRNA target prediction revealed that the miR-26 family could
regulate the expression of Mecp2, and further validation confirmed that Mecp2 is a target of miR-26b-
5p. Knockdown of Mecp2 or overexpression of miR-26b-5p altered the expression of tau protein and
other synaptic proteins, suggesting that miR-26b-5p alters neurite outgrowth and synaptogenesis
via Mecp2. This study revealed that maternal diabetes upregulates the expression of miR-26b-5p in
NSCs, resulting in downregulation of its target, Mecp2, which in turn perturbs neurite outgrowth
and expression of synaptic proteins. Overall, hyperglycemia dysregulates synaptogenesis that may
manifest as neurodevelopmental disorders in offspring from diabetic pregnancy.

Keywords: maternal hyperglycemia; microRNA; synapse; neurodevelopmental disorders

1. Introduction

Diabetes during pregnancy and the increased risk of neurodevelopmental disorders
in offspring have been well established through recent meta-analyses [1–4]. The offspring
of diabetic mothers show poor cognitive functions [5], language [6] and developmental
delays [7], and thus it is crucial to understand the molecular basis of maternal diabetes-
induced neurodevelopmental deficits. The development and function of the nervous system
are regulated by genetic and epigenetic mechanisms, including DNA methylation. Methyl-
CpG binding domain (MBD) containing proteins dynamically regulate gene expression
and function in the brain [8], by binding to methylated DNA. Methyl-CpG-binding protein-
2 (Mecp2), a multi-functional protein that is implicated in several neurodevelopmental
disorders, including Rett syndrome, a type of autism spectrum disorder (ASD) [9,10], was
the first MBD to be identified. Further, Mecp2 plays a significant role during neurogenesis
and synaptogenesis by regulating a wide network of neurodevelopmental genes and
microRNAs (miRNAs) [11,12], as well as mediating other epigenetic mechanisms [13,14].

Mecp2 has been shown to determine dendritic morphology and synaptic plasticity.
Further, loss or gain of function of Mecp2 is associated with neurological and behavioral
deficits [15], suggesting that precise levels of Mecp2 are crucial for proper brain wiring and
neuronal connectivity. The spatio-temporal expression pattern of Mecp2 has been attributed
to the regulatory potential of its 3’UTR. The 3’UTR is well conserved and extraordinarily
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long, comprising 10.2kb, and contains binding site for several miRNAs, suggesting that
miRNAs fine-tune Mecp2 expression. To date, only seven miRNAs have been shown to
regulate Mecp2 [16].

miRNAs have diverse functions in brain development and diseases. The cell-type-
specific, time-specific and developmental-stage-specific expression of miRNAs regulate the
expression of crucial neurodevelopmental genes and biological pathways. Of the known
miRNAs, 70% are reported to be ubiquitously expressed in all layers of the brain, emphasiz-
ing their role in the central nervous system [17]. We have previously shown that maternal
diabetes alters the global miRNA expression profile in mouse embryonic neural stem cells
(NSCs) [18]. In this study, the miRNA-26 family (namely, miR-26a-5p and miR-26b-5p)
was selected for further analysis as it was predicted to target Mecp2 by bioinformatics
analysis. Further, the miR-26 family showed increased expression in NSCs from embryos
of diabetic pregnancy (fold change = 1.4 to 1.6) and is implicated in proliferation [19],
neurogenesis [20,21] and neuronal differentiation [21,22] during brain development.

We hypothesize that maternal hyperglycemia results in dysregulation of miRNAs, miR-
26a-5p and miR-26b-5p in NSCs, which alter the expression of proteins involved in brain
development. In vitro culture of NSCs obtained from the forebrain of embryos from control
or diabetic pregnant mice was performed [18]. Further validation revealed an increase
in the expression of miR-26b-5p and decreased expression of Mecp2 in mouse embryonic
NSCs from diabetic pregnancy. Overexpression of miR-26b-5p or knockdown of miR-26b-
5p in NSCs altered the expression of Mecp2, suggesting that miR-26b-5p regulates Mecp2.
Moreover, miR-26b-5p overexpression or Mecp2 knockdown in NSCs altered neurite
outgrowth and synaptogenesis in differentiated cells, suggesting that miR-26b-5p regulated
synaptogenesis via Mecp2. Overall, our results suggest that maternal diabetes alters neurite
outgrowth and synaptogenesis via deregulation of the miR-26b-Mecp2 pathway, which
may form the basis for structural and functional defects in developing brains from the
offspring of diabetic pregnant mice.

2. Materials and Methods
2.1. Animals

The animal procedure was performed as previously described [18,23]. The procedures
pertaining to animal usage were approved by the Institutional Animal Care and Use
Committee, National University of Singapore (Protocol Numbers: R14-0154, R15-0030).

2.2. In Vitro Culture of NSCs

The culture of NSCs from the forebrain of E13.5 mouse embryos was carried out as
previously described [18,23]. Briefly, the forebrain was dissected out from embryos and
dissociated. The dissociated cells were washed with PBS and seeded in T-75 flasks (Greiner,
Kremsmunster, Austria) containing a 1:1 ratio of DMEM and F12 media (Thermo Fisher
Scientific, Waltham, MA, USA) with 10 mM/L D-glucose and other supplements. The flasks
were maintained at 37 ◦C and 5% CO2 for 3 to 4 days, after which the neurospheres formed
were dissociated and re-plated. The cells were used for different experiments following
two passages.

