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Abstract: Exercise has proven cardiac benefits, but the underlying mechanisms of exercise that protect
the heart from acute sympathetic stress injuries remain unknown. In this study, adult C57BL/6J
mice and their AMP-activated protein kinase α2 knockout (AMPKα2−/−) littermates were either
subjected to 6 weeks of exercise training or housed under sedentary conditions and then treated with
or without a single subcutaneous injection of the β-adrenergic receptor (β-AR) agonist isoprenaline
(ISO). We investigated the differences in the protective effects of exercise training on ISO-induced
cardiac inflammation in wild-type (WT) and AMPKα2−/− mice using histology, enzyme-linked
immunosorbent assay (ELISA) and Western blotting analyses. The results indicated that exercise
training alleviated ISO-induced cardiac macrophage infiltration, chemokines and the expression of
proinflammatory cytokines in wild-type mice. A mechanism study showed that exercise training
attenuated the ISO-induced production of reactive oxygen species (ROS) and the activation of
NLR Family, pyrin domain-containing 3 (NLRP3) inflammasomes. In cardiomyocytes, the ISO-
induced effects on these processes were inhibited by AMP-activated protein kinase (AMPK) activator
(metformin) pretreatment and reversed by the AMPK inhibitor (compound C). AMPKα2−/− mice
showed more extensive cardiac inflammation following ISO exposure than their wild-type littermates.
These results indicated that exercise training could attenuate ISO-induced cardiac inflammation by
inhibiting the ROS-NLRP3 inflammasome pathway in an AMPK-dependent manner. Our findings
suggested the identification of a novel mechanism for the cardioprotective effects of exercise.

Keywords: acute sympathetic stress; exercise training; NLR family, pyrin domain-containing 3;
AMP-activated protein kinase

1. Introduction

Cardiovascular diseases (CVDs) are still the number one risk factor threatening human
life and health [1]. Acute sympathetic stress resulting in β-adrenergic receptor (β-AR)
over-activation is an important pathological factor in cardiac diseases [2]. It is well known
that acute sympathetic stress is usually unpredictable [3,4] and the current treatment
method following cardiac injuries is symptomatic support treatment as cardiac pathological
remodeling, which is difficult to reverse, once it has already occurred [5,6]. Therefore,
we urgently need an effective way to prevent cardiac injuries that are caused by acute
sympathetic stress.
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An increasing body of evidence has demonstrated that exercise training can improve
status and outcomes in patients with existing cardiovascular diseases [7,8] and reduce the
risks of the occurrence of cardiovascular diseases and cardiovascular events [9]. Epidemi-
ological studies have demonstrated that higher numbers of steps per day are associated
with reduced CVD risk, incidence and mortality [10]. The results of meta-analyses and
systematic reviews have also shown that engaging in physical activity leads to a reduced
risk of cardiovascular disease mortality [11], a reduced all-cause hospitalization rate for
patients with heart failure (HF) and a reduced hospitalization rate for HF [12]. Acute sym-
pathetic stress can trigger and aggravate cardiac diseases. The main pathological basis of
acute sympathetic stress-induced cardiac injuries is cardiac remodeling, including cardiac
inflammatory response, cardiac fibrosis and cardiomyocyte apoptosis. Inflammation is a
common pathological driver for the development and progression of CVDs [13]. Several
studies have found that exercise can suppress cardiac inflammation; for example, exercise
training has been shown to improve cardiac inflammation in aging patients [14], as well
as chronic heart failure [15]. However, it remains unclear as to whether and how exercise
training has protective effects against sympathetic stress-induced cardiac inflammation.

In our previous study, we found that acute sympathetic stress activated β-AR and
induced NLR Family, pyrin domain-containing 3 (NLRP3) inflammasome activation and
IL-18 cleavage, which, in turn, led to the release of chemokines and pro-inflammatory
cytokines in cardiac tissue, resulting in cardiac dysfunction [16]. Numerous studies have
confirmed that the inflammatory response can aggravate tissue necrosis and apoptosis in
myocardial pathologic injuries and that NLRP3 inflammasomes play an important role
in this process [17–19]. It is unknown whether exercise can inhibit the cardiac NLRP3
inflammasome activation that is induced by acute sympathetic stress.

The occurrence and development of inflammation are closely related to cell energy
metabolism. The AMP-activated protein kinase (AMPK) is a key kinase in maintaining
cell energy homeostasis, and research has shown that AMPK has an extremely important
regulatory function in the inflammatory response [20]. Our previous findings showed that
4 weeks of swimming training alleviated isoprenaline (ISO)-induced cardiac fibrosis and
oxidative stress in WT mice, but not in AMPKα2−/− mice [21]. Therefore, we proposed
a study on whether exercise training could alleviate acute sympathetic stress-induced
cardiac inflammation by activating AMPK to inhibit the excessive activation of NLRP3
inflammasomes in the heart.