2.3. Differentiation of NSCs

Neurospheres were harvested, trypsinized using TryPLE Select and resuspended in
DMEM/F12 medium containing all supplements (listed in Section 2.2) except the growth
factor, EGF. FBS (at a final concentration of 2%) was added to the media to induce differ-
entiation of NSCs. The trypsinized cells were cultured in differentiating media at 37 ◦C
and 5% CO2 for 72 h before using them to observe the expression of synaptic proteins. For
immunofluorescence analysis, the dissociated neurospheres were seeded on 24-well plates
containing ornithine-coated coverslips and incubated for 72 h.
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2.4. Total RNA Extraction

The Qiagen miRNEASY kit (Qiagen GmbH, Hilden, Germany) was used to extract
total RNA. The extracted RNA was quantified and used for mRNA or miRNA analysis.

2.5. cDNA Synthesis and mRNA Analysis

The cDNA synthesis and gene expression analysis were performed as described
previously [18,23]. The delta-delta Ct method was used to determine the fold change in
gene expression [24]. The primers used and their sequences are detailed in Table 1.

Table 1. List of qPCR primers.

Gene Left Primer Right Primer

Mecp2 GGAAGGGACTGAAGACCTGC TGGTGGTGATGATGGTGCTC

β Actin GAAGAGCTATGAGCTGCCTGA GGATTCCATACCCAAGAAGGA

Cltc GCTCCAGAACCTGGGTATCA CAGGATTCATGATGGCACTG

Shank2 TTCCCCCACCACATACAACT GTCCAGGGAAAATCTGTCCA

Neurexin1 AGGACATTGACCCCTGTGAG TGGCATAGAGGAGGATGAGG

Neurexophilin1 AAGTCACGTGTCCTGGCTCT TTAACTCCGCAGGCTTCAGT

2.6. cDNA Synthesis and miRNA Analysis

cDNA was synthesized using the Universal cDNA synthesis kit II (Exiqon, Woburn,
MA, USA). The expression levels of miRNA-26a or miR-26b-5p were determined using
specific primers (primer sequences are listed in Table 2) and ExiLENT SYBR Green Master
Mix (Exiqon) by qRT-PCR (7900 HT, Applied Biosystems). We used the U6 snRNA (Exiqon)
as the internal control. The fold change in miRNA expression was calculated by the
delta-delta Ct method.

Table 2. List of miRNA primers and their sequence.

miRNA Primers Sequence

U6(hsa/rna/mus) CACGAATTTGCGTGTCATCCTT

hsa-miR-26b UUCAAGUAAUUCAGGAUAGGU

hsa-miR-26a UUCAAGUAAUCCAGGAUAGGCU

2.7. Western Blot

Total protein was isolated from NSCs using M-PER extraction reagent (Thermo Fisher
Scientific, Waltham, MA, USA) and quantitated. A 30µg amount of denatured protein was
resolved by SDS-PAGE and transferred to PVDF membranes, and non-specific binding was
reduced by blocking in 5% non-fat milk. Primary antibodies rabbit anti-Mecp2 (1:1000, ab2829,
Abcam, Cambridge, UK), rabbit anti-PSD-95 (1:1000, ab18258, Abcam, Cambridge, UK), rabbit
anti-Synaptophysin (1:1000, ab32127, Abcam, Cambridge, UK), mouse anti-tau (1:1000, Tau46
#4019, Cell Signaling, Danvers, MA, USA), mouse anti-Clathrin1HC (1:1000, SC12734, Santa
Cruz, TX, USA) or mouse anti-beta actin (1:5000, A1978, Sigma-Aldrich, St. Louis, MO, USA)
was added to the PVDF membrane overnight at 4 ◦C. The next day, HRP-conjugated anti-mouse
or anti-rabbit secondary antibodies (1:1000, anti-mouse HRP-31430; anti-rabbit HRP-31460,
Thermo Fisher Scientific) were added. Chemiluminescence signals were captured on X-ray
films, and the bands were quantified (GS-800 densitometer, Bio-Rad, Hercules, CA, USA).

2.8. Transfection of miRNA and siRNA

NSCs obtained from embryos of control mice were trypsinized and seeded in 6-
well plates (1 × 106 cells/well) in Opti-MEM. The cells were transfected with SiGenome
SMARTpool Mecp2 (M-044034-01-0005, Dharmacon, Lafayette, CO, USA) or SiGenome
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Control pool (Table 3, D-001206-13-05, Dharmacon) using DharmaFECT1 (Dharmacon) for
Mecp2 knockdown.

Table 3. List of SMARTpool probes used in the study.

Gene SMARTpool Probes Sequence

Mecp2

D-044034-01 CGAGGAGGCUCACUGGAAA

D-044034-02 ACACGAAAGCUUAAACAAA

D-044034-03 GGACUGAAGACCUGCAAGA

D-044034-04 CAGCUAAGACUCAGCCUAU

siGENOME Non-targeting siRNA pool #1

UAGCGACUAAACACAUCAA
UAAGGCUAUGAAGAGAUAC
AUGUAUUGGCCUGUAUUAG
AUGAACGUGAAUUGCUCAA

A 10 nM amount of miR-26b-5p mimics (Ambion, Thermo Fisher Scientific) or in-
hibitors of miR-26b-5p and the appropriate negative control probes (Table 4, Ambion,
Thermo Fisher Scientific) were transfected in NSCs using lipofectamine RNAiMAX (Thermo
Fisher Scientific). siRNA-lipofectamine complexes in opti-MEM medium were changed
to NSC culture media or differentiation media 6h post-transfection. RNA extraction was
performed 48 h post-transfection while protein was extracted 72 h post-transfection.

Table 4. List of miRNA mimics and inhibitors.

Catalog No. miRNA Mimics Sequence

MC12899 hsa-miR-26b-5p UUCAAGUAAUUCAGGAUAGGU

4464058 Negative control TAACACGTCTATACGCCCA

Catalog No. miRNA inhibitors Sequence

199006-001 Negative control TAACACGTCTATACGCCCA

4104759-001 hsa-miR-26b-5p ACCTATCCTGAATTACTTGA

2.9. Immunofluorescence Analysis

Neurospheres or differentiated NSCs were seeded in poly-L-lysine or poly–L-ornithine-
coated coverslips respectively. The cells were fixed with ice-cold 4% paraformaldehyde (PF)
and permeabilized with 0.1% Triton-X 100 in PBS. Subsequently, 3% normal goat serum
was added to block non-specific binding before incubating with rabbit anti-Mecp2 (1:500,
ab2829, Abcam, Cambridge, UK), rabbit anti-PSD-95 (1:500, ab18258, Abcam, Cambridge,
UK), rabbit anti-Synaptophysin (1:500, ab32127, Abcam, Cambridge, UK) or mouse anti-
tau (1:500, Tau46 #4019, Cell Signaling, MA, USA) overnight at 4 ◦C. Subsequently, cells
were washed and incubated with an anti-mouse or anti-rabbit IgG antibody tagged with
a fluorophore (1:100, Chemicon, Temecula, CA, USA) for 1h at room temperature. DAPI
(1:5000, D-1306, Sigma, MI, USA) was used to counterstain the nucleus. Finally, fluorescent
mounting medium (DAKO, Santa Clara, CA, USA) was used to mount the coverslips onto
the glass slides and the images were captured on a confocal microscope (Olympus FV1000).

2.10. Neurite Outgrowth Assay

Neurite outgrowth assay was carried out in NSCs transfected with miR-26b-5p mimics
or negative control using the neurite outgrowth assay kit (Chemicon, NS220) according to
the manufacturer’s instructions. Cell culture inserts (pre-coated with laminin) containing a
permeable membrane with pores that are 3 µm wide were used to culture the transfected NSCs
in differentiation media. After 48 h of differentiation, the inserts containing the cell bodies on
the top surface and the neurites on the lower surface were fixed and washed. Neurite staining
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solution in the kit was used to stain the neurite, following which the cell bodies were removed
using wet cotton swabs before imaging. The images were taken using an SMZ1500 Zoom
Stereomicroscope (Nikon). The stain extraction solution was used to extract the stain from
inserts and was collected in a 96-well plate. Spectrophotometer Tecan (Infinite F200 PRO) was
used to quantify the neurites, and the absorbance was read at 595 nm.

2.11. Statistical Analysis

The data are represented as mean ± SD from 3–5 independent experiments. Student’s
t-test was performed, and data were considered significant when p ≤ 0.05.

3. Results
3.1. Maternal Diabetes Downregulates the Expression of Mecp2 in Mouse Embryonic NSCs

Firstly, the mRNA and protein expression levels of Mecp2 were quantified in NSCs
from embryos of control and diabetic pregnancies by performing quantitative RT-PCR and
Western blot, respectively. There was a significant decrease in the expression of Mecp2
gene (Figure 1A) and protein (Figure 1B,C) in NSCs from embryos of diabetic mice when
compared to controls. In addition, immunofluorescence analysis confirmed the reduction in
the expression of Mecp2 (arrows) in NSCs from embryos of diabetic mice when compared
to controls (Figure 1D).
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bryos of diabetic mice (closed bars) when compared to controls (open bars). n = 4, * p < 0.05. (B) 
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Figure 1. (A) qRT-PCR analysis revealed decreased expression of Mecp2 gene in NSCs from embryos of
diabetic mice (closed bars) when compared to controls (open bars). n = 4, * p < 0.05. (B) Representative
blot showing decreased expression of Mecp2 protein in NSCs from embryos of diabetic pregnancy
when compared with controls. β actin was used as an internal control. (C) Quantification of bands by
densitometry shows significant downregulation of Mecp2 protein in NSCs from embryos of diabetic mice
(closed bar) when compared to controls (open bar). n = 4, * p < 0.05. (D) Representative confocal images
show decreased expression of Mecp2 protein (arrows) in NSCs from embryos of diabetic pregnancy (right
panel) when compared with controls (left panel). Nuclei are stained blue with DAPI. Scale bar, 50 µm.