Thus, in our present study, we investigated the protective effects of exercise train-
ing against β-AR overactivation-induced cardiac inflammation. We also identified the
underlying in vivo and in vitro mechanisms by which exercise training inhibited β-AR
overactivation-induced cardiac NLRP3 inflammasome activation and inflammation in an
AMPK-dependent manner.

2. Results
2.1. Exercise Training Attenuated Isoprenaline-Induced Cardiac Inflammation

We initially tested whether exercise training could attenuate the cardiac inflammation
induced by ISO insult. We created a working model of the animal exercise training protocol,
experimental strategy and schedule (Figure 1A). The macrophage marker Mac-3-positive ar-
eas in the mouse hearts significantly increased on the third day following the ISO injection,
but pretreatment with exercise training could significantly reduce these increases, sug-
gesting that exercise training could reduce ISO-induced macrophage infiltration in mouse
hearts (Figure 1B,C). At the same time, we performed cardiac ultrasound examinations
on the WT mice 3 days after ISO stimulation and found that cardiac diastolic and systolic
functions were not altered in the ISO group (Figure S1A–C). We also found that hypertro-
phy and fibrosis did not occur in the hearts of mice 3 days after ISO stimulation (Figure
S2A,B,E,F). Our previous study found increases in chemokines (monocyte chemoattractant
protein-1 (MCP-1) and monocyte chemoattractant protein-1 (MCP-5)) during ISO-induced
cardiac inflammation, which were induced by the cleavage-activated interleukin-18 (IL-18),
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but not interleukin-1β (IL-1β), and these chemokines, in turn, contributed to macrophage
infiltration and cardiac inflammatory responses [16]. On the first day following the ISO
injection, the mice in the sedentary group had significantly higher levels of inflammatory
markers, such as MCP-1 (Figure 1D), MCP-5 (Figure 1E) and IL-18 (Figure 1F), in their
cardiac tissue; in contrast, the mice in the exercise training group had lower levels of these
inflammatory factors. Moreover, no significant changes of IL-1β contents were observed in
the heart at 1 or 3 days after ISO treatment (Figure S3A).
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Figure 1. Exercise training could inhibit ISO-induced cardiac inflammation: (A) a pattern diagram of
the experimental exercise training protocol; (B,C) representative immunostainings and quantifications
of Mac-3 (macrophage marker) in the hearts on the third day after ISO treatment (bar = 500 µm);
(D–F) the concentrations of MCP-1 (D), MCP-5 (E) and IL-18 (F) in the myocardium of the mice,
which were determined using ELISA kits. Note: ISO, isoprenaline; WT, wild-type; Running, exercise
training; MCP-1, monocyte chemoattractant protein-1; MCP-5, monocyte chemoattractant protein-5;
IL-18, interleukin-18; n = 6. The data are the mean ± SEM from a one-way ANOVA with a Tukey’s
post-hoc test.

2.2. Exercise Training Alleviated Isoprenaline (ISO)-Induced Reactive Oxygen Species (ROS)
Production and Inflammasome Activation

In the sedentary mice group, inflammasomes were activated, as evidenced by the
increases in the caspase-1 and NLRP3 protein levels in the mouse hearts on the first day
following ISO insult (Figure 2A,C,D), whereas the pro-caspase-1 levels showed no change
(Figure 2B). The levels of ROS (Figure 2E,F) and intercellular adhesion molecule 1 (ICAM-1)
(Figure 2G,H) increased on the first day after ISO insult, which was consistent with the
preceding changes in inflammatory activation. Compared to the sedentary group, the
exercise-training mice had reduced ROS and adhesion molecule (ICAM-1) production and
inflammasome activation levels. These findings showed that exercise training prevented
the ISO-induced activation of cardiac inflammasomes.
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Figure 2. Exercise training inhibited the ISO-induced activation of NLRP3 inflammasomes and
increases in ROS and ICAM-1 production: (A) the Western blot analysis of pro-caspase-1, caspase-1
and NLRP3 levels in WT mice heart tissue; (B–D) the quantitative analysis of the relative protein
expression of (B) pro-caspase-1, (C) caspase-1 and (D) NLRP3 in the mouse heart tissue; (E,F) (E)
the fluorescent microscopy of representative DHE staining for ROS levels in the left ventricle (LV)
sections from wild-type mice (bar = 50 µm) and (F) the quantification of the fluorescence intensity
of DHE in the heart sections; (G,H) (G) the fluorescent microscopy of representative staining for
ICAM-1 levels in the left ventricle (LV) sections from wild-type mice (bar = 50 µm) and (H) the
quantification of the fluorescence intensity of ICAM-1 in the heart sections. Note: ISO, isoprenaline;
Running, exercise training; WT, wild-type; LV, left ventricle; CD31, vascular endothelial cell maker;
ICAM-1, intercellular adhesion molecule 1; n = 6. The data are the mean ± SEM from a one-way
ANOVA with a Tukey’s post-hoc test.
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2.3. AMP-Activated Protein Kinase (AMPK) Activation Alleviated Isoprenaline-Induced
Inflammasome Activation in Cardiomyocytes