3.2. Maternal Diabetes Alters the Expression of miR-26 Family in NSCs from Embryos of
Diabetic Pregnancy

We have previously shown that hyperglycemia deregulates miRNA expression in mouse
embryonic NSCs. From the 104 differentially expressed miRNAs [18], miRNA-26 family
(miR-26a-5p and miR-26b-5p) was selected for further analysis, and Mecp2 was predicted by
TargetScan (mouse) software (version 7.1) to be one of the putative targets of miR-26 family
(Supplementary Figure S1A). Quantitative RT-PCR was carried out to validate the expression
of miR-26a-5p and miR-26b-5p in NSCs from embryos of control and diabetic pregnancies.
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There was a significant increase in the expression of miR-26b-5p (but not miR-26a-5p) in NSCs
from diabetic pregnancy when compared with controls (Figure 2A).
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(open bars). However, the upregulation of miR-26a-5p expression in NSCs from diabetic pregnancy
was not statistically significant, when compared to that of control pregnancy. n ≥ 3, student t-test,
* p < 0.05. (B) qRT-PCR analysis shows >1000-fold upregulation of miR-26b-5p following miR-26b-5p
overexpression. n = 4, student t-test, * p = 0.05. (C) qRT-PCR shows downregulation of Mecp2 gene
following miR-26b-5p overexpression in NSCs from embryos of control pregnancy. n = 4, student
t-test, ** p < 0.01. (D) Representative blot shows decrease in Mecp2 protein expression following
miR-26b-5p overexpression in NSCs from embryos of control pregnancy. β actin was used as an
internal control. (E) Densitometry analysis shows significant decrease in Mecp2 protein expression
following miR-26b-5p overexpression (closed bar) when compared to negative control (open bar).
n = 4, student t-test, ** p < 0.01. (F) miR-26b-5p mimics were used to overexpress miR-26b in NSCs
from embryos of control pregnancy. Confocal images show decrease in Mecp2 protein (arrows)
following miR-26b-5p overexpression (right panel), when compared to that of negative control (left
panel). Nuclei are stained with DAPI. miR-26b-5p OE: miR-26b-5p overexpression. Scale bar, 5 µm.
(G) Representative blot shows increase in Mecp2 protein expression following miR-26b-5p inhibition
in NSCs from embryos of control pregnancy, when compared to that of negative control. β actin
was used as an internal control. (H) Densitometry analysis shows significant increase in Mecp2
protein expression (closed bar) following miR-26b-5p inhibition in NSCs from embryos of control
pregnancy, when compared to that of negative control (open bar). n = 4, * p < 0.05. Nc—Negative
control, miR-26b-5p OE—Overexpression of miR-26b-5p.

3.3. miR-26b-5p Regulates Mecp2 in NSCs

To estimate the role of miR-26b in NSCs, loss- and gain-of-function analysis using
LNA-modified miR-26b-5p inhibitors or mimics were carried out respectively. miR-26b-5p
was overexpressed in NSCs using miR-26b-5p mimics and the expression was quantified
by qRT-PCR (Figure 2B). Further analysis showed that miR-26b-5p overexpression resulted
in a significant downregulation in both mRNA (Figure 2C) and protein levels of Mecp2
(Figure 2D,E). Immunofluorescence analysis further confirmed the decrease in Mecp2
protein expression following overexpression of miR-26b-5p in NSCs (Figure 2F). On the
other hand, inhibition of miR-26b-5p in NSCs resulted in a significant upregulation of
Mecp2 protein (Figure 2G,H). Taken together, the results suggest that Mecp2 is a target
of miR-26b-5p.

3.4. miR-26b-5p Perturbs Synaptic Milieu via Mecp2 in NSCs

The formation of synapses is crucial for the establishment of neuronal network and
brain circuitry [25]. The miR-26 family has been found to regulate neurite outgrowth and
the synaptic plasticity [26], while Mecp2 expression levels have been shown to influence
the structure of dendrites and number of synapses [27–30]. Thus, we explored the role
of miR-26b-5p and its target gene Mecp2 in neurite outgrowth (the first step during the
formation of axons and dendrites) and synaptogenesis (by examining the expression of
specific synaptic markers).