Engaging in exercise training for 6 weeks significantly increased the level of AMPK
phosphorylation compared to that in animals under sedentary conditions, showing the
effects of AMPK activation (Figure 3A,B). We measured the heart rate and blood pressure
of the mice and found no changes in heart rate or blood pressure at 1 or 3 days after ISO
insult (Figure S4), while mice in the exercise group showed a decrease in heart rate and no
variation in blood pressure. The plasma levels of catecholamines were also determined and
we found that ISO stimulation increased catecholamines (Figure S5); however, exercise was
able to downregulate the levels of catecholamines. Exercise training with ISO treatment
also enhanced AMPK phosphorylation compared to that in the sedentary group. We
used an AMPK activator (metformin) to mimic the process of AMPK activation at the
cellular level and demonstrate that the activation of AMPK could be an important reason
for the reduction in myocardial inflammation after exercise training. Before stimulating
cardiomyocytes with ISO (10 µM), we pretreated the cardiomyocytes with the AMPK
activator (metformin, 1 mM) or AMPK inhibitor (compound C, 0.1 µM) for 30 min. In
addition, in order to verify that the effect of the metformin was AMPK-dependent, we used
metformin and compound C to treat cells at the same time to inhibit metformin-induced
AMPK activation (Figure 3C). Our results showed that AMPK activator pretreatment could
reduce the level of ISO-induced NLRP3 and caspase-1 (P20) inflammasome activation in
cardiomyocytes. In contrast, these effects of the AMPK activator were reversed by the
AMPK inhibitor (Figure 3D–G). Additionally, we found that pretreatment with the AMPK
activator prevented ISO-induced ROS production (Figure 3H,I). Based on these results,
the ISO-induced inflammasome activation in cardiomyocytes appeared to be inhibited by
AMPK activation.

2.4. Exercise Training Failed to Reduce Isoprenaline-Induced Cardiac Inflammation in
AMPKα2−/− Mice

We then investigated whether AMPK was critical for the inhibitory effect of exercise
training on ISO-induced cardiac inflammation. AMPKα2−/− mice underwent identical
procedures to those presented in Figure 1A, including exercise training or sedentary activity
with or without ISO administration (Figure 4A). Macrophage infiltration was enhanced
in the hearts of AMPKα2−/− animals in the exercise training group on day 3 after ISO
treatment, as demonstrated by the immunohistochemistry labeling of the macrophage
marker Mac-3 (Figure 4B,C). Similarly, we performed a cardiac ultrasonography examina-
tion on the AMPKα2−/− mice 3 days after ISO stimulation and found that there were no
significant changes in the cardiac diastolic and systolic function of the mice (Figure S1D–F).
We also found that hypertrophy and fibrosis did not occur in the hearts of mice 3 days after
ISO stimulation (Figure S2C,D,G,H). Hence, exercise training did not reduce ISO-induced
macrophage infiltration in AMPKα2−/− mice. Similarly, exercise training did not decrease
the elevated levels of chemokine factor MCP-1 (Figure 4D), MCP-5 (Figure 4E) or proin-
flammatory cytokine IL-18 (Figure 4F) induced by ISO treatment in AMPKα2−/− mice.
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Figure 3. Exercise could activate AMPK, and AMPK activation could inhibit ISO-induced ROS
production and NLRP3 inflammasome activation in NMCMs: (A,B) (A) the Western blot analysis of
the protein levels of phosphorylated and total AMPK in wild-type mice under sedentary or exercise
training conditions and (B) the quantification of phosphorylated AMPK relative to total AMPK;
(C) a pattern diagram of the experimental protocol for the NMCMs (the NMCMs were pretreated
with an AMPK activator (1 mM of metformin), AMPK inhibitor (0.1 µM of compound C) or AMPK
activator (metformin) + AMPK inhibitor (compound C) for 30 min and then treated with ISO (10 µM)
for 1 h); (D–G) (D) the protein levels of p-AMPK, NLRP3 and caspase-1 (p20) at 1 h after ISO
(10 µM) treatment in mouse cardiomyocytes that were pretreated with the AMPK activator (1 mM
of metformin) or AMPK inhibitor (0.1 µM of compound C) for 30 min and the quantitative analysis
of the relative protein expression of (E) p-AMPK, (F) NLRP3 and (G) caspase-1 in the NMCMs;
(H,I) the average ROS signal intensity in the NMCMs, which was measured after DHE staining
(bar = 100 µm). Note: ISO, isoprenaline; Met, metformin; Comp C, compound C; Running, exercise
training; n = 6. The data are the mean ± SEM from a one-way ANOVA with a Tukey’s post-hoc test
or a Kruskal–Wallis ANOVA with a post-hoc Dunn’s multiple comparison test.
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Figure 4. AMPKα2−/− mice failed to reduce ISO-induced cardiac inflammation: (A) the protocol that
was used for the evaluation of the effects of exercise training on ISO-induced cardiac inflammation in
AMPKα2−/− mice; (B,C) Mac-3 (macrophage marker) staining, which was used to calculate the area
of macrophage infiltration (compared to the sedentary group, the area of macrophage infiltration did
not decrease in AMPKα2−/− mice after exercise training (bar = 500 µm)); (D–F) the concentrations
of (D) MCP-1, (E) MCP-5 and (F) IL-18 in the myocardium of the AMPKα2−/− mice, which was
determined using an ELISA. Note: ISO, isoprenaline; Running, exercise training; MCP-1, monocyte
chemoattractant protein-1; MCP-5, monocyte chemoattractant protein-5; IL-18, interleukin-18; n = 6.
The data are the mean ± SEM from a one-way ANOVA with a Tukey’s post-hoc test.

2.5. Exercise Training Failed to Reduce the Isoprenaline-Induced Activation of Cardiac NLRP3
Inflammasomes or the Production of Reactive Oxygen Species (ROS) and ICAM-1 in
AMPKα2−/− Mice

With exercise training, ISO treatment increased inflammasome proteins, such as
caspase-1 and NLRP3, in AMPKα2−/− animal hearts, and these increases were similar to
those observed in the sedentary group (Figure 5A–D). ISO treatment resulted in increased
levels of ROS (Figure 5E,F) and ICAM-1 (Figure 5G,H) in the exercise training AMPKα2−/−

mice group, which were similar to those observed in the sedentary AMPKα2−/− mice
group. We simultaneously compared relevant inflammatory indicators in the AMPKα2−/−

and WT mice and found that ISO-induced inflammation was attenuated in the WT mice
following exercise but not in the AMPKα2−/− mice. We also analyzed the results of the
inflammatory indicators, Mac-3 staining and staining for ROS and ICAM-1 in the WT and
AMPKα2−/− mice and found that in the WT mice, exercise training was able to alleviate
ISO-induced cardiac inflammation, while there was no such effect in the AMPKα2−/−

mice (Figure S6). Thus, the beneficial effects of exercise training on cardiac inflammation
depended on AMPK.
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The data are the mean ± SEM from a one-way ANOVA with a Tukey’s post-hoc test.

3. Discussion

The present study demonstrated that exercise training attenuated ISO-induced cardiac
inflammation in mice by reducing ROS production and NLRP3 inflammasome activation.
The underlying mechanism of these effects was that exercise training activated AMPK,
which directly inhibited the ROS–NLRP3 signaling pathway and attenuated acute sympa-
thetic stress-induced cardiac inflammation (Figure 6).
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The occurrence and development of heart diseases are often accompanied by the
overactivation of the sympathetic system. Previous studies in this area have shown that
acute exercise can stimulate sympathetic nervous system (SNS) activation and cause an
acute increase in catecholamine levels, possibly leading to cardiac injuries, whilst long-term
exercise can lessen sympathetic tension [22–24]. Chronic exercise promotes sympathetic
inhibition, and regular physical activity can mitigate central and peripheral sympathetic
activity, thereby plausibly reducing the risk of heart injuries, which could explain the clinical
benefits of exercise for CVDs [23,25,26]. Consistent with clinical evidence, in this study,
we found that cardiac inflammation resulting from β-AR overactivation was significantly
ameliorated after 6 weeks of exercise training. This evidence further suggests that chronic
aerobic exercise not only improves cardiac function by reducing catecholamines but also
reduces the risk of cardiac injuries by antagonizing the signaling pathways downstream of
the β-ARs.

A previous study found that acute mental stress resulted in inflammatory leukocyte
recruitment, which contributed to the occurrence of cardiovascular events [27]. Acute sym-
pathetic stress-induced cardiac injuries are often accompanied by inflammatory responses,
such as inflammatory cell infiltration and inflammatory cytokine/chemokine release [16].
Thus, inhibiting the overactivation of the inflammatory response has been proposed as a
promising strategy to attenuate pathological cardiac remodeling. The anti-inflammatory
effects of exercise have been reported in a number of studies. For example, exercise training
reduces inflammation in adipose tissue by inhibiting macrophage infiltration and the shift
from the M1 to M2 macrophage phenotype in mice with high-fat diet-induced obesity [28],
and clinical evidence has suggested that exercise training inhibits the childhood obesity-
induced activation of inflammatory signaling pathways via microbiota modulation [29].
Other research has also confirmed that regular aerobic exercise can activate the PDGF-
BB/PDGFR-β/PI3K/Akt/eNOS signaling pathway, which induces cardioprotection by
counteracting the obesity-associated inflammatory response and dyslipidemia [30]. In our
study, we found that pretreatment involving exercise training for 6 weeks could inhibit
ISO-induced cardiac inflammation. The underlying mechanism of this effect was that
exercise training could inhibit the production of ROS in the heart tissue, thereby inhibiting
the overactivation of NLRP3 inflammasomes.