Firstly, we analyzed the effects of miR-26b-5p overexpression on the expression of
Synaptophysin, a pre-synaptic marker and post-synaptic density protein-95 (PSD-95, also
known as Disks large homolog 4 (DLG4)). PSD-95, a member of the PDZ scaffolding
protein family, is a well-established post-synaptic protein that stabilizes young synapses
and anchors other synaptic proteins to post-synaptic densities [31,32]. Synaptophysin is a
pre-synaptic vesicle protein present in the neurites during brain development and regulates
synaptic vesicle cycling [33,34]. miR-26b-5p was overexpressed in NSCs and the cells
were allowed to differentiate for 72h. Our results showed that miR-26b-5p overexpression
resulted in a significant increase in Synaptophysin and a significant decrease in PSD-95
protein expressions in differentiating cells (Figure 3A,B). In addition, immunofluorescence
analysis confirmed a moderate increase in Synaptophysin protein (Figure 3C) and the
decrease in PSD-95 (Figure 3D) in differentiating cells following miR-26b-5p overexpression.
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down of Mecp2. n = 4, ** p < 0.01, * p < 0.05. (G) Confocal images show an increase in Synaptophysin 
in NSCs following Mecp2 knockdown (right panels) when compared to that of negative control 
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found to be nearly 40%. Knockdown of Mecp2 in NSCs resulted in significant upregula-
tion of Synaptophysin protein and significant downregulation of PSD-95 following differ-
entiation (Figure 3E,F), which correlated with the results obtained following miR-26b-5p 
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Figure 3. (A) Representative blots showing the expression of Mecp2, PSD-95 and Synaptophysin in NSCs
following miR-26b-5p overexpression. β actin was used as an internal control. (B) Densitometry analysis
shows significant downregulation in Mecp2 and PSD-95 proteins, and upregulation in Synaptophysin
protein in NSCs following miR-26b-5p overexpression (closed bars) compared to that of negative control
(open bars). Nc—Negative control, miR-26b OE—Overexpression of miR-26b-5p. n = 3, * p < 0.05.
miR-26b-5p was overexpressed in NSCs from embryos of control pregnancy, and immunoexpression of
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Synaptophysin and PSD-95 was observed using confocal microscopy. (C,D) Confocal images show
an increase in expression of Synaptophysin (C) and a decrease in expression of PSD-95 (D) in NSCs
following miR-26b-5p overexpression (right panel) when compared to that of negative control (left
panel). Scale bar, 10 µm. Nuclei are stained with DAPI. (E) Representative blots showing expression
of Mecp2, PSD-95 and Synaptophysin in NSCs following Mecp2 knockdown. β actin was used as an
internal control. (F) Densitometry analysis shows significant downregulation of Mecp2 and PSD-95
protein expression and upregulation of Synaptophysin protein expression in NSCs following Mecp2
knockdown. Nc—Negative control, Mecp2 KD—Knockdown of Mecp2. n = 4, ** p < 0.01, * p < 0.05.
(G) Confocal images show an increase in Synaptophysin in NSCs following Mecp2 knockdown (right
panels) when compared to that of negative control (left panels). Nuclei are stained with DAPI. Scale
bar, 10 µm.

In order to verify that miR-26b-5p alters the expression of synaptic proteins via Mecp2,
siRNA-mediated knockdown of Mecp2 in NSCs from embryos of control mice were per-
formed and the expression of synaptic proteins, PSD-95 and Synaptophysin were analyzed
upon differentiation of NSCs. The knockdown efficiency of Mecp2 in NSCs was found
to be nearly 40%. Knockdown of Mecp2 in NSCs resulted in significant upregulation of
Synaptophysin protein and significant downregulation of PSD-95 following differentiation
(Figure 3E,F), which correlated with the results obtained following miR-26b-5p overexpres-
sion. Moreover, immunofluorescence analysis of differentiating cells revealed an increase
in Synaptophysin protein (Figure 3G) following Mecp2 knockdown when compared to
negative control.

3.5. miR-26b-5p Enhances Neurite Formation via Mecp2 in NSCs

During brain development, neuritogenesis (formation of neuronal processes, such as
axon and dendrites) is an important step as it forms the basis for synaptogenesis [35]. In
view of this, a neurite outgrowth assay was performed in which NSCs overexpressed with
miR-26b-5p were seeded on cell culture inserts and allowed to differentiate for 48 h. Our
results showed significantly increased neurite outgrowth in differentiating cells overex-
pressed with miR-26b-5p when compared to that of negative control (Figure 4A,B).

During neurite outgrowth, there is an increase in the expression of Tau protein, which
determines the polarity of neurons [36]. Since Tau protein decides the fate of neurites (to
become an axon or a dendrite) and neurites are important components of synaptogenesis,
the expression of Tau in differentiating cells following miR-26b-5p overexpression and
Mecp2 knockdown was analyzed. There was a significant decrease in the expression of
Tau protein upon differentiation (Figure 4C,D) in miR-26b-5p overexpressed NSCs when
compared to negative control. Furthermore, the confocal immunofluorescence images
revealed a decrease in Tau-positive axonal projections (Figure 4E, right panels) in differenti-
ated cells following miR-26b-5p overexpression when compared to that of negative control
(Figure 4E–left panels).

Similarly, there was a significant downregulation of Tau protein in differentiating cells
following Mecp2 knockdown (Figure 4F,G). In addition, immunofluorescence analysis of
NSCs revealed the decrease in Tau-positive axonal projections (Figure 4H, right panels)
in differentiated cells following Mecp2 knockdown when compared to negative control
(Figure 4H, left panels). Taken together, the findings suggest that miR-26b mediates
the process of neurite outgrowth and tau expression by regulating the expression of its
target Mecp2.