NLRP3 inflammasomes are critical in ISO-induced cardiac inflammation as they pro-
mote the cleavage and activation of IL-18, resulting in the initiation of cardiac inflam-
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mation [16]. NLRP3 activation induces a large number of pro-inflammatory cytokines,
such as IL-1β and IL-18, which are involved in the development of various diseases [31].
However, there were no significant changes in IL-1β in the heart during acute β-receptor
over-activation (Figure S3), which was consistent with our previous finding [16]. Our study
proved that exercise training could suppress the activation of NLRP3 inflammasomes in the
heart, thereby ameliorating cardiac inflammation induced by the overactivation of β-ARs.
By further exploring how exercise could inhibit the activation of NLRP3 inflammasomes in
the heart caused by acute sympathetic stress, we found that AMPK had an essential role in
inhibiting cardiac inflammation.

AMPK, a heterotrimeric complex, is composed of a catalytic α-subunit and beta (β)
and gamma (γ) regulatory subunits. The α-subunit has two isoforms, α1 and α2, encoded
by gene PRKAA1 and PRKAA2, respectively [32]. Both α1 and α2 subunits were present in
the heart tissue, with the α2 subunit predominating in cardiomyocytes [33]. Therefore, the
KO mice we used were AMPK α2 subunit knockout mice; thus, the expression of the AMPK
α1 subunit was not affected. In our Western blot experiments, we used an antibody for
AMPKα, and AMPKα2−/− mice still showed extremely weak bands, which was possibly
due to the detection of the α1 subunit in the heart tissue (Figure S6A).

It is widely accepted that AMPK activation plays a protective role in a range of
CVDs [34,35]. AMPK is activated by energy stress and/or cellular stress in response to
increased adenosine triphosphate (ATP) consumption (e.g., exercise, cell proliferation, etc.)
or decreased ATP production (e.g., oxidative stress, hypoxia, etc.) [36,37]. During exercise,
the heart rate, catecholamine levels and cardiac contractility increase, leading to an increase
in cardiac ATP consumption, which activates AMPK in the heart [38]. However, after
long-term exercise, cardiac sympathetic tone and heart rate both decrease [24]. In our
experiments, 6 weeks of exercise training caused decreases in heart rate and catecholamine
levels in both wild-type and AMPKα2−/− mice. Thus, the changes in AMPK activity after
chronic exercise may be attributable to multiple mechanisms. After long-term exercise,
the heart experiences physiological hypertrophy and increased contractility, leading to
increased cardiac ATP consumption, increased free adenosine monophosphate (AMP)
concentrations and reduced phosphocreatine concentrations in the heart, resulting in an
increased AMP to ATP ratio, which, in turn, activates AMPK [38]. Several studies have
reported that exercise can cause a decrease in glycogen levels in cardiac tissue, leading to
AMPK activation [39–41]. Thus, exercise-induced AMPK activation is attributed to multiple
mechanisms, involving not only heart rate and catecholamines but also energy metabolism
and gluconeogenesis [38].

Exercise-induced adaptations in the heart can promote health and prevent diseases,
and AMPK activation could play a critical role in conferring these benefits [42]. A previous
study reported that the activation of AMPK could effectively inhibit myocardial ischemia-
reperfusion injury-induced cardiac inflammation [43] and determined that exercise could
enhance AMPK in aging rat cardiac cells and attenuate the activation of pro-inflammatory
mediators, thus improving cardiac function [44]. Our previous study found that swim-
ming training did not improve the production of ISO-induced ROS or cardiac fibrosis in
AMPKα2−/− mice [21]. In our study, we found that the activation of AMPK inhibited
ISO-induced ROS production and NLRP3 inflammasome activation in the heart, both
in vivo and in vitro. We also found that in both the WT mice and the AMPKα2−/− mice,
exercise training could significantly reduce the plasma levels of catecholamines (Figure S5).
Additionally, exercise training failed to inhibit ISO-induced cardiac NLRP3 inflammasome
activation and inflammation in the AMPKα2−/− mice (Figures 4 and 5). We believe that the
mechanisms underlying the beneficial effects of exercise include reduced catecholamines
(ligand) levels and attenuated downstream β-AR signaling in an AMPK-dependent man-
ner. Our results showed that the inhibition of NLRP3 inflammasomes contributed to the
protective role of exercise training against cardiac inflammation. Finally, we demonstrated
that exercise training reduced NLRP3 inflammasomes via AMPK activation.
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Exercise training can improve cardiac inflammation through a variety of pathways.
For example, in rats with hypertension combined with ovariectomy, running training can
effectively improve cardiac inflammation by reducing angiotensin II type I receptors [45].
Swimming training can also improve aging-induced cardiac inflammation by inhibiting the
NF-κB pathway and suppressing the expression of COX2 and iNOS [14], while long-term
swimming exercise can activate AMPK, leading to an increase in the expression of SIRT1
and PGC-1α in the cardiomyocytes of aging rats, thereby promoting cardiac metabolic
adaptation and improving cardiac inflammation [44]. Exercise counters systemic and
cardiac insulin resistance, as well as eNOS dysfunction caused by high fructose feeding,
and effectively prevents the activation of cardiac pro-inflammatory signals [46]. During the
early stages of myocardial infarction (e.g., one day after infarction), exercise can ameliorate
the pathological inflammatory response in the infarcted area by inhibiting pro-inflammatory
cell infiltration and accelerating the conversion of macrophages from M1 to M2 [47]. In our
study, we showed that exercise training could also alleviate sympathetic stress-induced
cardiac inflammation through the AMPK-ROS pathway, and this study provides a new
mechanism for exercise training to ameliorate cardiac inflammation.

According to the World Health Organization (WHO), long-term moderate-intensity
aerobic exercise (>150 min per week of moderate-intensity physical activity) is of great
significance in preventing the development of cardiovascular diseases and improving
prognoses [48]. In this study, exercise was used to maintain a 65–75% maximum oxygen
consumption in mice during running, which was equivalent to moderate-intensity aero-
bic exercise in humans. Our results provide an elaboration of a new mechanism for the
protective effect of moderate-intensity exercise on cardiovascular disease, that is, exer-
cise can ameliorate cardiac injury caused by sympathetic stress through the AMPK-ROS
pathway. Our previous study consistently found no cardiac fibrosis but inflammatory
infiltration in mice 3 days after ISO stimulation, whereas, 7 days after ISO stimulation, mice
showed cardiac fibrosis and decreased diastolic function [16]. Inflammatory infiltration
at 3 days after ISO stimulation led to cardiac fibrosis and diastolic dysfunction at 7 days
after ISO stimulation. We believe that running attenuates inflammatory infiltration in
mice 3 days after ISO stimulation and then subsequently attenuates cardiac fibrosis and
diastolic dysfunction. Therefore, moderate-intensity exercise can prevent sympathetic
stimulation-induced cardiac fibrosis through the inhibition of cardiac ROS and NLRP3
inflammasomes at the early stage of sympathetic stress. For people who do not benefit from
exercise, AMPK activator can be used to block early cardiac inflammation (e.g., by directly
inhibiting ROS production), thereby preventing the progression of cardiac fibrosis and
ultimately improving cardiac function. In the future, clinical research is needed to prove
that long-term moderate-intensity exercise training performed in advance can prevent
cardiac injury in people suffering from acute sympathetic stress.

In order to investigate the effect of acute sympathetic nerve stimulation on inflamma-
tory damage to the heart, we injected either ISO or saline in both the sedentary and running
groups; thus, we minimized the effects of the injections on the different outcomes in the
two groups in our study. However, there was a limitation whereby in our experiments, the
impact of the injections themselves on sympathetic and hormonal changes was not taken
into consideration. Therefore, in further experiments, we should add a blank control group
(no injections) to clarify whether the behavior of the injection is involved in cardiac injury
induced by acute sympathetic stimulation.

4. Materials and Methods
4.1. Antibodies and Reagents

The macrophage-3 (Mac-3) antibody was purchased from BD Biosciences (San Jose,
CA, USA). The NLRP3, p-AMPK, AMPK and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) antibodies were purchased from Cell Signaling Technology (Danvers, MA,
USA). The interleukin-18 (IL-18) enzyme-linked immunosorbent assay (ELISA) kits were
purchased from MBL (code 7652, Sakae, Japan). The monocyte chemoattractant protein-1
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(MCP-1) and monocyte chemoattractant protein-5 (MCP-5) ELISA kits were purchased
from R&D Systems Incorporated (Minneapolis, MN, USA). The ISO (I5627), metformin
(D150959) and caspase-1 (P20) antibodies were purchased from Sigma (Sigma-Aldrich, St.
Louis, MO, USA).

4.2. Animal and Exercise Model

This study was conducted in accordance with the Use of Laboratory Animals, pub-
lished by the US National Institutes of Health (NIH Publication No. 85-23, revised 2011),
and the guidelines of the Peking University Health Science Center. The homozygous
AMPKα2−/− mice from the C57BL/6J background were kindly provided by Dr. Benoit
Viollet (Institute National de la Santé et de la Recherche Médicale U567, Paris, France).
The male AMPKα2−/− and wild-type (WT) mice were bred in a specific, pathogen-free
environment (temperature: 20–24 ◦C; relative humidity: 30–70%) under a 12:12 h light:dark
cycle and received standard rodent food.