3.6. miR-26b-5p Deregulates Synaptic Vesicle Cycling in NSCs

Next, we examined the expression of several synaptic proteins that are predicted
targets of miR-26b-5p. Using the TargetScan (mouse) software, Shank2, Clathrin HC-1,
Neurexophilin1 and Neurexin1 were predicted as targets of miR-26b-5p (Supplementary
Figure S1B). qRT-PCR was performed to analyze the expression of the synaptic genes in
NSCs from embryos of control and diabetic mice (primers are listed in Table 1). The mRNA
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expression levels of Neurexophilin1 (Nxph1) and Clathrin HC-1 (Cltc) were significantly
upregulated in NSCs from embryos of diabetic pregnancy when compared to controls
(Figure 5A). Furthermore, the mRNA expression of Nxph1 and Cltc were analyzed in
NSCs following overexpression of miR-26b-5p. Cltc gene was found to be significantly
upregulated (nearly 15 folds), while Nxph1 was downregulated in NSCs following miR-
26b-5p overexpression when compared with negative control (Figure 5B).
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protein in NSCs following miR-26b-5p overexpression. (D) Densitometry analysis shows significant 
downregulation of Tau protein (closed bar) in NSCs following miR-26b-5p overexpression, when 
compared to that of negative control (open bar). Nc—Negative control, miR-26b-5p OE—miR-26b-
5p overexpression. n = 4, *** p < 0.001. (E) Confocal images showing decrease in Tau-positive axonal 
projections in NSCs following miR-26b-5p overexpression ((right panels), arrows) when compared 
to that of negative control (left panels). Nuclei are stained with DAPI. Nc—Negative control, miR-
26b-5p OE—miR-26b-5p overexpression. n = 3, * p < 0.05. Scale bar 10 µm. (F) Representative blots 
showing expression of Tau protein in NSCs following Mecp2 knockdown. β actin was used as an 
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Figure 4. (A) Microscopic images showing increased number of neurites in NSCs overexpressed
with miR-26b-5p (right panel) following differentiation, when compared to that of negative control
(left panel). (B) The optical density was measured at absorbance 595 nm following extraction of the
stain using stain extraction solution. There was a significant increase in optical density in NSCs
following miR-26b-5p overexpression (closed bar) when compared to that of negative control (open
bar). (C) Representative blots showing the expression of Tau protein in NSCs following miR-26b-5p
overexpression. β actin was used as an internal control. There was a marked downregulation in Tau
protein in NSCs following miR-26b-5p overexpression. (D) Densitometry analysis shows significant
downregulation of Tau protein (closed bar) in NSCs following miR-26b-5p overexpression, when
compared to that of negative control (open bar). Nc—Negative control, miR-26b-5p OE—miR-26b-5p
overexpression. n = 4, *** p < 0.001. (E) Confocal images showing decrease in Tau-positive axonal
projections in NSCs following miR-26b-5p overexpression ((right panels), arrows) when compared
to that of negative control (left panels). Nuclei are stained with DAPI. Nc—Negative control, miR-
26b-5p OE—miR-26b-5p overexpression. n = 3, * p < 0.05. Scale bar 10 µm. (F) Representative
blots showing expression of Tau protein in NSCs following Mecp2 knockdown. β actin was used
as an internal control. (G) Densitometry analysis shows significant decrease in Tau expression in
NSCs following Mecp2 knockdown (closed bar) when compared to that of negative control (open
bar). Nc—Negative control, Mecp2 KD—Mecp2 knockdown. n = 4, * p < 0.05. (H) Confocal images
showing decrease in Tau-positive axonal projections (arrows) in differentiated cells following Mecp2
knockdown (right panel) when compared to negative control (left panels). Nuclei are stained with
DAPI. Scale bar: upper panels, 20 µm; lower panels, 50 µm.
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Figure 5. (A) The mRNA expression level of Neurexin1, Neurexophilin1, Cltc and Shank2 were 
quantified in NSCs from embryos of control and diabetic pregnancy. Out of the four genes analyzed, 
Neurexophilin1 and Cltc genes showed a significant increase in NSCs from diabetic pregnancy 
(closed bars) when compared to that of control pregnancy (open bars). n = 4, * p < 0.05. (B) NSCs 
were transfected with miR-26b-5p mimics and negative control probes and the expression levels of 
Neurexophilin1 and Cltc were analyzed using qRT-PCR. The mRNA expression of Cltc showed a 
significant increase in NSCs following miR-26b-5p overexpression (closed bar) when compared to 
negative control (open bar). Nc—Negative control, miR-26b-5p OE—miR-26b-5p overexpression. n 
= 4, * p < 0.05. (C) Representative blot showing expression of CLH1 protein in NSCs from embryos 
of control and diabetic pregnancy. There is an increase in expression of CLH1 protein in NSCs from 
diabetic pregnancy when compared to that of control. β actin was used as an internal control. (D) 
Densitometry quantification revealed that CLH1 expression is significantly increased in NSCs from 