Then, 10-week-old WT (n = 36) and AMPKα2−/− (n = 36) mice were randomly
divided into exercise training and sedentary groups. The mice in the exercise training
group followed a running exercise plan that involved running on a treadmill for 90 min/day
and 6 days/week for 6 weeks at a velocity of 15 cm/s. At this velocity, the mice reached
80% of their maximal oxygen consumption (VO2max), according to exercise tolerance
experiments [49]. The genotype identification of the AMPKα2−/− mice is shown in the
(Supplementary Materials Figure S7A–C). The mice in the ISO group were subcutaneously
injected with single ISO doses of 5 mg/kg body weight [16] (corresponding details: the
concentration of the ISO solution was 0.5 mg/mL and the injection volume was 0.01 mL/g
body weight). The mice in the vehicle group were injected subcutaneously with an equal
volume of saline at 10 mL/kg body weight. After 6 weeks of running training according to
the previously described exercise protocol, the mice in the running group were stimulated
with the same ISO or saline doses as those in the sedentary group. Heart tissue was then
harvested from some mice 1 day after the ISO or saline injection to evaluate the expression
of inflammatory components and other indicators in vivo (ISO 1-day group), while heart
tissue was harvested from the other mice 3 days after the ISO injection to evaluate the
myocardial infiltration of inflammatory cells, etc. (ISO 3-day group) (Figure 1A).

4.3. Citrate Synthase Activity Assay

The citrate synthase activity in the skeletal muscles of the mice was analyzed using an
absorbance-based citrate synthase activity assay (GENMED, Shanghai, China, GMS50130.2).
Briefly, gastrocnemius muscle tissue was harvested from the mice, washed quickly in
cold, phosphate-buffered saline (PBS), placed in liquid nitrogen and then immediately
frozen. Next, the muscle tissue was ground into a powder in liquid nitrogen and was
subsequently added to lysate and mixed thoroughly. The homogenate was incubated on
ice for 30 min, with powerful vortexing being carried out for 30 s every 10 min during this
period. Subsequently, the homogenate was centrifuged at 10,000× g for 10 min at 4 ◦C. The
supernatant was extracted and stored at −80 ◦C prior to further analysis. All examination
procedures were conducted in accordance with the manufacturers’ instructions. The
absorbance was measured at 412 nm using a Multiskan GO instrument (Thermo Fisher
Scientific Cellomics, Pittsburgh, PA, USA). During this period, four measurements were
taken every 5 min for 15 min. All concentration values were in the linear range of the
standard curve and were calculated based on known protein concentrations. The results
showed that citrate synthase activity was significantly higher in the skeletal muscle of mice
in the exercise training group (Figure S7D,E).

4.4. Isolation and Culture of Primary Neonatal Mouse Cardiomyocytes (NMCMs)

Cardiomyocytes were isolated from 1- to 3-day-old neonatal C57BL/6J mice and
cultured as described previously [50]. In brief, the cardiomyocytes were collected using
trypsin and collagenase type II (Gibco, Carlsbad, CA, USA). The dissociated cells were then
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plated on 100 mm culture dishes in Dulbecco’s modified Eagle’s medium (DMEM) with 15%
fetal bovine serum and incubated for 2 h. The non-attached cardiomyocyte-rich fraction
was plated on plastic dishes (5 × 105 cells/dish) and 100 µmol/L bromodeoxyuridine
(Sigma St. Louis, MO, USA) was added to prevent fibroblast proliferation. The cells were
incubated in a serum-free medium for 3–4 h prior to drug or mock treatment.

4.5. Enzyme-Linked Immunosorbent Assay (ELISA)

The levels of monocyte chemoattractant protein-1 (MCP-1), monocyte chemoattractant
protein-5 (MCP-5) and interleukin-18 (IL-18) in the mouse heart tissue were measured using
ELISA kits, as described previously. Briefly, heart tissue was harvested from the mice, im-
mediately frozen in liquid nitrogen and then homogenized in a lysis buffer. The procedures
were conducted according to the manufacturers’ instructions and the absorbances were
measured at 450 nm using a Multiskan GO instrument (Thermo Fisher Scientific Cellomics,
Pittsburgh, PA, USA). All concentration values were in the linear range of the standard
curve and were calculated based on known protein concentrations.

4.6. Measurement of Reactive Oxygen Species (ROS) Levels

The production of reactive oxygen species (ROS) in neonatal mouse cardiomyocytes
and the left ventricular myocardium was determined using dihydroethidium (DHE; Invit-
rogen Molecular Probes, Eugene, OR, USA) staining. Briefly, the transverse cryosections
(8 µm thick) of frozen hearts were fixed with acetone for 15 min and washed three times
with 0.01% PBS before being incubated with DHE (5 µM) for 30 min at room temperature.
The heart sections were stained with 4,6-diamidino-2-phenylindole (DAPI; Wako Pure
Chemical Industries Ltd., Osaka, Japan) for the visualization of the nuclei. Images were
obtained using a laser scanning confocal microscope (Carl Zeiss Inc., Thornwood, NY, USA),
with excitation/emission at 488/555 nm, respectively. To detect the ROS in the NMCMs,
serum-starved NMCMs were incubated with 5 mmol/L of DHE for 15 min at 37 ◦C in 5%
CO2 and 95% air. The cardiomyocytes were then stained with Hoechst 33342 (Invitrogen
Molecular Probes, Eugene, OR, USA) to visualize the nuclei. The fluorescence intensity was
measured and analyzed using a Cellomics Array Scan VTI HCS Reader (Thermo Fisher Sci-
entific Cell omics, Pittsburgh, PA, USA) with the Morphology Explorer Bio Application. Cell
images were acquired using excitation wavelengths of 386 and 535 nm, with a 300 ms expo-
sure time. The levels of ROS were expressed as the mean fluorescence intensity [51]. The
DHE fluorescence was quantified using Image-Pro Plus 6.0 (Media Cybernetics, Bethesda,
MD, USA).

4.7. Histochemistry

The hearts were harvested from the mice and washed with cold phosphate-buffered
saline. To test the immunohistochemistry, the heart sections were incubated with antibodies
against the macrophage marker Mac-3 (1:200 dilution; BD Biosciences, San Jose, CA, USA).
The sections were imaged using a NanoZoomer-SQ digital slide scanner (Hamamatsu
Photonics, Shizuoka, Japan). To evaluate macrophage infiltration, 10 fields were randomly
selected from each section and the ratio of the positively stained area to the total myocardial
area was calculated using Image-Pro Plus 6.0 (Media Cybernetics, Bethesda, MD, USA).

4.8. Western Blotting

Cardiac samples were collected in a lysis buffer (10 mmol·L−1 of Tris–HCl, pH 7.4,
100 mmol·L−1 of NaCl, 1 mmol·L−1 of EDTA, 1 mmol·L−1 of EGTA, 1 mmol·L−1 of NaF,
20 mmol·L−1 of Na4P2O7, 2 mmol·L−1 of Na3VO4, 1% Triton X-100, 10% glycerol, 0.1%
sodium dodecyl sulfate (SDS), 1% deoxycholic acid, 1 mmol·L−1 of PMSF and 1 g·mL−1

of aprotinin). The levels of NLRP3, caspase-1, p-AMPK, AMPK and GAPDH were ex-
amined using Western blotting. Heart lysate was subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS–PAGE) and blotted on nitrocellulose membranes.
Protein samples (40 µg) were separated via electrophoresis on 12% SDS polyacrylamide
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gels and transferred to polyvinylidene fluoride membranes. The membranes were then
incubated with primary antibodies for at least 8 h at 4 ◦C (NLRP3, 1:500 dilution; p-AMPK,
1:1000 dilution; AMPK, 1:1000 dilution; pro-caspase-1, 1:1000 dilution; caspase-1, 1:1000
dilution; GAPDH, 1:10,000 dilution). After the membranes had been incubated with the
corresponding HRP-conjugated secondary antibodies (ZSGB-BIO, Beijing, China), the pro-
tein bands were visualized using Immobilon Western Chemiluminescent HRP Substrate
(Millipore Corporation, St. Burlington, MA, USA). Blotting images were obtained using a
Syngene Gene Gnome-XRQ-NPC imager (Syngene Company, Cambridge, UK), and the
proteins were quantified by calculating the grayscale value of each band using ImageJ 1.52
(Media Cybernetics, MD, USA).

4.9. Immunofluorescence

For the immunofluorescence staining, serial transverse cryosections (8 µm thick)
of frozen hearts were cut using a microtome (Leica, Wetzlar, Germany) and placed on
polylysine-coated glass slides. The slices were then incubated with the primary antibod-
ies against the endothelial cell marker CD31 (1:100 dilution; Cell Signaling Technology,
#3528, Danvers, MA, USA) and intercellular adhesion molecule 1 (ICAM-1; 1:100 dilution;
Abcam, #ab282575, Cambridge, MA, USA), followed by incubation with fluorescence-
conjugated secondary antibodies. The sections were also stained with 4′,6-diamidino-2-
phenylindole (DAPI; Wako Pure Chemical Industries Ltd., Osaka, Japan) for the visualiza-
tion of the nuclei.

4.10. Statistical Analysis

The data were expressed as the means± SEMs. All samples were independent. For the
parametric analysis, a one-way ANOVA with a two-sided Tukey’s post-hoc test was used to
analyze the differences between groups when the data followed a normal distribution and
had equal variances. For the nonparametric analysis, a Kruskal–Wallis ANOVA combined
with a two-sided Dunn’s multiple comparison post-hoc test was performed when more
than two groups were evaluated. The data were analyzed using GraphPad Prism software
(version 8.4; GraphPad Software Inc., San Diego, CA, USA) and SPSS 22 (IBM Co., Armonk,
NY, USA). A value of p < 0.05 was considered to indicate statistical significance.

5. Conclusions

In conclusion, exercise training inhibited the ISO-induced activation of NLRP3 inflam-
masomes and cardiac inflammation in mice. Exercise training exerted cardioprotective
effects by activating AMPK, which inhibited NLRP3 inflammasome activation. Our study
showed that exercise training could prevent sympathetic stress-induced cardiac inflamma-
tory injuries and identified a novel mechanism for the cardioprotective effects of exercise.
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