Figure 5. (A) The mRNA expression level of Neurexin1, Neurexophilin1, Cltc and Shank2 were
quantified in NSCs from embryos of control and diabetic pregnancy. Out of the four genes analyzed,
Neurexophilin1 and Cltc genes showed a significant increase in NSCs from diabetic pregnancy (closed
bars) when compared to that of control pregnancy (open bars). n = 4, * p < 0.05. (B) NSCs were trans-
fected with miR-26b-5p mimics and negative control probes and the expression levels of Neurexophilin1
and Cltc were analyzed using qRT-PCR. The mRNA expression of Cltc showed a significant increase in
NSCs following miR-26b-5p overexpression (closed bar) when compared to negative control (open bar).
Nc—Negative control, miR-26b-5p OE—miR-26b-5p overexpression. n = 4, * p < 0.05. (C) Representa-
tive blot showing expression of CLH1 protein in NSCs from embryos of control and diabetic pregnancy.
There is an increase in expression of CLH1 protein in NSCs from diabetic pregnancy when compared
to that of control. β actin was used as an internal control. (D) Densitometry quantification revealed
that CLH1 expression is significantly increased in NSCs from diabetic pregnancy (closed bar) when
compared to control (open bar). C-Control, D-Diabetic. n = 3, * p < 0.05. (E) Representative blot showing
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expression of CLH1 protein in NSCs following Mecp2 knockdown. β actin was used as an internal
control. There is an increase in CLH1 expression in NSCs following Mecp2 knockdown when
compared to that of negative control. β actin was used as an internal control. (F) Densitometry
analysis shows significant increase in CLH1 protein expression in NSCs following Mecp2 knockdown
(closed bar) when compared to that of negative control (open bar). Nc—Negative control, Mecp2
KD—Mecp2 knockdown. n = 4, * p < 0.05.

The Cltc gene encodes the Clathrin Heavy Chain 1 (CLH1) protein, which forms
the major part of coating pits and vesicles involved in receptor-mediated endocytosis
and is important for various neurodevelopmental processes such as cell fate specification,
determining neuronal polarity, migration, axonal guidance and outgrowth [37]. Since
Cltc gene was observed to be significantly upregulated in NSCs from embryos of diabetic
pregnancy, the expression of the encoded protein CLH1 was analyzed. Western blot analysis
revealed significant upregulation of CLH1 in NSCs from diabetic pregnancy (Figure 5C,D).

Furthermore, recent proteomic studies suggest dysregulated Clathrin-mediated en-
docytosis in Mecp2 mutant models [38]. Since it is possible that upregulation of CLH1
in NSCs of embryos from diabetic pregnancy and in NSC following miR-26b-5p overex-
pression is mediated via Mecp2, we examined the expression of CLH1 following mecp2
knockdown. We observed that the expression of CLH1 was upregulated significantly in
NSCs following Mecp2 knockdown (Figure 5E,F), indicating that miR-26b-5p may regulate
CLH1 via Mecp2.

4. Discussion

The maternal environment influences normal brain development and function during
embryogenesis [39]. Metabolic alterations such as hyperglycemia during pregnancy have
been found to result in a spectrum of congenital neurological defects, including structural and
long-term functional defects [40], which determine the health and behavior of the offspring.
Though early diagnosis and appropriate management of diabetes during pregnancy have
reduced the incidence of structural defects such as neural tube defects (NTDs) in humans to a
greater extent, infants of diabetic mothers are at risk of neurofunctional deficits later in life [41].
A recent meta-analysis showed a significant association between maternal diabetes and the
risk of neurodevelopmental disorders, including autism in offspring [1,2,42]. Therefore, it
is important to identify and understand the molecular mechanisms underlying maternal
diabetes-induced changes in brain development and function.

The normal development of the brain begins with neurulation, and diverse processes
such as proliferation, migration, differentiation, synaptogenesis, synaptic pruning and
myelination are critical determinants of brain function since they mediate precise wiring in
the brain [43,44]. These processes have been shown to be regulated by several molecules,
including Mecp2. Altered Mecp2 expression has been implicated in many neurodevel-
opmental disorders such as Rett syndrome, mental retardation, epilepsy and Angelman
syndrome [45]. Specifically, loss of Mecp2 is associated with defective synaptogenesis [45].
Mecp2 is a highly complex protein and its transcript generates two protein isoforms, namely
Mecp2-e1 and e2 that are 498 and 486 amino acids long in humans (501 and 484 amino
acids long in mice) and have differences in the N-terminal [46]. The longer isoform (i.e.,
Mecp-e1) has been shown to be the predominant isoform in the brain of humans and
mice [47]. Mecp2 is known to be regulated by microRNAs and DNA methylation, as well as
post-translational modifications such as phosphorylation, sumoylation and acetylation. To
date, at least seven microRNAs (miR-7b, miR-22, miR-124a, miR-132, miR-212, miR-483-5p,
and miR-511) [16] have been found to target and regulate the expression of Mecp2 in the
brain. However, it is predicted that Mecp2 has complementarity to several more miRNAs
as it has a large 3’UTR [48].

In our study, we used NSCs differentiated for 72h to examine the early changes in
neurite formation and expression of synaptic markers. It has been shown that rat NSCs
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can express low levels of pre-synaptic and post-synaptic genes. Further these studies
showed that, on Day 5 post-differentiation, the expression of synaptic proteins such as
Synaptophysin was localized to the perinuclear region (similar to our immunostaining re-
sults), suggesting that immature differentiating neurons also express synaptic proteins [49].
Moreover, both Synaptophysin and PSD-95 are known to be associated with Mecp2, and the
expression patterns of these proteins have been shown to be Mecp2 dependent [30,50,51].
Synaptophysin is an early synaptic vesicle protein that is found in abundance in both
inhibitory and excitatory synapses during synaptogenesis, and mediates synaptic stabil-
ity [33]. In humans, Synaptophysin expression has been reported in developing brains since
mid-gestation until early adulthood [51,52]. Furthermore, Synaptophysin also has diverse
roles such as calcium binding, channel formation, exocytosis and recycling of synaptic
vesicles by endocytosis [52], and an increase in Synaptophysin expression is attributed
to an increase in synaptic activity [53,54]. PSD-95 is a membrane protein that is a potent
scaffolder during development and aids in maintaining the structure and strength of the
post-synaptic densities in excitatory synapses [55,56]. PSD-95 is localized to dendritic
spines, an important component of synapses, and found to alter their morphology and
stability [57]. Deregulation of PSD-95 expression is associated with neurological disorders,
including schizophrenia and Fragile X syndrome [58–60]. Moreover, PSD-95 is essential for
the maturation and stabilization of excitatory synapses [61]. In our study, the expression
of PSD-95 was downregulated, while Synaptophysin was upregulated in NSCs following
miR-26b-5p overexpression or Mecp2 knockdown, suggesting that Mecp2/miR-26b-5p
may regulate the maturation of synapses [62].

Neurites are vital components in synaptogenesis as they mature into either axons or
dendrites [63]. Since axons and dendrites are inevitable components in a synapse, assessing
the ability of differentiating NSCs to form neurites following miR-26b-5p overexpression is
deemed necessary to understand the role of miR-26b-5p in synaptogenesis. The significant
increase in neurite number (as observed by optical density value) in NSCs overexpressed
with miR-26b-5p, when compared to negative control, emphasizes the role of miR-26b-5p in
inducing neurite formation. Primarily, the stabilization of Tau protein is essential for a neurite
to mature into an axon or dendrite. Tau determines the polarity of NSCs as the neurite that
expresses Tau becomes the axon while the other neurites become dendrites [36]. Furthermore,
Mecp2 has also been shown to regulate the expression of Tau [64]. In the present study, the
expression of Tau protein was found to be downregulated in NSCs following miR-26b-5p
overexpression, and in NSCs following Mecp2 knockdown. Thus, the reduced Tau expression
impedes the polarization of differentiating NSCs, i.e., the axonal and dendritic compartments
are not well defined, and hence the neurites fail to attain maturity. Taken together, the
inverse expression pattern between Synaptophysin and PSD-95 proteins, downregulated Tau
expression and the presence of increased immature neurites suggest the presence of increased
immature synapses in NSCs following miR-26b-5p overexpression.

Among the putative targets of miRNA-26b, Cltc showed a stark increase in NSCs
following miR-26b-5p overexpression (~15-fold increase). Generally, living cells internalize
molecules from their environment using a process called endocytosis. Endocytosis can
occur by five mechanisms of which Clathrin-mediated endocytosis is a classical model
of internalization [65]. During embryogenesis, the prime function of Clathrin-dependent
machinery in the embryonic cells is to deliver the extracellular cues that are essential for
proper synaptic formation, axonal outgrowth and dendritic maintenance [66]. Synapses
are enriched with Clathrin, a predominant vesicular coat protein, and the synaptic vesicle
cycling is pivotal for the normal function of a synapse [67]. An increase in Clathrin-
coated vesicles (CCV) and Clathrin expression was observed in the brains of Auxillin (a
co-chaperone protein required for Clathrin uncoating) knockout mice, in which the process
of Clathrin-dependent endocytosis was impaired, leading to postnatal mortality [68]. In
the present study, CLH1 protein expression was observed to be increased in NSCs from
embryos of diabetic pregnancy and in NSCs following miR-26b overexpression. Further,
upregulation of CLH1 in NSCs following Mecp2 knockdown indicates that there is im-
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pairment in the Clathrin-dependent endocytic machinery in differentiated NSCs, which
may lead to stagnation of CCVs in the synapse and thus disrupt synaptogenesis [68]. So
far there is no direct evidence showing Mecp2-mediated regulation of Clathrin. Recent
proteomic studies suggest that Clathrin-mediated endocytosis is dysregulated in Mecp2
mutant Rett syndrome models [38]. The current results suggest a potential interaction
between Mecp2 and Clathrin, since CLH1 was upregulated upon knockdown of Mecp2 as
well as in NSCs from diabetic pregnancy (in which Mecp2 expression was downregulated).
However, further studies are required to validate the interaction between Mecp2 and CLH1.
Overall, maternal diabetes appears to disrupt Mecp2-mediated synaptic plasticity, and
Clathrin-mediated endocytosis that is required for recycling synaptic vesicles [69].

Several studies have demonstrated that altered synaptogenesis and synaptic functions
underlie several neurological diseases (reviewed in [70,71]) since proper synaptic commu-
nication is required for precise brain function. From the results obtained, it appears that
maternal diabetes perturbs synaptogenesis and synaptic functions in differentiated cells
via miR26b and its target Mecp2, which may contribute to neurodevelopmental disorders
in offspring.

5. Conclusions

In this study, we showed that Mecp2 expression is epigenetically regulated during
brain development via miR-26b, and that deregulation of miR-26b-Mecp2 in NSCs and
synaptogenesis in differentiating neurons derived from embryos of diabetic pregnancy
may underlie neurodevelopmental disorders associated with maternal diabetes (Figure 6).
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